HAN基液体推进剂高压燃烧特性的实验研究与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
HAN基液体推进剂是一种新型绿色高能液体推进剂,是液体火箭发动机的理想燃料之一,其燃烧特性的优劣直接影响到发动机的工作性能。本文围绕HAN基液体推进剂的高压燃烧特性,开展了实验研究和数值模拟工作,主要研究内容及成果如下:
     (1)利用流体极性物质热物性参数估算的理论与经验公式,计算了HAN基液体推进剂LP1845、LP1846的热物性参数随温度、压力的变化规律,为HAN基液体推进剂蒸发、燃烧理论的数值模拟工作提供了必要的基础数据。
     (2)建立了HAN基液体推进剂单滴常压蒸发的简化模型,计算了不同环境温度、液滴尺寸、液滴初温、对流速度条件下LP1846液滴的蒸发特性。计算结果表明:LP1846单滴的蒸发过程可以分为瞬态加热阶段和平衡蒸发阶段。提高环境温度,瞬态加热阶段和平衡蒸发阶段都缩短,平衡温度增大。增大液滴初始直径,瞬态加热阶段和平衡蒸发阶段都延长,但平衡温度没有变化。提高液滴初始温度,瞬态加热时间变短,但对平衡蒸发阶段没有影响,平衡温度保持不变。对流速度越大,瞬态加热时间越短,平均蒸发常数越大,但平衡温度不受影响。
     (3)建立了HAN基液体推进剂单滴高压蒸发的简化模型,计算了LP1845液滴在高温高压氮气环境中蒸发时滴径、滴温随时间的变化关系。计算结果表明:随着蒸发的进行,液滴半径先增大后减小,且减小时滴径满足D2定律;液滴温度先迅速上升,然后逐渐稳定在一个平衡温度。在环境温度保持不变时,随着环境压力的增大,液滴达到平衡温度的时间增长,而液滴生存时间缩短。
     (4)采用VOF两相流模型,考虑气液相间传质、表面张力、气相内的组分输运,推导了液滴蒸发时的相间传质源项,建立了HAN基液体推进剂单滴在对流氮气中的蒸发模型,计算了LP1846液滴蒸发过程中液滴及周围流场特性参数的变化规律,成功捕捉了液滴表面的Stefan流和尾部的漩涡特性。
     (5)考虑液滴表面的气相化学反应,建立了一个适用于HAN基液体推进剂液滴燃烧的简化模型。利用此模型,计算了LP1846单滴在静止大气中燃烧时不同环境温度下的质量燃速和液滴寿命。结果表明,随着环境温度的升高,液滴质量燃烧速率加快,且温度越高,速率增加得越快。液滴寿命随环境温度的增大而减小。通过计算结果与实验数据的对比,验证了此模型的正确性。
     (6)设计了一种测量HAN基液体推进剂高压线燃速的实验装置,其高压环境通过固体火药燃烧产生,并引入包覆药柱燃烧补偿压降,以维持近似的恒压环境,同时采用自研的离子探针测速技术测定了液体推进剂燃烧时火焰面的传播速度。利用此实验装置,分别测量了HAN基液体推进剂AF-315在29.4~55.0MPa内、LP1846在6-28MPa内的表观线燃速。
     (7)借助固体推进剂稳态燃烧理论,提出了液体推进剂一维燃烧波结构的概念,建立了HAN基液体推进剂液柱一维稳态燃烧的简化模型,得到了其燃烧速率随压力变化的函数关系式。利用此简化模型,计算了LP1846在6~28MPa压力范围内的燃烧速度,其数值模拟结果与实验结果的最大误差为3.2%,表明这种简化模型是有效的。
     (8)利用VOF两相数值模拟方法,建立了HAN基液体推进剂高压稳态燃烧的二维模型,计算了AF-315在高压线状燃烧器中燃烧时,温度场、压力场、速度场等随时间的变化规律,成功捕捉了液面在整个燃烧过程中的动态移动图像,得到了AF-315液体推进剂在不同的环境压力下的燃烧速度。通过与实验结果进行对比,验证此法可行,能够用来模拟HAN基液体推进剂的高压燃烧过程。
HAN-based liquid propellant is a new type of green high-energy liquid propellant, whose combustion behaviors will directly affect the performance of the engine, as an ideal fuel for the liquid rocket engine. The experimental and theoretical studies have been conducted, focusing on the high-pressure combustion characteristics of HAN-based liquid propellants. The main research contents and results are as follows:
     (1) By use of the theoretical and empirical formulas for estimating the thermal physical property parameters of liquid polar substances, the thermal physical properties of HAN-based liquid propellant under different pressures and temperatures were calculated, which can provide basic data for the theoretical research on the evaporation and combustion of HAN-based liquid propellants.
     (2) A simplified model for the HAN-based liquid propellant single droplet evaporation under atmospheric pressure was established, and the influences of ambient temperature, droplet size, droplet initial temperature, convection velocity on the LP1846droplet evaporation characteristics were researched. The results show that the evaporation process of the LP1846droplet can be divided into the transient heating stage and the equilibrium evaporation stage. As the ambient temperature grows, the periods of both the transient heating stage and the equilibrium evaporation stage are shortened, but the equilibrium temperature increases. The two stages are all extended with increasing droplet size, but there is no change in the equilibrium temperature. As the droplet initial temperature increases, the transient heating duration gets shorter, but the equilibrium evaporation stage is unaffected, and the equilibrium temperature remains the same. The larger the convection velocity is, the shorter the time of the transient heating stage is, and the bigger the average evaporation constant becomes, but the equilibrium temperature remains constant.
     (3) A high-pressure evaporation model for the HAN-based liquid propellant droplet was built, and the droplet temperature and the radius versus time curves were calculated when a LP1845droplet evaporates in a high-temperature, high-pressure nitrogen environment. The results indicate that the droplet radius increases firstly and reduces afterward as the evaporation goes on, and the reduction rate of the radius satisfies the D2law. The droplet temperature rises rapidly at the beginning, then maintains stable gradually at an equilibrium value. When the ambient temperature remains constant, with increasing ambient pressure, the time to reach the equilibrium temperature lengthens, but the droplet lifetime shortens.
     (4) Considering the liquid-gas interphase mass transfer, surface tension and gas component transport, the droplet evaporation mass transfer source term was derived. A theoretical model for the HAN-based liquid propellant droplet evaporation in a convection nitrogen environment was set up based on the theory of VOF two phase flow. The variation regularity of the flow field around the evaporating LP1846droplet was studied, and the Stefan flow around the droplet surface and the swirl at the droplet tail were also captured successfully.
     (5) Considering the gas-phase chemical reaction at the droplet surface, a simplified combustion model applicable to the HAN-based liquid propellant droplet was established. Based on the model, the mass burning rate and the droplet lifetime under different ambient temperatures were calculated when a LP1846single droplet combusts in a stationary atmospheric environment. The results show that the mass burning rate accelerates with increasing ambient temperature, and the higher the temperature, the faster the rate increases. The droplet lifetime gets longer as the ambient temperature increases. The model is valid by comparing the calculation results with the experimental data.
     (6) A device for measuring the linear burning rate of HAN-based liquid propellants at high pressures was designed. The high-pressure environments were generated by the combustion of solid propellants. The coated propellants which burn progressively were introduced to maintain the approximate constant-pressure environments. The spread velocity of the combustion flame surface was measured by virtue of the measuring velocity technology of ion probe. Based on the experimental device, the apparent linear burning rates of AF-315at29.4-55.0MPa and LP1846at6~28MPa was measured, respectively.
     (7) Referencing the steady-state combustion theory of the solid propellant, the concept of the liquid propellant one-dimensional combustion wave structure was put forward. A one-dimensional simplified model of the steady-state combustion of HAN-based liquid propellant column was developed, and the relational expression between the burning rate and the ambient pressure was also obtained. Based on the model, the burning rates of LP1846at6~28MPa was calculated. The maximum error is3.2%between the simulation results and the experimental data, which shows that the simplified model is valid.
     (8) A two-dimensional high-pressure steady-state combustion model for the HAN-based liquid propellant was built by use of the VOF two-phase numerical simulation method. The combustion process of AF-315in a high pressure strand burner was simulated, and the variation regularities of the temperature, pressure and velocity were researched. The liquid surface movement throughout the combustion process was captured successfully, and the burning rates of AF-315under different ambient pressures were obtained. This method is feasible by comparing the simulation results with the experimental data, so it can be used to simulate the high-pressure combustion process of HAN-based liquid propellants.
引文
[1]周劲松,桂林,孙莲萍,等.用于航天推进的HAN基液体单元推进剂[J].化学推进剂与高分子材料,2002,(1):12-13.
    [2]贺芳,方涛,李亚裕,等.新型绿色液体推进剂研究进展[J].火炸药学报,2006,29(4):54-57.
    [3]Hurbert E, Applewhite J, Nguyen T. Nontoxic Orbital Maneuvering and Reaction Control Systems for Reusable Spacecraft[J]. Journal of Propulsion and Power,1998,14(5): 676-687.
    [4]Meinhardt D, Brewster G, Christofferson S. Development and Testing of New, HAN-Based Monopropellants in Small Rocket Thrusters[C]. Cleveland, OH, USA,1998.
    [5]Anflo K. Development and Testing of ADN-Based Monopropellants in Small Rocket Engines[C]. Huntsville, AL, USA,2000.
    [6]张续柱,肖忠良.液体发射药[M].北京市:中国科学技术出版社,1993.
    [7]Chang I S. Investigation of Space Launch Vehicle Catastrophic Failures[J]. Journal of Spacecraft and Rockets,1996,33(2):198-205.
    [8]查理.液体火箭发动机技术[J].国防科技,2004,(8):25-30.
    [9]李亚裕.液体推进剂[M].北京:中国宇航出版社,2011.
    [10]符全军.液体推进剂的现状及未来发展趋势[J].火箭推进,2004,30(1):1-6.
    [11]Yang J, Wong S. An Experimental and Theoretical Study of the Effects of Heat Conduction through the Support Fiber on the Evaporation of a Droplet in a Weakly Convective Flow[J]. International Journal of Heat and Mass Transfer,2002,45(23): 4589-4598.
    [12]Law C K, Lee C H, Srinivasan N. Combustion Characteristics of Water-in-Oil Emulsion Droplets[J]. Combustion and Flame,1980,37:125-143.
    [13]Miyasaka K, Law C K. Combustion of Strongly-Interacting Linear Droplet Arrays[C]. Symposium (International) on Combustion,1981,18(1):283-292.
    [14]Chauveau C, Halter F, Lalonde A, et al. An Experimental Study on the Droplet Vaporization:Effects of Heat Conduction through the Support fiber[C]. Como, Italy, Sep 8-10,2008.
    [15]Hara H, Kumagai S. Experimental Investigation of Free Droplet Combustion under Microgravity[C]. Symposium (International) on Combustion,1991,23(1):1605-1610.
    [16]Ghassemi H, Baek S W, Khan Q S. Experimental Study on Binary Droplet Evaporation at Elevated Pressures and Temperatures[J]. Combustion Science and Technology,2006, 178(6):1031-1053.
    [17]Stengele J, Prommersberger K, Willmann M, et al. Experimental and Theoretical Study of One- and Two-Component Droplet Vaporization in a High Pressure Environment[J]. International Journal of Heat and Mass Transfer,1999,42(14):2683-2694.
    [18]Leclair B P, Hamielec A E, Pruppacher H R, et al. A Theoretical and Experimental Study of the Internal Circulation in Water Drops Falling at Terminal Velocity in Air[J]. Journal of Atmospheric Sciences,1972,29(4):728-740.
    [19]Faeth G M, Dominicis D P, Tulpinsky J F, et al. Supercritical Bipropellant Droplet Combustion[C]. Symposium (International) on Combustion,1969,12(1):9-18.
    [20]Wang C H, Liu X Q, Law C K. Combustion and Microexplosion of Freely Falling Multicomponent Droplets[J]. Combustion and Flame,1984,56(2):175-197.
    [21]Lee A, Law C K. An Experimental Investigation on the Vaporization and Combustion of Methanol and Ethanol Droplets[J]. Combustion Science and Technology,1992,86(1-6): 253-265.
    [22]Spalding D B. The Combustion of Liquid Fuels[D]. Imperial College London,1987.
    [23]Gogos G, Soh S, Pope D N. Effects of Gravity and Ambient Pressure on Liquid Fuel Droplet Evaporation[J]. International Journal of Heat and Mass Transfer,2003,46(2): 283-296.
    [24]Aggarwal S K, Mongia H C. Multicomponent and High-Pressure Effects on Droplet Vaporization[J]. Journal of Engineering for Gas Turbines and Power,2002,124(2): 248-255.
    [25]Abramzon B, Sazhin S. Convective Vaporization of a Fuel Droplet with Thermal Radiation Absorption[J]. Fuel,2006,85(1):32-46.
    [26]Sazhin S S, Elwardany A, Krutitskii P A, et al. A Simplified Model for Bi-Component Droplet Heating and Evaporation[J]. International Journal of Heat and Mass Transfer, 2010,53(21):4495-4505.
    [27]Abramzon B, Sirignano W A. Droplet Vaporization Model for Spray Combustion Calculations[J]. International Journal of Heat and Mass Transfer,1989,32(9): 1605-1618.
    [28]Hsieh K C, Shuen J S, Vigor Y. Droplet Vaporization in High-pressure Environments I: Near Critical Conditions[J]. Combustion Science and Technology,1991,76(1-3): 111-132.
    [29]Schlottke J, Weigand B. Direct Numerical Simulation of Evaporating Droplets[J]. Journal of Computational Physics,2008,227(10):5215-5237.
    [30]Sazhin S S. Advanced Models of Fuel Droplet Heating and Evaporation[J]. Progress in Energy and Combustion Science,2006,32(2):162-214.
    [31]倪培永,王忠,毛功平,等.静止环境中甲醇液滴蒸发的数值模拟[J].江苏大学学报(自然科学版),2010,31(3):269-272.
    [32]丁继贤,孙凤贤,姜任秋.对流条件下环境压力对液滴蒸发的影响研究[J].哈尔滨工程大学学报,2007,28(10):1104-1108.
    [33]孙慧娟,张海滨,白博峰.高温燃气中单个液滴的蒸发特性[J].西安交通大学学报,2008,42(7):833-837.
    [34]魏明锐,赵卫东,孔亮,等.液滴修正零维蒸发模型的推导与分析[C].2007年APC联合学术年会论文集,天津,2007.
    [35]孙凤贤,王银燕.辐射与对流耦合加热下正十二烷液滴的蒸发特性[J].航空动力学报,2008,23(11):2043-2048.
    [36]田章福,陶玉静,苏凌宇,等.多组分液滴蒸发过程的理论模型及试验研究[J].推进技术,2006,27(6):568-571.
    [37]庄逢辰,陈新华.燃料液滴高压蒸发理论[J].工程热物理学报,1982,3(3):276-283.
    [38]聂万胜,庄逢辰.一甲基肼的高压蒸发研究[J].国防科技大学学报,1997,19(5):81-86.
    [39]陈新华,庄逢辰.液体火箭推进剂在自然环境中蒸发特性[J].热科学与技术,2005,4(4):304-308.
    [40]李云清,何鹏.超临界环境下燃料液滴蒸发过程的计算研究[J].内燃机学报,2008,26(1):55-61.
    [41]李云清,王宏楠,陈威.亚临界和超临界压力下燃料液滴的蒸发特性[J].燃烧科学与技术,2010,16(4):287-294.
    [42]李云清,何鹏,王金成.碳氢燃料在亚临界及超临界状态下的状态方程研究[J].石油与天然气化工,2007,36(1):1-3,17.
    [43]李云清,王宏楠,王德福.状态方程对高温高压条件下燃料液滴蒸发计算的影响[J].内燃机学报,2009,27(4):344-351.
    [44]Williams F A. Theory of the Burning of Monopropellant Droplets [J]. Combustion and Flame,1959,3:529-544.
    [45]Jain V K. The Theory of Burning of Monopropellant Droplets in an Atmosphere of Inerts[J]. Combustion and Flame,1963,7:17-27.
    [46]Linan A. Monopropellant Droplet Decomposition for Large Activation Energies [J]. Acta Astronautica,1975,2(11):1009-1029.
    [47]Goldsmith M. On the Burning of Single Drops of Fuel in an Oxidizing Atmosphere[J]. Journal of Jet Propulsion,1954,24(4):245-251.
    [48]Rosner D E. On Liquid Droplet Combustion at High Pressures[J]. AIAA Journal,1967, 5(1):163-166.
    [49]Shuen J S, Yang V, Hsiao C C. Combustion of Liquid-Fuel Droplets in Supercritical Conditions[J]. Combustion and Flame,1992,89(3):299-319.
    [50]Sato J, Tsue M, Niwa M, et al. Effects of Natural Convection on High-Pressure Droplet Combustion[J]. Combustion and Flame,1990,82(2):142-150.
    [51]Abdulmajeed B A, Sabri A. Theoretical and Numerical Analysis of Fuel Droplet Combustion Parameters via Different Combustion Models[J]. Eng. & Technology,2008, 26(10):1282-1300.
    [52]庄逢辰,刘孝弟.自燃推进剂组元液滴的亚临界非定常蒸发计算模型[J].宇航学报,1986,(2):48-59.
    [53]庄逢辰,刘孝弟.液体单元推进剂滴的高温高压非定常分解燃烧[J].航空学报,1985,6(5):443-448.
    [54]庄逢辰.液体火箭发动机喷雾燃烧的理论、模型及应用[M].长沙:国防科技大学出版社,1995.
    [55]李云清,钱耀义,罗滇生.单滴碳氢燃料的燃烧特性[J].燃烧科学与技术,2000,6(4):320-325.
    [56]李云清,王宏楠,王德福.丁烷-空气超临界燃烧中温度对迁移过程的影响[J].内燃机学报,2008,26(2):168-172.
    [57]乔安平,李云清,高峰.油气燃料临界燃烧和超临界燃烧的基础理论[J].天然气工业,2005,25(9):129-132.
    [58]Beyer R A. Atmospheric Pressure Studies of Liquid Propellant Drops in Hot Flows, ADA174639[R],1986.
    [59]Beyer R A, Teague M W. Studies of Single Liquid Propellant Drops in Hot, High-Pressure Environments [C]. Proceedings of the 24th National Heat Transfer Conference and Exhibition, Pittsburgh, PA, Aug.9-12,1987.
    [60]Beyer R A. Single Droplet Studies in a Hot, High Pressure Environment, ADA194472[R],1988.
    [61]Beyer R A. Continuing Studies of Liquid Propellant Drops in Hot, High-Pressure Environments, ADA212265[R],1989.
    [62]Faeth G M, Karhan B L, Yanyecic G A. The Ignition and Combustion of Monopropellant Droplets[C]. AIAA 3rd Propulsion Joint Specialist Conference, Washington, DC, July 17-21,1967.
    [63]Zhu D L, Law C K. Aerothermochemical Studies of Energetic Liquid Materials:1. Combustion of HAN-Based Liquid Gun Propellants under Atmospheric Pressure[J]. Combustion and Flame,1987,70(3):333-342.
    [64]Law C K. Ignition and Combustion of Liquid Propellants, ADA224150[R],1990.
    [65]Law C K. Recent Advances in Droplet Vaporization and Combustion[J]. Progress in Energy and Combustion Science,1982,8(3):171-201.
    [66]Wang C H, Law C K. Microexplosion of Fuel Droplets under High Pressure[J]. Combustion and Flame,1985,59(1):53-62.
    [67]Call C, Zhu D L, Law C K, et al. Combustion and Microexplosion of HAN-Based Liquid Gun Propellants at Elevated Pressures[J]. Journal of Propulsion and Power,1997,13(3): 448-450.
    [68]Lee T W, Tseng L K, Faeth G M. Structure of Pressure-Atomized Monopropellant Sprays[C].25th JANNAF Combustion Meeting,1988.
    [69]Lee T, Tseng L, Faeth G. Separated Flow Considerations for Pressure Atomized Combusting Monopropellant Sprays[J]. Journal of Propulsion and Power,1988,6(4): 382-391.
    [70]Faeth G M, Lee T W. Structure and Mixing Properties of Combusting Monopropellant Sprays[J]. Journal of Propulsion and Power,1992,8(2):271-279.
    [71]Faeth G M, Lee T, Kounalakis M E, et al. Structure of Monopropellant Spray Flames at Elevated Pressures, ADA218676[R],1990.
    [72]Lee T. Structure of Combusting Monopropellant Sprays at High-Pressures[D]. The University of Michigan,1990.
    [73]Lee T, Gore J P, Faeth G M, et al. Analysis of Combusting High-Pressure Monopropellant Sprays[J]. Combustion Science and Technology,1988,57(4-6):95-112.
    [74]Farshchi M, Vaezi V, Shaw B D. Studies of HAN-Based Monopropellant Droplet Combustion[J]. Combustion Science and Technology,2002,174(7):71-97.
    [75]余永刚,金志明,曾毓敏.HAN基液滴在富含水蒸汽环境中着火、燃烧特性研究[J].兵工学报,2001,22(3):289-292.
    [76]余永刚,金志明.单元推进剂液滴在高温高压下的微爆现象观测[J].高压物理学报,2000,14(4):302-308.
    [77]余永刚,金志明.含能液滴微爆特性分析[J].推进技术,1998,19(1):75-77.
    [78]余永刚,金志明,刘峰,等.含能液滴着火过程的实验研究[J].火炸药学报,2001,24(2):35-36.
    [79]余永刚,李明,周彦煌,等.液体推进剂液滴电点火特性的实验研究[J].含能材料,2008,16(5):625-628.
    [80]余永刚.HAN基液体发射药液滴着火、燃烧规律的实验与理论研究[D].南京理工大学,1994.
    [81]Comer R H. Ignition and Combustion of Liquid Monopropellants at High Pressures[C]. Symposium (International) on Combustion,1977,16(1):1211-1219.
    [82]Mcbratney W F. Windowed Chamber Investigation of the Burning Rate of Liquid Monopropellants for Guns, ADA086106[R],1980.
    [83]Mcbratney W F. Burning Rate Data, LGP 1845, ADA104630[R],1981.
    [84]Mcbratney W F, Vanderhoff J A. High Pressure Windowed Chamber Burned Rate Determination of Liquid Propellant XM46, ADA283770[R],1994.
    [85]Mcbratney W F, Vanderhoff J A. Burn-Rate Investigations of HAN-Based Candidate Liquid Propellants, ARL-TR-1927[R],1999.
    [86]Vosen S R. The Burning Rate of Hydroxylammonium Nitrate-Based Liquid Propellants[C]. Symposium (International) on Combustion,1989,22(1):1817-1825..
    [87]Vosen S R. Hydroxylammonium Nitrate-Based Liquid Propellant Combustion Interpretation of Strand Burner Data and the Laminar Burning Velocity [J]. Combustion and Flame,1990,82(3):376-388.
    [88]Vosen S R. Concentration and Pressure Effects on the Decomposition Rate of Aqueous Hydroxylammonium Nitrate Solutions[J]. Combustion Science and Technology,1989, 68(4-6):85-99.
    [89]Lee H, Litzinger T A. Thermal Decomposition of HAN-Based Liquid Propellants [J]. Combustion and Flame,2001,127(4):2205-2222.
    [90]Oberle W F, Wren G P. Closed Chamber Combustion Rates of Liquid Propellant 1846 Conditioned Ambient, Hot and Cold[C],27th JANNAF Combustion Meeting,1990.
    [91]Oberle W F, Wren G P. Burn Rates of LGP 1846 Conditioned Ambient, Hot, and Cold, BRL-TR-3287[R],1991.
    [92]Chang Y P, Boyer E, Kuo K K. Combustion Behavior and Flame Structure of XM46 Liquid Propellant[J]. Journal of Propulsion and Power,2001,17(4):800-808.
    [93]Chang Y, Kuo K K. Assessment of Combustion Characteristics and Mechanism of Hydroxylammonium Nitrate-Based Liquid Monopropellant[J]. Journal of Propulsion and Power,2002,18(5):1076-1085.
    [94]Chang Y. Combustion Behavior of HAN-Based Liquid Propellants[D]. The Pennsylvania State University,2002.
    [95]Chang Y, Boyer E, Jennings S T, et al. Combustion Behavior of XM46 Liquid Propellant[C]. Proc.24th Int. Pyrotech. Seminar,1996.
    [96]Jennings S T, Chang Y, Koch D, et al. Peculiar Combustion Characteristics of XM 46 Liquid Propellant. NASA 19980202208[R],1997.
    [97]Kuo K K, Chang Y P, Boyer E. Intrinsic Burning Behavior and Flame Structure Diagnostics of Liquid Propellants, ADA384293[R],2000.
    [98]余永刚,周彦煌,陆欣,等.单元液体发射药高压线燃速测定[J].南京理工大学学报(自然科学版),2000,24(4):311-313.
    [99]余永刚,周彦煌,刘东尧,等.含能液体高压燃速的测量装置与试验结果[J].燃烧科学与技术,2004,10(1):88-91.
    [100]潘玉竹,余永刚,周彦煌,等.HAN基液体发射药燃速实验测量与简化模型[C].广州,2010.
    [101]Canada G S, Faeth G M. Fuel Droplet Burning Rates at High Pressures[C]. Symposium (International) on Combustion,1973,14(1):1345-1354.
    [102]Shaw B D, Williams F A. A Model for the Deflagration of Aqueous Solutions of Hydroxylammonium Nitrate[C]. Symposium (International) on Combustion,1992, 24(1):1923-1930.
    [103]Allison C B, Faeth G M. Open-Loop Respone of a Burning Liquid Monopropellant[J]. AIAA Journal,1975,13(10):1287-1294.
    [104]Kounalakis M E, Faeth G M. Combustion of HAN-Based Liquid Monopropellants Near the Thermodynamic Critical Point[J]. Combustion and Flame,1988,74(2):179-192.
    [105]Faeth G M, Lee T, Kounalakis M E. Mixing and Thermodynamic Critical Phenomena of Combusting Monopropellant Sprays[C].24th JANNAF Combustion Meeting,1987.
    [106]潘玉竹,余永刚,周彦煌,等.HAN基液体发射药高压热物理性质的估算[J].火炸药学报,2012,35(4):73-78.
    [107]Poling B E, Prausnitz J M, Oconnell J P. The Properties of Gases and Liquids [M]. New York:The McGraw-Hill Companies,2001.
    [108]Spencer C F, Daubert T E, Danner R P. A Critical Review of Correlations for the Critical Properties of Defined Mixtures[J]. AIChE Journal,2004,19(3):522-527.
    [109]Chueh P L, Prausnitz J M. Vapor-Liquid Equilibria at High Pressures:Calculation of Partial Molar Volumes in Nonpolar Liquid Mixtures[J]. AIChE Journal,1967,13(6): 1099-1107.
    [110]童景山.流体的热物理性质[M].北京市:中国石化出版社,1996.
    [111]Decker M M, Klein N, Freedman E, et al. HAN-Based Liquid Gun Propellants: Physical Properties. ADA195246[R],1987.
    [112]Lee B I, Kesler M G. A Generalized Thermodynamic Correlation Based on Three-Parameter Corresponding States[J]. AIChE Journal,2004,21(3):510-527.
    [113]童景山.化工热力学(第二版)[M].北京市:清华大学出版社,2001.
    [114]Stiel L I, Thodos G. The Thermal Conductivity of Nonpolar Substances in the Dense Gaseous and Liquid Regions[J]. AIChE Journal,2004,10(1):26-30.
    [115]Fuller E N, Ensley K, Giddings J C. Diffusion of Halogenated Hydrocarbons in Helium. The Effect of Structure on Collision Cross Sections [J]. The Journal of Physical Chemistry,1969,73(11):3679-3685.
    [116]Takahashi S. Preparation of a Generalized Chart for the Diffusion Coefficients of Gases at High Pressures[J]. Journal of Chemical Engineering of Japan,1975,7(6):417-420.
    [117]王淑春.液滴碰壁和对流条件下蒸发特性研究[D].大连理工大学,2012.
    [118]苏凌宇,聂万胜,刘卫东.低频压力振荡环境下运动液滴蒸发过程的准稳态模型[J].推进技术,2011,32(5):670-675.
    [119]辛慧,周致富,陈斌,等.激光手术喷雾冷却中单液滴蒸发理论模型的比较[J].工程热物理学报,2009,30(4):653-656.
    [120]Pan Y Z, Yu Y G. Study of HAN-Based Liquid Propellant Droplet Evaporation in High-Temperature and High-Pressure Environments[J]. Advanced Materials Research, 2013,629:524-529.
    [121]刘儒勋,王志峰.数值模拟方法和运动界面追踪[M].合肥市:中国科学技术大学出版社,2001.
    [122]Hirt C W, Nichols B D. Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries[J]. Journal of Computational Physics,1981,39(1):201-225.
    [123]Osher S, Sethian J A. Fronts Propagating with Curvature-Dependent Speed:Algorithms Based on Hamilton-Jacobi Formulations [J]. Journal of Computational Physics,1988, 79(1):12-49.
    [124]Brackbill J U, Kothe D B, Zemach C. A Continuum Method for Modeling Surface Tension[J]. Journal of Computational Physics,1992,100(2):335-354.
    [125]范维澄,万跃鹏.流动及燃烧的模型与计算[M].合肥市:中国科学技术大学出版社,1992.
    [126]王伯羲等.火药燃烧理论[M].北京市:北京理工大学出版社,1997.
    [127]潘玉竹,余永刚,张琦.AF-315液体单元推进剂高压燃速的实验研究[J].弹道学报,2012,24(2):79-82.
    [128]金志明.枪炮内弹道学[M].北京市:北京理工大学出版社,2005.
    [129]官汉章,邹瑞荣.实验内弹道学[M].北京市:兵器工业出版社,1997.
    [130]周彦煌,王升晨.实用两相流内弹道学[M].北京市:兵器工业出版社,1990.
    [131]Hawkins T W, Brand A J, Mckay M B, et al. Characterization of Reduced Toxicity, High Performance Monopropellants at the US Air Force Research Laboratory, ADA201114[R],2010.
    [132]Hawkins T W, Brand A J, Mckay M B, et al. Reduced Toxicity, High Performance Monopropellant at the US Air Force Research Laboratory, ADA201019[R],2010.
    [133]王宏伟,王建伟.AF-315液体单元推进剂研究进展[J].化学推进剂与高分子材料,2010,8(5):6-9.
    [134]Pan Y Z, Yu Y G, Zhou Y H, et al. Measurement and Analysis of the Burning Rate of HAN-Based Liquid Propellants[J]. Propellants, Explosives, Pyrotechnics,2012,37(4): 439-444.
    [135]温正,石良臣,任毅如.FLUENT流体计算应用教程[M].北京市:清华大学出版社,2009.
    [136]王福军.计算流体动力学分析-CFD软件原理与应用(第二版)[M].北京市:清华大学出版社,2005.
    [137]于勇.Fluent入门与进阶教程[M].北京市:北京理工大学出版社,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700