高频—对流木材干燥工艺的优化与热质迁移的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木材干燥是确保木质产品质量的重要前提。对木材进行合理的干燥,能够增强木材的尺寸稳定性,延长制品的使用寿命;改善木材的加工性能,提高利用价值,降低木材的运输费用。目前国产木材对流干燥设备,总体性能指标基本可以满足生产要求,但由于价格、成本等因素的制约,设备普遍存在热效率偏低,干燥介质循环速度不足,介质湿度、含水率等参数检控不准确的问题。
     顺应国际干燥技术的发展趋势,对把不同干燥方法的适用范围和特点进行有效整合的联合干燥方法的研究,已经成为木材干燥领域主要的研究方向之一。论文结合林业科技支撑计划专题“干燥在线检测数控调控技术”(2006BAD18B0801)以及国家林业局948项目“高频-对流联合加热木材干燥技术引进”(2006-4-105),把高频-对流木材干燥过程作为研究对象,以加快干燥速度、提高干燥质量、节省干燥能耗为优化目标,讨论了高频-对流双热源的匹配、干燥室内部流场、高频发生器的运行时间、隔条厚度等因素。在此基础上,分析了木材内部的传热、传质机理,建立了高频-对流干燥过程的数学模型,为这种双热源木材干燥方法的应用提供了理论依据。本文的主要工作内容包括:
     通过分别在对流干燥的前期、中期、后期进行高频加热,对联合干燥过程中高频热源的运行时机进行试验研究。结果表明:在高频发生器的功率和频率恒定条件下,材内水分越多,高频电磁波的穿透深度越浅,在干燥后期进行高频加热更容易形成温度梯度。在木材含水率低于20%时加入高频,整个干燥过程中存在与对流干燥相同的含水率梯度分布。结合表面开裂数据的统计结果,发现在干燥后期加入高频对于干燥应力的控制比较理想。
     针对对流干燥室中介质流速较低且分布不均的问题,使用计算流体动力学(CFD)方法,对轴流风机和干燥间内部流场进行数值模拟。分析了风机流场不同区域,总压、动压、静压的变化趋势;通过建立Reliable k-E两方程湍流模型,探讨了随着安装角度改变对风机出口截面总压和静压的影响,发现随着安装角度增大,叶片要部的低静压区向叶片顶部扩大,总压压升增加,叶片尾迹损失的范围逐渐扩大。通过建立RNG k-ε两方程湍流模型,模拟了带有导流装置的干燥间内部流场分布情况。结果表明:导流板对材堆上部入口气流的速度和分布均匀性有明显影响;底部控制板改善了材堆内部介质的流动;随着垂直气道宽度的增加,材堆入口气流的流量、流速先增大后减小,各层材堆入口速度变化趋于稳定。
     不同试验条件下,进行联合干燥,比较分析了干燥曲线、分层含水量分布、残余应力、干燥能耗、开裂情况,温度变化曲线。结果表明:高频-对流联合加热的效率随着含水率的降低而增加。随着隔条厚度的减小,材堆降温所需时间有所延长。采用15mm厚度隔条的材堆拥有较高的平均干燥速度、较低的十燥能耗和较小的残余应力。高频加热持续1.5mmin以上至5min,木材各层温度与环境温度差随加热时间变化的比值基本固定,不同含水率阶段升温速度差别很小。
     基于质量守恒、能量守恒定律,建立了高频-对流联合加热过程中的沿木材厚度方向的热质迁移模型。根据Whitaker体积平均理论,通过有限差分法(FDM)和有限体积法(FVM)把模型和边界条件的控制方程转化离散方程。试验验证表明,模型能够有效反应试材含水率和温度的变化趋势。试验值和模拟值之间的相关系数不低于0.9,对于材内温度的拟合精度低于含水率的拟合精度。
Wood drying is an important premise to ensure the quality of wood products. Reasonable drying treatment is helpful to enhance the dimensional stability of wood, extend the life of wood products, improve wood processing performance and utilization value, and reduce the transportation cost of lumber. At present, overall performance of domestic convection drying equipment could only meet the basic requirements of wood drying. In order to control the price and cost, low thermal efficiency, lack of circulation rate of drying medium, inaccurate control of medium humidity, moisture content and other parameters are common problems of convective equipment.
     Different drying methods process special application scope and properties. Complying with development trend of drying technology, hybrid drying, which combined different drying methods effectively, has become one of the main research directions in the field of wood drying. This dissertation originated from Forestry Science Support Project "on-line Detection of Numerical Control Techniques in Wood Drying Process"(2006BAD18B0801) and948Project of State Forestry Administration "Technology introduction of Hybrid Drying with High-frequency and Convective Heating"(2006-4-105). Regarding the hybrid drying process as the research subject, aimed at improving drying rate, drying quality, and reducing energy consumption, this dissertation studied matching strategy of double heating resources, internal flow field of drying kiln, influence of operation period, timing of high-frequency generator, and sticker thickness on drying process. On the basis of these studies, a one-dimension mathematical model was established to described internal heat and mass transfer mechanism of wood during hybrid drying process, which provides a theoretical foundation for the application of this dual heating resources wood drying method. The main work of this study was summarized as following:
     In order to investigate the operation timing of High-frequency(HF) resource in process of hybrid drying. HF generator worked respectively during early period, middle period, and late period of convective drying. Experimental results indicated that on constant conditions of power and frequency, there are significantly negative correlations between moisture content(MC) and HF penetrability. Temperature gradient was more easily generated when HF generator worked in late period of drying. And MC gradient distributed in the same direction during whole drying process. Combined with surface check data, drying stress generated during heating was smaller.
     Aiming at problems that slow and uneven distribution of medium velocity in circulating drying kiln. Computational Fluid Dynamics(CFD) was adopted to carry out numerical simulation of axial fan and drying workshop. Total pressure, dynamic pressure, and static pressure in different area of fan flow field were discussed in this chapter. It was found that total pressure increased monotonously with the increasing of installation angle. The range of static pressure zone enlarged gradually to blade tip. So was the range of wake losses. Simulation results of dry workshop indicated that baffle exerted an obvious influence on upper part of piles. Control boards improved inner flow field of piles. With the increasing width of vertical vent, inlet velocity of drying medium increased at first then decreased, and inlet velocity variation of every layer tended to be stable.
     120mm thickness wood was used to carried out hybrid drying experiments in different experiment conditions. According to drying curve, distribution of MC in thickness direction, energy consumption, surface checks, and temperature curve, there was negative correlation between sticker thickness and cooling down time of piles. It was found that piles with15mm thickness stickers possessed higher drying rate, lower energy consumption, and less drying stress. HF heating for1.5min and continued to5min, deviation between every layer of wood and environment temperature tented to be constant. There was litter difference of heating rate among different MC stages.
     Based on energy conservation law and mass conservation law, mathematical model was established to describe mass and heat transfer in the thickness direction of wood. According to Whitaker volume averaging theory, the model and boundary conditions were transferred to difference equations by means of finite difference method(FDM) and finite volume method(FVM). The results of experiments demonstrate that the mathematic model was able to simulate drying process of wood under hybrid drying with high accuracy.
引文
[1]Haizhen Xian, Dengying Liu, Fumin Shang. Experimental Study on the Heat Transfer Enhancement of Oscillating-flow Heat Pipe by Acoustic Cavitation. Proceeding of The 5th Asia Pacific Drying Conference, Hong Kong,2007:115-120
    [2]Cao Jinzhen, Zhao Guangji. Dielectric Relaxation of Adsorbed Water in Wood Cell Wall under Equilibrium and Non-Equilibrium State. Forestry Studies in China.2001,1(3):71-77
    [3]韩智慧.浅谈高频加热在木材胶合中的应用.林业科技开发,1988,1:11~12
    [4]Masafumi Inoue, Yasuji Yamamoto. Application of Dielectric Heating by a Microwave/high Frequency in Wood Industry. Technical report of IEICE,2003:35-40
    [5]黄荣凤,吕建雄,赵有科.高频、微波加热技术在日本木材工业的应用.木材工业,2007,21(5):21~24
    [6]藤井一郎,藤本胜.木材高频热粘合用粘合剂.维纶通讯,2000,20(1):56~59
    [7]赵广杰.木材的介电驰豫和分子运动.东北林业大学学报,1993,21(6):44~48
    [8]王延魁,时维春.木材微波干燥的极化理论.东北林业大学学报,1988,16(3):41~49
    [9]金川靖,寺沢真,伊藤基信.木材の高周波減圧乾燥(Ⅰ).木材工桨,1978,33(6):241~246
    [11]Avramidis, S., Liu F., and Neilson, B. J.. Radio-frequency/vacuum Drying of Softwoods: Drying of Thick Western Red Cedar with Constant Electrode Voltage. Forest Products Journal,1994,44(1):41-47
    [12]Zhang, L., Avramidis, S., and Hatzikiriakos, S.G. Moisture Flow Characteristics During Radio-frequency/vacuum Drying of Thick Lumber. Wood Science and Technology, 1997(31):265-277
    [13]Resnik, J., Sernek, M., and Kamke, F.A. High-frequency Heating of Wood with Moisture Content Gradient. Wood and Fiber Science,1997,29(3):264-271
    [14]F. Kayihan. Adaptive Control of Stochastic Batch Lumber Kilns.1993,17(3):265-273
    [15]邹建,饶程,顾兴志.微波场中温度传感器方法.压电与声光,2003,25(2):170-174
    [16]钱静,翁佩等.Pt100温度计电阻和温度关系的拟合.低温与超导,2007,35(4):290~292
    [18]浜野义昭,西尾茂.高周波減圧乾燥法について(第1报)-電極板间の含水率分布.木材工業,1981.36(2):62~66
    [19]魏林,王高.高志强.高温光纤传感器传感头材料.光电技术应用,2011,26(2):56~60
    [20]朱政贤.木材干燥.第二版.北京:中国林业出版社,2002:37-40,76~89,309~311
    [21]刘昌铎.木材微波干燥技术.木材工业.1996,10(3):30~31
    [22]夏兴华.高频-对流联合加热木材干燥设备的设计与使用.东北林业大学硕士论文.2010:1-6
    [23]谢拥群,陈瑞英,杨庆贤等.木材干燥过程的热质迁移及其耦合关系.林业科学,2004,40(1):148-153
    [24]谢拥群,张璧光.我国木材干燥技术与研究动态.干燥技术与设备,2009,7(4):147~152
    [25]吴智慧.高频介质加热技术在木材工业的应用.世界林业研究,1994,6:30~35
    [27]庄寿增.对我国木材干燥技术创新与发展问题的几点思考.林产工业,2008,35(2):6-9
    [28]孙建国.木材高频干燥展望.林业科技,1982,8(4):43~44
    [29]Barnes D., Admiraal L., Pike R. L.. Continuous System for the Drying of Lumber with Microwave Energy. Forest Products Journal.1976.24(5):31-42
    [30]Helmuth Resch. High-frequency Electric Current for Drying of Wood Historical Perspectives. Maderas. Ciencia y tecnologia,2006,8(2):67-82
    [31]G.S.V. Raghavan, T.J. Rennie, P.S. Sunjka. Overiew of New Techniques for Drying Biological Materials with Emphasis on Energy Aspects.2005,22(2):195-201
    [32]Antti A. L.. Microwave Drying of Hardwood:Simultaneous Measurements of Pressure, Temperature and Weight Reduction. Forest products Journal,1992,42(6):49-54
    [33]Kabir M F. Dielectric Properties of Rubber Wood at Microwave Frequencies Measured with an Open-ended Coaxial Line. Wood and Fiber Science.1997,29(4):319-324
    [34]A. Poulin, M. Dostie. Convective Heat and Mass Transfer and Evolution of the Moisture Distribution in Combined Convective and Radio Frequency Drying. Drying Technology, 1997,15:6-8
    [35]Zielonka P. Microwave Drying of Spruce:Moisture Content, Temperature and Heat Energy Distribution. Forest Products Journal,1998,48(6):77-80
    [36]Yayoi K. Artificial Drying of the Sugi(Cryptomeria japonica D.Don) Columns by newly Developed Dryer Combined with High-frequency Heating and Steam Heating(Ⅰ). Characteristics of the Process of Artificial Drying. Wood Industry,1999,54(7):323-328
    [37]Norihiko Y, Yoshiaki T. High-frequency and Microwave Heating as a Pretreatment to kiln Drying of Hollowed-out Timber. Journal of the Japan Wood Research Society,2001,47(6): 501-507
    [38]Rajeev G. Joseph, Perry N. Peralta. Nonisothermal Radiofrequency Drying of Red Oak. Wood and Fiber Science,2001,33(3):476-485
    [39]M. Bucki, P. Perre. Physical Formulation and Numerical Modeling of High Frequency
    Heating of Wood. Drying Technology,2003,21(7):1151-1172
    [40]Lee, H.W. Combined Micriwave and Convective Drying of Korean Wood Species.8th IUFRO Wood Drying Conference, Romania,2003:146-149
    [41]Kobayashi Y, Kawai Y. Hybrid Drying with High-Frequency Heating and Hot Air under Atmospheric Pressure Ⅰ. Condition of Pressure and Moisture in Cryptomeria Japonica Square Lumber. Journal of the Japan Wood Research Society,2000,46(4):282-290
    [42]Kawai Y, Kobayashi Y. Hybrid Drying with High-Frequency and Hot Air under Atmospheric Pressure Ⅱ. Relationship between Temperature and Pressure during High-frequency Heating in Cryptomeria Japonica Square Lumber. Journal of the Japan Wood Research Society,2001,47(1):7-13
    [43]Kawai Y, Kobayashi Y. Hybrid Drying with HF Heating and Hot-air under Atmospheric Pressure Ⅲ. Relation between Pressure and Water Movement in Cryptomeria Japonica Square Lumber. Journal of the Japan Wood Research Society.2002,48(3):136-144
    [44]Kawai Y, Kobayashi Y. Hybrid Drying with High-Frequency Heating and Hot-air under Atmospheric Pressure IV. Water Movement in Cryptomeria Japonica wood during High-frequency heating. Journal of the Japan Wood Research Society,2003,49:18-21
    [45]Kawai Y, Norimoto M. Hybrid Drying with High Frequency Heating and Hot-air under Atmospheric Pressure V. Combined Effect of High Frequency Heating and Hot Air. Journal of the Japan Wood Research Society.2003,49(6):408-415
    [46]Kawai Y. Kobayashi Y. Hybrid Drying with High Frequency Heating and Hot-air under Atmospheric Pressure VI. Characteristics of Water Movement in Cryptomeria Japonica Square Lumber during Hybrid Drying and High Temperature Drying. Journal of the Japan Wood Research Society,2004,50(1):18-23
    [47]Piao J J, Fujimoto N. Development of Hybrid Kiln Drying System with Radio Frequency Heating for the Sugi Heart Timber. Journal of the Faculty of Agriculture, Kyushu University,2007,52(1):117-121
    [48]R. Remond, P. Perre. High-frequency Heating Controlled by Convective Hot Air:Toward a Solution for on-line Drying of softwoods. Drying Technology.2008,26:530-536
    [49]戴澄月,刘一星,刘自强等.木材介质损耗参数的研究.东北林业大学学报,1989,17(3):42~47
    [50]李晓玲,高瑞清,黑田尚宏.人工林杨木的高频真空干燥工艺.木材工业,2004,18(4):12~15
    [51]李贤军.木材微波真空干燥特性的研究.北京林业大学博士论文.2005:8-13
    [52]Yingchun Cai, Kazuo Hayshi, and Honghai Liu. New Monitoring Concept of Moisture Content Distribution in Wood during High Temperature Drying.9th IIWDC, Nanjing,2005: 172-177
    [53]印崧,夏萍.微波和对流联合干燥的试验研究.林产工业,2008,35(1):20~23
    [54]夏兴华,蔡英春.高频-对流木材干燥设备中高频发生器的选用.2010,38(6):126~128
    [55]张璧光,高建民,伊松林.我国木材干燥节能减排技术研究现状.华北电力大学学报,2009,36(3):38-42
    [56]张璧光,谢拥群.木材干燥的国内外现状与发展趋势.干燥技术与设备,2006,4(1):7-14
    [57]刁秀明,何玲芝.阔叶材干燥应力的研究——温度对干燥应力的影响.林业科技,1994,19(21):37-41
    [58]Fang, F., J. N. R Ruddick, S. Avramidis. Application of radio-frequency heating to utility poles. Part1. Radio-frequency/vacuum drying of roundwood. Forest Products Journal,2001, 51(7/8):56-60
    [59]夏萍,刘盛全,周亮.不同供热方式对木材干燥特性的影响.木材工业,2007,21(1):18~23
    [60]李贤军,张璧光,李文军等.木材微波真空干燥过程的数学模拟.北京林业大学学报,2008,2(30):124~128
    [61]Yoshinori Kobayashi, Yasuo Kawai, and Izumi Miura. Hybrid Drying with HF and Hot-air under Atmospheric Pressure I:Condition of Pressure and Moisture in Cryptomeria Japonica Square Lumber. Journal of the Japan Wood Research Society,2000,46(4): 282-290
    [62]李贤军,吴庆利,姜伟等.微波真空干燥过程中木材内的水分迁移机理.北京林业大学学报,2006,3(28):150~153
    [63]刘志军,张璧光,贺宏奎.微波干燥过程中木材内蒸汽压力与温度的变化特性.北京林业大学学报,2006,6(28):124~127
    [64]LI xiao ling, ISAO Kobayashi, NAOHIRO Kuroda. Study on RF/V Drying and Check Preventing for Japanese Sugi. Scientia Silvae Sinicae,2005,41(2):106-111
    [65]刘志军,张璧光,刘智.微波干燥过程中木材内部水分移动机理初探.北京林业大学学报,2005, Supp.(27):51-55
    [66]李大纲.国内外木材干燥应力研究现状及发展趋势.建筑人造板,2001,2:15-19
    [67]中村翼,スギ间柱生产の效率化を目指した心持ち角材の乾燥法に関する为研究.九大修士卒業発表,2010
    [68]赵寿岳.中间处理减轻栎木板材干燥开裂的效果.林产工业,1995,22(3):8-11
    [69]张璧光,伊松林,崔旭东.真空过热蒸汽干燥木材的水分迁移特性.工程热物理学报,2002.23(Suppl.):169-172
    [70]顾炼百.我国木材干燥设备与工艺发展现状及与国际先进水平的差距.木材加工机械, 2009, Suppl.:22-27
    [71]李大纲.马尾松木材干燥过程中水分的非稳态扩散.南京林业大学学报,1997,21(1):75~79
    [72]常建民.空气流速对木材干燥速率的影响.东北林业大学学报,1994,22(3):61~64
    [73]艾沐野,寇福岩.我国常规木材干燥设备使用状况初探.木材工业,1997,11(4):32~33
    [74]顾炼百.我国实用木材干燥技术的进展及思考.木材工业,2006,20(2):19~22
    [75]艾沐野,寇福岩.我国常规木材干燥设备使用状况初探.木材工业,1997,11(4):32~33
    [76]茹煜,贾志成,郁金基于.Fluent软件的木材干燥窑内部流场分析研究.2010,4:12-15
    [77]谷慧芳.喷雾轴流风机的内部流场数值模拟及结构优化.东华大学硕士论文,2007:7-10
    [78]朱政贤.朱政贤文集.哈尔滨:东北林业大学出版社,2008:232-243
    [79]V. Yak hot, S.A. Orzag. Renormalization group analysis of turbulence:Basic theory.J. Science Comput,1986,1:3-11
    [80]Bujalski W, Jaeorski Z, Nienow A.CFD Study of Homogenization with Dual Rushton Turbines-comparison with Experimental results:part Ⅱ:the Multiple Reference Frame. Chemical Engineering Research Design,2002,80(1):97-104
    [81]Lane G, Rigby G, Evans G. Pressure Distribution on the Surface of Rushton Turbine blades-experimental Measurements and Prediction by CFD. Journal of Chemical Engineering,2001,34(5):613-620
    [82]谷慧芳,顾平道,张曦.轴流通风机内部结构优化方法的研究.风机技术,2008,3:20~24
    [83]茹煜,贾志成,郁金.基于Fluent软件的木材干燥窑内部流场分析研究.木材加工机械,2010,4:12-15
    [84]赵妍.应用FLUENT对管路细部流场的数值模拟.大连理工大学硕士论文,2004
    [85]李晟.基于FLUENT软件的轴流风机设计初步研究.西北工业大学硕士论文,2004
    [86]黄军,黄彦平,王秋旺.纵向涡对窄间隙矩形通道内流动边界层作用特性研究.核动力工程,2010,31(1):29~33
    [87]钱翼稷.空气动力学.第一版.北京:北京航天航空大学出版社,2008:36-39
    [88]伊松林,张璧光,常建民.木材真空-浮压干燥过程热质传递的数学模型.北京林业大学学报,2003,2(25):69~71
    [89]朱政贤.我国木材工业的世纪回顾与展望.林产工业,2000,27(2):3-6
    [90]魏林,王高等.高温光纤传感器传感头材料.光电技术应用,2011,26(2):56~60
    [91]张元良,修伟,郎庆阳.石油产品检测中Pt100温度传感器动态补偿研究.大连理工大学学报,2010,50(3):351~355
    [92]国家质量监督检验检疫总局.JJG 229-2010工业铂、铜热电阻检定规程.2011
    [93]潘志铭.微波加热中的温度检测.深圳大学学报(理工版),2002,19(2):81~84
    [94]Basset, K.H.. Sticker Thickness and Air Velocity. Proc. Western Dry Kiln Club 25th Ann., 1974:40-45
    [95]国家质量监督局.GB/T 6491-1999锯材干燥质量.2000
    [96]成俊卿等.木材学.北京:中国林业出版社,1985:817-825
    [97]P. Zielonka. The Comparison of Experimental and Theoretical Tempreature Distribution during Microwave Wood Heating. Holz als Roh-and Werkstoff,1997,55:395-398
    [98]杨世铭,陶文铨.传热学.北京:高等教育出版社,2006,123-133
    [99]陶文铨.数值传热学.西安:西安交通大学出版社,2001,]36~152
    [100]Whitaker S. Simultaneous Heat, Mass and Momentum Transfer in Porous Media. A Theory of Drying. Advances in Heat Transfer. New York:Academic Press,1977,100-204

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700