热结构不确定性动力学仿真及模型确认方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在科学研究中,计算仿真已经成为继理论分析和试验技术之后的第三支柱,虽然计算仿真已经广泛应用于各个工程领域,但是计算仿真的研究和应用仅仅是一个开始。随着复杂工程结构设计对仿真模型精度的要求不断提高,就必须考虑实际存在的各种不确定性,这时仿真模型的真实精度和置信度评估就成为一项重要的研究课题。
     模型确认就是从模型用途角度确定一个模型在多大程度上能够精确描述真实物理世界的过程,它不仅仅是一个评定仿真模型准确度的过程,而且是一个通过确认结果提高预测精度的过程。本文以高超声速飞行器典型热结构的仿真计算以及相关动力学分析为基本问题,以模型确认方法为主要研究内容,研究了以下几个方面:
     (1)将材料的热传导系数表达为温度的多项式函数,采用遗传算法来识别多项式的系数,从而得到更精确的温度分布,为热结构设计提供指导。同时以美国圣地亚国家实验室提出的热传导模型确认挑战问题为研究对象,阐述了模型确认的贝叶斯框架,介绍了贝叶斯及不确定性量化的基本理论,强调了模型修正在模型确认中的作用,比较了各种模型修正方法的优缺点,将贝叶斯模型修正用于热传导问题的模型确认中,得到了比初始模型更准确的预测结果,研究表明贝叶斯模型修正方法用于模型确认能显著提高预测精度。
     (2)针对结构动力学中的非对称阻尼结构,分别采用基于灵敏度分析和遗传算法的修正方法,同时对与刚度矩阵,阻尼矩阵和质量矩阵等相关的结构设计参数进行识别。提出了使用有效模态质量进行结构动力学有限元模型修正的新方法。仿真算例比较了基于有效模态质量灵敏度分析和遗传算法的修正结果,研究表明所提出的方法可以用于结构动力学模型修正中并能够补充频率信息不足的缺陷。
     (3)针对小样本模型确认问题,将核密度估计和核主元分析相结合,用于美国圣地亚国家实验室提出的结构动力学模型确认挑战问题的研究中;将置信水平理论和核密度估计相结合,提出了核密度估计中最佳样本方差选择的改进方法,并应用于美国圣地亚国家实验室提出的结构静力学桁架模型确认挑战问题的研究。研究结果表明,将核主元分析、置信水平理等理论结合核密度估计方法处理小样本模型确认问题是非常有效的。
     (4)针对热弹耦合梁固有频率的不确定性量化和传递问题,基于欧拉梁的振动方程和傅里叶热传导定律推导了梁的耦合振动方程;采用概率边界方法同时量化随机和认知混合不确定性,并采用双层蒙特卡罗抽样技术求解不确定性的传递;研究了材料参数不确定性对耦合固有频率的影响,研究表明梁的耦合固有频率均值和标准差都为区间参数,并且随着输入参数不确定性的增大而增大。
     (5)针对模型形式不确定性量化问题,将最大熵方法用于确定调整参数方法中区间形式模型概率的最优值;将调整参数处理为区间不确定性,提出了模型形式不确定性量化的区间-混合调整参数法。通过单自由度非线性振动系统的频率预测以及二元机翼颤振临界速度的预测实例对区间-混合调整参数方法进行了验证。研究表明区间-混合调整参数法能够处理模型形式不确定性以及参数的随机和认知不确定性共存时的预测问题。
     (6)针对C/C复合材料壁板结构,通过瞬态热传导分析得到了各个时刻壁板模型上的温度分布,并分析了各个时刻不同温度场的热模态和热颤振速度;在确定性框架下研究了热结构动力学模型修正,并对修正前后热颤振速度进行了比较;同时考虑随机和认知不确定性研究了热模态和热颤振速度的不确定性分布和边界,并采用裕度与不确定性的量化技术对热颤振速度进行了定量评估和认证。
The computation and simulation has become the third pillar along with theory and experiment inscientific research. Although the computation and simulation has been widely applied to various fieldsof engineering, the third pillar of computation and simulation is just now beginning to be constructed.The true accuracy and confidence of simulation model has become an important topic with the highsimulation requirements in engineering design.
     Model validation is the process of determining the degree to which a model is an accuraterepresentation of the real world from the perspective of the intended uses of the model. It is notmerely a process of assessing the accuracy of a simulation model, but also a process to improve thepredictive precision through the model validation results. The typical thermal dynamical structuresimulation analysis for the hypersonic vehicle and the model validation method are studied in thiswork. The main contents are summarized as follows:
     (1) The thermal conductivity of the material is expressed as a polynomial function of temperature,and genetic algorithm is used to identify the coefficients of the polynomial in order to get a moreaccurate temperature distribution to provide guidance for the thermal structure design. The Bayesianframework for model validation is achieved to the example of model validation thermal challengeproblem presented in Sandia National Laboratories. The basic theories of Bayesian analysis anduncertainty quantification are introduced and several model updating methods are emphasized andcompared in model validation. Finally, the Bayesian model updating method is applied to modelvalidation thermal challenge problem, and more accurate prediction results are obtained than thosefrom the initial model. The results demonstrate that the model predictive precision can be significantlyimproved when utilizing Bayesian model updating method in model validation.
     (2) Finite element model updating based on sensitivity analysis and genetic algorithm respectivelyare used to identify the parameters coupled with mass, stiffness and damping matrixes simultaneouslyfor unsymmetrical damping system. A new finite element model updating method is presented usingeffective modal mass based on sensitivity analysis and genetic algorithm respectively. The simulationresults show that the two updating method using the effective modal mass which providing moreuseful information and can both be used to dynamic model updating.
     (3) The kernel density estimation method combined with kernel principal component analysis issuccessfully used to solve the structural dynamic model validation challenge problem presented bySandia National Laboratories. The confidence level method is introduced and the optimum sample variance is determined using an improved method in kernel density estimation to increase thecredibility of model validation and as a numerical example, the static frame model validationchallenge problem presented by Sandia National Laboratories is chosen. The researches demonstratethat the kernel density estimation combined with kernel principal component analysis and theconfidence level methods are effective approach to solve the model validation problem with smallsamples.
     (4) The coupled thermoelastic vibration governing equations are derived based on the differentialequations of Fourier heat conduction and transverse vibrations of Euler beam. Mixed aleatory andepistemic uncertainty quantification is described using p-box solution with double-loop Monte Carlosampling techniques. The distribution of coupled natural frequencies is performed when consideringthe material uncertainty with mixed aleatory and epistemic. The researches demonstrate that the meanand standard deviation of coupled nature frequency of beam are interval, and are both increasing asincreased of the input parameter uncertainties.
     (5) Model-form probability belongs to epistemic uncertainty which is usually determined based onexpert opinion or experience but is described by interval uncertainty and its optimal value isdetermined through the maximum entropy approach. A new interval adjustment factor approach ispresented to model-form uncertainty quantification. The new method is validated through a nonlinearsingle degree of freedom vibration system for nature frequency, and the flutter velocity prediction of atwo degrees of freedom airfoil subject to unsteady aerodynamics. The studies demonstrate that thenew interval adjustment factor approach is feasible to model prediction for combination withmodel-form, aleatory and epistemic of parameter uncertainty.
     (6) The temperature distribution of C/C composite panel structure is determined through transientheat conduction analysis before thermal modal and thermal flutter analysis in different moments.Thermal structural dynamics model updating is performed in deterministic framework and theprediction for thermal flutter velocity with updated model is performed. Uncertainty quantification forthermal modal and thermal flutter analysis considered mixed aleatory and epistemic uncertaintiesfrom the material of C/C composite. Quantification of margins and uncertainties technology isachieved to quantitative assessment and certification for thermal flutter velocity based on the aboveuncertainty analysis results.
引文
[1] Oberkampf W L, Roy C J. Verification and validation in scientific computing. Cambridge:Cambridge University Press,2010.
    [2] Mottershead J E, Friswell M I. Model updating in structural dynamics: a survey. Journal ofSound and Vibration,1993,167(2):347-375.
    [3] Friswell M I, Mottershead J E. Finite element model updating in structural dynamics. London:Kluwer Academic Publishers,1995.
    [4]莫军,肖世富,刘信恩.工程结构模型验证与确认研究进展,中国力学学会,中国力学大会-2011论文集,哈尔滨:中国力学学会,2011-ms45-E03-1661.
    [5] Bertin J J, Cummings R M. Fifty years of hypersonics: where we’ve been, where we’re going.Progress in Aerospace Sciences,2003,39(6-7):511-536.
    [6] Hallion R P. The history of hypersonics: or,“Back to the future-again and again”. AIAA,43rdAIAA aerospace sciences meeting and exhibit. Reno, Nevada: AIAA-2005-329.
    [7]崔尔杰.近空间飞行器研究发展现状及关键技术问题.力学进展,2009,39(6):658-673.
    [8] Leonard C, Amundsen R M, Bruce W E. Hyper-X hot structures design and comparison withflight data. AIAA, AIAA/CIRA13th International Space Planes and Hypersonics Systems andTechnologies, Capua, Italy: AIAA-2005-3438.
    [9]范绪箕.高超声速飞行器热结构分析与应用.北京,国防工业出版社,2009.
    [10] Lamorte N, Glaz B, Friedmann P P. Uncertainty propagation in hypersonic aerothermoelasticanalysis. AIAA,51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, andMaterials Conference, Orlando, Florida: AIAA2010-2964.
    [11] Bose D, Brown J L, Prabhu D K, et al. Uncertainty assessment of hypersonicaerothermodynamics prediction capability. AIAA,42nd AIAA Thermophysics Conference,Honolulu, Hawaii: AIAA-2011-3141.
    [12] Oreskes N, Shrader-Frechette K, Belitz K. Verification, validation, and confirmation ofnumerical models in the earth sciences. Science,1994,263(5147):641-646.
    [13] Kleindorfer G B, O’Neill L, Ganeshan R. Validation in simulation: various positions in thephilosophy of science. Management Science,1998,44(8):1087-1099.
    [14] Balci O. Verification validation and accreditation of simulation models. IEEE, Proceedings of the1997Winter Simulation Conference, Washington, DC: IEEE,1997:135-141.
    [15]廖瑛,邓方林,梁加红,等.系统建模与仿真的校核、验证与确认(VV&A)技术.长沙:国防科技大学出版社,2006.
    [16] American Institute of Aeronautics and Astronautics, AIAA-G-077-1998, Guide for theverification and va-lidation of computational fluid dynamics simulations, Reston, VA: AIAA,1998.
    [17] Oberkampf W L, Trucano T G. Verification and valida-tion in computational fluid dynamics.Progress in Aerospace Sciences,2002,38(3):209-272.
    [18] Oberkampf W L, Trucano T G, Hirsh C. Verification, validation, and predictive capability incomputational engineering and physics. Applied Mechanics Reviews,2004,57(5):345–384.
    [19] Oberkampf W L, Trucano T G. Verification and validation benchmarks. Nuclear Engineering andDesign,2008,238(3):716-743.
    [20] Youn B D, Jung B C, Xi Z M, et al. A hierarchical framework for statistical model calibration inengineering product development. Computer Methods in Applied Mechanics and Engineering,2011,200(13-16):1421-1431.
    [21] Jung B C. A hierarchical framework for statisitical model validation of engeered systems,
    [Doctor of Philosophy]. College Park, Maryland: the University of Maryland, College Park,2011.
    [22] Brown P S. The stockpile stewardship program. Livermore, CA: Lawrence Livermore NationalLaboratory Report, UCRL-JC-131080,1998.
    [23] Pilch M, Trucano T G, Helton J C. Ideas underlying quantification of margins and uncertainties(QMU): A white paper. New Mexico: Sandia National Laboratories Report, SAND2006-5001,2006.
    [24] Larzelere A R. The history of the accelerated strategic computing initiative (ASCI). Livermore,CA: Lawrence Livermore National Laboratory Report, UCRL-TR-231286,2009.
    [25] Advanced Simulation and Computing. FY11–12implementation plan. Livermore, CA: LawrenceLivermore National Laboratory Report, LLNL-TR-429026,2010.
    [26] Lawrence Livermore National Laboratory. Predictive science academic alliance program-II(PSAAP-II) verification, validation and uncertainty quantification whitepaper. Livermore, CA:Lawrence Livermore National Laboratory Report, LLNL-MI-481471,2011.
    [27]张令弥.计算仿真与模型确认及在结构环境与强度中的应用.强度与环境,2002,29(2):42-47.
    [28]郭勤涛,张令弥,费庆国.用于确定性计算仿真的响应面法及其试验设计研究.航空学报,2006,26(1):55-61.
    [29] Guo Qintao, Zhang Lingmi. Identification of the mechanical joint parameters with modeluncertainty. Chinese Journal of Aeronautics,2005,18(1):47-52.
    [30]郭勤涛,张令弥.结构动力学有限元模型确认方法研究.应用力学学报,2005,22(4):572-578.
    [31]郭勤涛,张令弥.以冲击响应谱为响应特征的有限元模型确认.振动与冲击,2005,24(6):32-36.
    [32]郭勤涛,张令弥,费庆国.结构动力学又有限元模型修正的发展——模型确认.力学进展,2006,36(1):36-42.
    [33]郭勤涛.结构动力学有限元模型确认若干关键问题的研究,[博士学位论文].南京:南京航空航天大学博士论文,2005.
    [34]魏发远.复杂系统仿真模型的分层确认.计算机仿真,2007,24(7):82-85.
    [35]王瑞利,林忠,袁国兴.科学计算程序的验证和确认.北京理工大学学报,2010,30(3):353-356.
    [36]邓小刚,宗文刚,张来平,等.计算流体力学中的验证与确认.力学进展,2007,37(2):279-288.
    [37]马智博,应阳君,朱建士.QMU认证方法及其实现途径.核科学与工程,2009,29(1):1-9.
    [38]刘信恩,肖世富,莫军.复杂数值模拟的贝叶斯模型确认框架及其简化.中国力学学会,中国力学学会学术大会2009论文集,郑州:中国力学学会,2009-08-24.
    [39] The American Society of Mechanical Engineers, ASME V&V10-2006, Guide for verification&validation in computational solid mechanics, New York: ASME,2006.
    [40] The American Society of Mechanical Engineers, ASME V&V20-2008, Standard for verificationand validation in computational fluid dynamics and heat transfer, New York: ASME,2008.
    [41] National Aeronautics and Space Administration, NASA-STD-7009, Standard for models andsimulations, Washington, DC: NASA,2008.
    [42] Roy C J, Oberkampf W L. A complete framework for verification, validation, and uncertaintyquantification in scientific computing. Computer methods in applied mechanics andengineering,2011,200(25-28):2131-2144.
    [43] Urbina A. Uncertainty quantification and decision making in hierarchical development ofcomputational models,[Doctor of Philosophy]. Nashville, Tennessee: Vanderbilt University,2009.
    [44] Hills R G, Pilch M, Dowding K J, et al. Validation challenge workshop. Computer Methods inApplied Mechanics and Engineering,2008,197(29-32):2375-2380.
    [45] Hamilton J R. Relation of validation experiments to applications,[Doctor of Philosophy]. LasCruces, New Mexico: New Mexico State University,2010.
    [46] Garcia J V. Development of valid models for structural dynamic analysis,[Doctor of Philosophy].London: Imperial College London–University of London,2008.
    [47] Datta A R. Evaluation of implicit and explicit methods of uncertainty analysis on a hydrologicalmodeling,[Doctor of Philosophy]. Windsor, Ontario, Canada: University of Windsor,2011.
    [48] Rilety M E. Quantification of model-form, predictive, and parametric uncertainties insimulation-based design,[Doctor of Philosophy]. Dayton: Wright State University,2011.
    [49] Thunnissen D P. Propagating and mitigating uncertainty in the design of complexmultidisciplinary systems,[Doctor of Philosophy]. Pasadena, California: California Institute ofTechnology,2005.
    [50] Stefanou G. The stochastic finite element method: Past, present and future. Computer Methods inApplied Mechanics and Engineering,2009,198(9-12):1031-1051.
    [51] Moens D, Hanss M. Non-probabilistic finite element analysis for parametric uncertaintytreatment in applied mechanics: Recent advances. Finite Elements in Analysis and Design,2011,47(1):4-16.
    [52] Scigliano R, Scionti M, Lardeur P. Verification, validation and variability for the vibration studyof a car windscreen modeled by finite elements. Finite Elements in Analysis and Design,2011,47(1):17-29.
    [53] Arnoult E, Lardeur P, Martini L. The modal stability procedure for dynamic and linear finiteelement analysis with variability. Finite Elements in Analysis and Design,2011,47(1):30-45.
    [54] Gallina A, Martowicz A, Uhl T. Robustness analysis of a car windscreen using response surfacetechniques. Finite Elements in Analysis and Design,2011,47(1):46-54.
    [55] Hinke L, Pichler L, Pradlwarter H J, et al. Modelling of spatial variations in vibration analysiswith application to an automotive windshield. Finite Elements in Analysis and Design,2011,47(1):55-62.
    [56] Martowicz A, Uhl T. Assessment of variation of natural frequencies of FE model based on theapplication of alpha-cut strategy and genetic algorithms. Finite Elements in Analysis andDesign,2011,47(1):63-71.
    [57] Schueller G I, Jensen H A. Computational methods in optimization considering uncertainties–An overview. Computer Methods in Applied Mechanics and Engineering,2008,198(1):2-13.
    [58] Yao W, Chen X, Luo W, et al. Review of uncertainty-based multidisciplinary design optimizationmethods for aerospace vehicles. Progress in Aerospace Sciences,2011,47(6):450-479.
    [59] Helton J C, Johnson J D, Sallaberry C J, et al. Survey of sampling-based methods for uncertaintyand sensitivity analysis. Reliability Engeering and System Safety,2006,96(9):1092-1113.
    [60] Choi H J, Allen J K. A metamodeling approach for uncertainty analysis of nondeterministicsystems. Journal of Mechanical Design,2009,131(4):041008-1-041008-10.
    [61] Kim B S, Lee Y B, Choi D H. Comparison study on the accuracy of metamodeling technique fornon-convex functions. Journal of Mechanical Science and Technology,23(4):1175-1181.
    [62] Rasmussen C E, Williams C K I. Gaussian processes for machine learning. Cambridge: MITPress,2006.
    [63]刘信恩,肖世富,莫军.高斯过程响应面法研究.应用力学学报,2010,27(1):190-195.
    [64]刘信恩,肖世富,莫军.用于不确定性分析的高斯过程响应面模型设计点选择方法.计算机辅助工程,2011,20(1):101-105.
    [65] Xu H, Rahman S. A generalized dimension-reduction method for multidimensional integration instochastic mechanics. International Journal for Numerical Methods in Engineering,2004,61(12):1992-2019.
    [66] Wang H. An efficient dimension-adaptive uncertainty propagation approach. AppliedMathematics and Computation,2011,218(7):3230-3237.
    [67] Wang Y. Multiscale uncertainty quantification based on a generalized hidden markov model.Journal of Mechanical Design,2011,133(3):031004-1-031004-10.
    [68] Lee S H, Chen W. A comparative study of uncertainty propagation methods for black-box-typeproblems. Structural and Multidisciplinary Optimization,2009,37(3):239-253.
    [69] Xiu D. Fast numerical methods for stochastic computations: a review. Communications inComputational Physics,2009,5(2-4):242-272.
    [70] Lin G, Engel D W, Eslinger P W. Survey and evaluate uncertainty quantification methodologies.Richland, Washington: Pacific Northwest National Laboratory Report, PNNL-20914,2012.
    [71] Zaman K, McDonald M, Mahadevan S. Probabilistic framework for uncertainty propagationwith both probabilistic and interval variables. Journal of Mechanical Design,2011,133(2):021010-1-021010-14.
    [72] Cheng H. Uncertainty quantification and uncertainty reduction techniques for large-scalesimulations,[Doctor of Philosophy]. Blacksburg, Virginia: Virginia Polytechnic Institute andState University,2009.
    [73] Wang Q. Uncertainty quantification for unsteady fluid flow using adjoint-based approaches,
    [Doctor of Philosophy]. Stanford, California: Stanford University,2008.
    [74] Lucas L J. Uncertainty quantification using concentration-of-measure inequalities,[Doctor ofPhilosophy].Pasadena, California: California Institute of Technology,2009.
    [75] Allaire D L. Uncertainty assessment of complex models with application to aviationenvironmental systems,[Doctor of Philosophy]. Cambridge, Massachusetts: MassachusettsInstitute of Technology,2009.
    [76] Benanzer T W. System design of undersea vehicles with multiple sources of uncertainty,[Doctorof Philosophy]. Dayton: Wright State University,2008.
    [77] Bojanowski C. Verification, validation and optimization of finite element model of bus structurefor rollover test,[Doctor of Philosophy]. Tallahassee, Florida State: Florida State University,2009.
    [78] Amarchinta H. Uncertainty Quantification of residual stresses induced by laser peeningsimulation,[Doctor of Philosophy]. Dayton: Wright State University,2010.
    [79] Fonseca J M R. Uncertainty in structural dynamic models,[Doctor of Philosophy]. Swansea:University of Wales Swansea,2005.
    [80] Soize C. A comprehensive overviewof a non-parametric probabilistic approach of modeluncertainties for predictive models in structural dynamics. Journal of Sound and Vibration,2005,288(3):623-652.
    [81] Moller B, Beer M. Engineering computation under uncertainty–Capabilities of non-traditionalmodels. Computers&Structures,2008,86(10):1024-1041.
    [82] Munck M D, Moens D, Desmet W. A response surface based optimisation algorithm for thecalculation of fuzzy envelope FRFs of models with uncertain properties. Computers&Structures,2008,86(10):1080-1092.
    [83] Moller B, Reuter U. Prediction of uncertain structural responses using fuzzy time series.Computers&Structures,2008,86(10):1123-1139.
    [84] Kennedy M C, O’Hagan A. Bayesian calibration of computer models. Journal of the RoyalStatistical Society: Series B,2001,63(3):425-464.
    [85] Xiong Y, Chen W, Tsui K L, et al. A better understanding of model updating strategies invalidating engineering models. Computer Methods in Applied Mechanics and Engineering,2009,198(15-16):1327-1337.
    [86] Goller B, Broggi M, Calvi A, et al. A stochasticmodelupdating technique for complex aerospacestructures. Finite Elements in Analysis and Design,2011,47(7):739-752.
    [87] Yuen K V, Kuok S C. Bayesian methods for updating dynamic models. Applied MechanicsReviews,2011,64(1):010802-1-010802-18.
    [88] Mares C, Mottershead J E, Friswell F I. Stochasticmodelupdating: Part1—theory and simulatedexample. Mechanical Systems and Signal Processing,2006,20(7):1674-1695.
    [89] Mottershead J E, Mares C, Friswell F I. Stochasticmodelupdating: Part2—application to a set ofphysical structures. Mechanical Systems and Signal Processing,2006,20(8):2171-2185.
    [90] Khodaparast H H, Mottershead J E, Friswell F I. Perturbation methods for the estimation ofparametervariability in stochasticmodelupdating. Mechanical Systems and Signal Processing,2008,22(8):1751-1773.
    [91] Govers Y, Link M. Stochastic model updating—Covariance matrix adjustment from uncertainexperimental modal data. Mechanical Systems and Signal Processing,2010,24(3):696-706.
    [92] Jacquelin E, Adhikari S, Friswell F I. A second-moment approach for direct probabilistic modelupdating in structural dynamics. Mechanical Systems and Signal Processing,2012,29(-):262-283.
    [93] Khodaparast H H, Mottershead J E, Badcock K J. Interval model updating with irreducibleuncertainty using the Kriging predictor. Mechanical Systems and Signal Processing,2011,25(4):1204-1266.
    [94] Congedo P M, Colonna P, Corre C, et al. Backward uncertainty propagation method in flowproblems: Application to the prediction of rarefaction shock waves. Computer Methods inApplied Mechanics and Engineering,2012,213-216(-):314-326.
    [95]唐炜,王玉明.复杂系统关键特征参数确定方法.信息与电子工程,2011,9(1):83-86.
    [96] Guest Editorial. Quantification of margins and uncertainties. Reliability Engeering and SystemSafety,2011,96(9):959-964.
    [97] Pilch M, Trucano T G, Helton J C. Ideas underlying the quantification of margins anduncertainties. Reliability Engeering and System Safety,2011,96(9):965-975.
    [98] Helton J C. Quantification of margins and uncertainties: Conceptual and computational basis.Reliability Engeering and System Safety,2011,96(9):976-1013.
    [99] Johnson J D, Sallaberry, C J. Quantification of margins and uncertainties: Example analyses fromreactor safety and radioactive waste disposal involving the separation of aleatory andepistemic uncertainty. Reliability Engeering and System Safety,2011,96(9):1014-1033.
    [100] Helton J C, Johnson J D. Quantification of margins and uncertainties: Alternativerepresentations of epistemic uncertainty. Reliability Engeering and System Safety,2011,96(9):1034-1052.
    [101] Wallstrom T C. Quantification of margins and uncertainties: A probabilistic framework.Reliability Engeering and System Safety,2011,96(9):1053-1062.
    [102] Anderson-Cook C M, Crowder S, Huzurbazar A V, et al. Quantifying reliability uncertaintyfrom catastrophic and margin defects: A proof of concept. Reliability Engeering and SystemSafety,2011,96(9):1063-1075.
    [103] Wilson A G, Anderson-Cook C M, Huzurbazar A V. A case study for quantifying systemreliability and uncertainty. Reliability Engeering and System Safety,2011,96(9):1076-1084.
    [104] Topcu U, Lucas L J, Owhadi H, et al. Rigorous uncertainty quantification without integraltesting. Reliability Engeering and System Safety,2011,96(9):1085-1091.
    [105] Eldred M S, Swiler L P, Tang G. Mixed aleatory-epistemic uncertainty quantification withstochastic expansions and optimization-based interval estimation. Reliability Engeering andSystem Safety,2011,96(9):1092-1113.
    [106] Urbina A, Mahadevan S, Paez T L. Quantification of margins and uncertainties of complexsystems in the presence of aleatoric and epistemic uncertainty. Reliability Engeering andSystem Safety,2011,96(9):1114-1125.
    [107] Sentz K, Ferson S. Probabilistic bounding analysis in the Quantification of Margins andUncertainties. Reliability Engeering and System Safety,2011,96(9):1126-1136.
    [108] Cheung S H, Oliver T A, Prudencio E E, et al. Bayesian uncertainty analysis with applicationsto turbulence modeling. Reliability Engeering and System Safety,2011,96(9):1137-1149.
    [109] Iaccarino G, Pecnik R, Glimm J, et al. A QMU approach for characterizing the operabilitylimits of air-breathing hypersonic vehicles. Reliability Engeering and System Safety,2011,96(9):1150-1160.
    [110] Koslowski M, Strachan A. Uncertainty propagation in a multiscale model of nanocrystallineplasticity. Reliability Engeering and System Safety,2011,96(9):1161-1170.
    [111] Alexeenko A, Chigullapalli S, Zeng J, et al. Uncertainty in microscale gas damping:Implications on dynamics of capacitive MEMS switches. Reliability Engeering and SystemSafety,2011,96(9):1171-1183.
    [112] Holloway J P, Bingham D, Chou C C, et al. Predictive modeling of a radiative shock system.Reliability Engeering and System Safety,2011,96(9):1184-1193.
    [113] McClarren R G, Ryu D, Drake R P, et al. A physics informed emulator for laser-drivenradiating shock simulations. Reliability Engeering and System Safety,2011,96(9):1194-1207.
    [114] Williams B J, Loeppky J L, Moore L M, et al. Batch sequential design to achieve predictivematurity with calibrated computer models. Reliability Engeering and System Safety,2011,96(9):1208-1219.
    [115] Hemez F M, Atamturktur S. The dangers of sparse sampling for the quantification of marginand uncertainty. Reliability Engeering and System Safety,2011,96(9):1220-1231.
    [116] Sankararaman S, Mahadevan S. Model validation under epistemic uncertainty. ReliabilityEngeering and System Safety,2011,96(9):1232-1241.
    [117] Oberkampf W L, Barone M F. Measures of agreement between computation and experiment:Validation metrics. Journal of Computational Physics,2006,217(1):5-36.
    [118] Liu Y, Chen W, Arendt P, et al. Towards a better understanding of model validation metrics.Journal of Mechanical Design,2011,133(7):071005-1-071005-13.
    [119] Rebba R. Model validation and design under uncertainty,[Doctor of Philosophy]. Nashville,Tennessee: Vanderbilt University,2005.
    [120] Xiong Y. Using predictive models in engineering design: metamodeling, uncertaintyquantification, and model validation,[Doctor of Philosophy]. Evanston, Illinois: NorthwesternUniversity,2008.
    [121] Hamad H. Validation of metamodels in simulation: a new metric. Engineering with Computers,2011,27(4):309-317.
    [122] Atamturktur S, Hemez F, Williams B, et al. A forecasting metric for predictive modeling.Computers and Structures,2011,89(9):2377-2387.
    [123] Draper D. Assessment and propagation of model uncertainty. Journal of the Royal StatisticalSociety Series B,1995,57(1):45-97.
    [124] Oberkampf W L, Helton J C, Joslyn C A, et al. Challenge problems: uncertainty in systemresponse given uncertain parameters. Reliability Engineering and System Safety,2004,85(1):11-19.
    [125] Richard V F. Methods for model selection in applied science and engineering. Sandia: Sandianational laboratories, SAND2004-5082,2004.
    [126] Swiler L P, Urbina A. Multiple model inference: Calibration, selection, and prediction withmultiple models. AIAA,52nd AIAA/ASME/ASCE/AHS/ASC Structures, StructuralDynamics and Materials Conference. Denver: AIAA-2011-1844.
    [127] Mthembu L, Marwala, T, Friswell, et al. Model selection in finite element model updatingusing the Bayesian evidence statistic. Mechanical Systems and Signal Processing,2011,25(7):2399-2412.
    [128] Most T. Assessment of structural simulation models by estimating uncertainties due to modelselection and model simplification. Computers and Structures,2011,89(17-18):1664-1672.
    [129] Park I, Amarchinta H K, Grandhi R V. A Bayesian approach for quantification of modeluncertainty. Reliability Engeering and System Safety,2010,95(7):777-785.
    [130] Park I, Grandhi R V. Quantifying multiple types of uncertainty in physics-based simulationusing Bayesian model averaging. AIAA Journal,2011,49(5):1038-1045.
    [131] Riley M E, Grandhi R V. Quantification of modeling uncertainty in aeroelastic analyses.Journal of Aircraft,2011,48(3):866-873.
    [132] Riley M E, Grandhi R V. Quantification of model-form and predictive uncertainty formulti-physics simulation. Computers and Structures,2011,89(11-12):1206-1213.
    [133] Riley M E, Grandhi R V. Quantification of modeling uncertainty in aeroelastic design. AIAA,13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference. Fort Worth:AIAA-2010-9276.
    [134] Riley M E, Grandhi R V. A Method for the quantification of model-form and parametricuncertainties in physics-based simulations. AIAA,52nd AIAA/ASME/ASCE/AHS/ASCStructures, Structural Dynamics and Materials Conference. Denver: AIAA-2011-1765.
    [135] Riley M E, Grandhi R V. Quantification of modeling uncertainty in aeroelastic design. AIAA,51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and MaterialsConference. Orlando: AIAA-2010-2679.
    [136] Dowding K J, Pilch M, Hills R G. Formulation of the thermal problem. Computer Methods inApplied Mechanics and Engineering,2008,197(29-32):2385-2389.
    [137] Brandyberry M D. Thermal problem solution using a surrogate model clustering technique.Computer Methods in Applied Mechanics and Engineering,2008,197(29-32):2390-2407.
    [138] Ferson S, Oberkampf W L, Ginzburg L. Model validation and predictive capability for thethermal challenge problem. Computer Methods in Applied Mechanics and Engineering,2008,197(29-32):2408-2430.
    [139] Higdon D, Nakhleh C, Gattiker J, et al. A Bayesian calibration approach to the thermalproblem. Computer Methods in Applied Mechanics and Engineering,2008,197(29-32):2431-2441.
    [140] Hills R G, Dowding K J. Multivariate approach to the thermal challenge problem. ComputerMethods in Applied Mechanics and Engineering,2008,197(29-32):2442-2456.
    [141] Liu F, Bayarri M J, Berger J O, et al. A Bayesian analysis of the thermal challenge problem.Computer Methods in Applied Mechanics and Engineering,2008,197(29-32):2457-2466.
    [142] McFarland J, Mahadevan S. Multivariate significance testing and model calibration underuncertainty. Computer Methods in Applied Mechanics and Engineering,2008,197(29-32):2467-2479.
    [143] Rutherford B M. Computational modeling issues and methods for the “regulatory problem” inengineering–Solution to the thermal problem. Computer Methods in Applied Mechanics andEngineering,2008,197(29-32):2480-2489.
    [144] Hills R G, Dowding K J, Swiler L. Thermal challenge problem: Summary. Computer Methodsin Applied Mechanics and Engineering,2008,197(29-32):2490-2495.
    [145] Babuska I, Nobile F, Tempone R. Formulation of the static frame problem. Computer Methodsin Applied Mechanics and Engineering,2008,197(29-32):2496-2499.
    [146] Chleboun J. An approach to the Sandia workshop static frame challenge problem: Acombination of elementary probabilistic, fuzzy set and worst scenario tools. ComputerMethods in Applied Mechanics and Engineering,2008,197(29-32):2500-2516.
    [147] Babuska I, Nobile F, Tempone R. A systematic approach to model validation based onBayesian updates and prediction related rejection criteria. Computer Methods in AppliedMechanics and Engineering,2008,197(29-32):2517-2539.
    [148] Grigoriu M D, Field J R V. A solution to the static frame validation challenge problem usingBayesian model selection. Computer Methods in Applied Mechanics and Engineering,2008,197(29-32):2540-2549.
    [149] Pradlwarter H J, Schueller G I. The use of kernel densities and confidence intervals to copewith insufficient data in validation experiments,2008,197(29-32):2550-2560.
    [150] Rebba R, Cafeo J. Probabilistic analysis of a static frame model. Computer Methods inApplied Mechanics and Engineering,2008,197(29-32):2561-2571.
    [151] Babuska I, Tempone R. Static frame challenge problem: Summary. Computer Methods inApplied Mechanics and Engineering,2008,197(29-32):2572-2577.
    [152] Red-Horse J, Paez T L. Sandia National Laboratories Validation Workshop: Structuraldynamic application. Computer Methods in Applied Mechanics and Engineering,2008,197(29-32):2578-2584.
    [153] Ghanem R G, Doostan A, Red-Horse J. A probabilistic construction of model validation.Computer Methods in Applied Mechanics and Engineering,2008,197(29-32):2585-2595.
    [154] Hasselman T, Lloyd G. A top-down approach to calibration, validation, uncertaintyquantification and predictive accuracy assessment. Computer Methods in Applied Mechanicsand Engineering,2008,197(29-32):2596-2606.
    [155] Horta L G, Kenny S P, Crespo L G, et al. NASA Langley’s approach to the Sandia’s structuraldynamics challenge problem. Computer Methods in Applied Mechanics and Engineering,2008,197(29-32):2607-2620.
    [156] McFarland J, Mahadevan S. Error and variability characterization in structural dynamicsmodeling. Computer Methods in Applied Mechanics and Engineering,2008,197(29-32):2621-2631.
    [157] Rutherford B M. Computational modeling issues and methods for the“regulatory problem” inengineering–Solutions to the structural dynamics and static frame problems. ComputerMethods in Applied Mechanics and Engineering,2008,197(29-32):2632-2644.
    [158] Zang C, Schwingshackl C W, Ewins D J. Model validation for structural dynamic analysis: Anapproach to the Sandia Structural Dynamics Challenge. Computer Methods in AppliedMechanics and Engineering,2008,197(29-32):2645-2659.
    [159] Paez T L, Red-Horse J. Structural dynamics challenge problem: summary. Computer Methodsin Applied Mechanics and Engineering,2008,197(29-32):2660-2665.
    [160] Editorial. Validation challenge workshop summary. Computer Methods in Applied Mechanicsand Engineering,2008,197(29-32):2381-2384.
    [161] Liu X. Statistical validation and calibration of computer models,[Doctor of Philosophy].Atlanta, Georgia: Georgia Institute of Technology,2011.
    [162] Cheung S H, Beck J L. New Bayesian updating methodology for model validation and robustpredictions based on data from hierarchical subsystem tests. EERL-2008-04,2008.
    [163] Cheung S H. Stochastic analysis, model and reliability updating of complex systems withapplications to structural dynamics,[Doctor of Philosophy].Pasadena, California: CaliforniaInstitute of Technology,2009.
    [164] Babuska I, Nobile F, Tempone R. Reliability of computational science. Numerical Methods forPartial Differential Equations,2007,23(4):753-784.
    [165] Arthasartsri S, He R. Validation and verification methodologies in A380aircraft reliabilityprogram. IEEE,8th International Conference on Reliability, Maintainability and Safety(ICRMS2009), Cheng Du, IEEE,2009:1356-1363.
    [166] Doostan A. Probabilistic construction and numerical analysis of model verification andvalidation,[Doctor of Philosophy]. Baltimore, Maryland: the Johns Hopkins University,2006.
    [167] McFarland J M. Uncertainty analysis for computer simulations through validation andcalibration,[Doctor of Philosophy]. Nashville, Tennessee: Vanderbilt University,2008.
    [168] Jiang X M, Mahadevan S. Bayesian hierarchical uncertainty quantification by structuralequation modeling. International Journal for Numerical Methods in Engineering,2009,80(6-7):717-737.
    [169] Jiang X M, Mahadevan S. Bayesian structure equation modeling method for hierarchicalmodel validation. Reliability Engineering and System Safety,2009,94(4):796-809.
    [170] Goller B, Pradlwarter H J, Schueller G I. Robust model updating with insufficient data.Computer Methods in Applied Mechanics and Engineering,2009,198(37-40):3096-3104.
    [171]陈学前,肖世富,刘信恩.圣地亚结构动力学问题模型确认与评估.力学与实践,2011,33(3):50-55.
    [172] National Aeronautics and Space Administration, DRAFT10-5-99, NASA engineering designchallenges: Thermal protection systems, Cambridge, MA: NASA,2010.
    [173] Zuchowski B. Air vehicles integration and technology research (AVIATR) task order0015:Predictive capability for hypersonic structural response and life prediction, phase1-Identification of knowledge gaps. New Mexico: Air Force Research Laboratory Report,AFRL-RB-WP-TR-2010-3069,2010.
    [174] Tzong G, Jacobs R, Liguore S. Air vehicles integration and technology research (AVIATR)task order0015: Predictive capability for hypersonic structural response and life prediction,phase1-Identification of knowledge gaps, Volume1nonproprietary version. New Mexico:Air Force Research Laboratory Report, AFRL-RB-WP-TR-2010-3068, V1,2010.
    [175]史晓鸣,杨炳渊.瞬态加热环境下变厚度板温度场及热模态分析.计算机辅助工程,2006,15(s):15-18.
    [176]王宏宏,陈怀海,崔旭利,等.热效应对导弹翼面固有振动特性的影响.振动、测试与诊断,2010,30(3):27-279.
    [177] Chitikela L N S, Eslami H, Radosta F. An analytical investigation of natural frequency for asymmetric composite box-beam with thermal effects. AIAA,52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Denver:AIAA-2011-1776.
    [178] Guo FL, Rogerson, GA. Thermoelastic coupling effect on a micro-machined beam resonator.Mechanics Research Communications,2003,30(6):513–518.
    [179] Sun YX, Fang DN, Soh AK. Thermoelastic damping in micro-beam resonators. InternationalJournal of Solids and Structures,2006,43(10):3213–3229.
    [180] Prabhakar S, Paidoussis M P, Vengallatore S. Analysis of frequency shifts due to thermoelasticcoupling in flexural-mode micromechanical and nanomechanical resonators. Journal of Soundand Vibration,2009,323(1-2):385–396.
    [181]郭旭侠,王忠民,王砚,等.耦合热弹梁的横向自由振动特性.西安理工大学学报,2009,25(2):184-188.
    [182] Guo XX, Wang ZM, Wang Y, et al. Analysis of the coupled thermoelastic vibration for axiallymoving beam. Journal of Sound and Vibration,2009,325(3):597–608.
    [183] Mahi A, Adda Bedia E A, Tounsi A, et al. An analytical method for temperature-dependentfree vibration analysis of functionally graded beams with general boundary conditions.Composite Structures,2010,92(8):1877–1887.
    [184] Schueller G I, Pradlwarter H J. Uncertain linear systems in dynamics: Retrospective andrecent developments by stochastic approaches. Engineering Structures,2009,31(11):2507–2517.
    [185] Prabhakar S, Paidoussis M P, Vengallatore S. Probability distributions of natural frequencies ofuncertain dynamic systems. AIAA Journal,2009,47(6):1579–1589.
    [186] Ravishankar B, Sankar B V, Haftka R T. Uncertainty analysis of integrated thermal protectionsystem with rigid insulation bars. AIAA,52nd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference. Denver: AIAA-2011-1767.
    [187] Singh B N, Bisht A K S, Pandit M K, et al. Nonlinear free vibration analysis of compositeplates with material uncertainties: A Monte Carlo simulation approach. Journal of Sound andVibration,2009,324(1-2):126–138.
    [188]唐中华,钱国红,钱炜祺.材料热传导系数随温度变化函数的反演方法.计算力学学报,2011,28(3):377-382.
    [189]周宇,钱炜祺,何开锋.同时反演材料热传导系数和比热的算法.计算物理,2011,28(5):719-724.
    [190]李守巨,刘迎曦.改进遗传算法在非线性热传导参数识别中的应用.工程力学,2005,22(3):72-75.
    [191] Slota D. Using genetic algorithms for the determination of an heat transfer coefficient inthree-phase inverse Stefan problem. International Communications in Heat and Mass Transfer,2008,35(2):149–156.
    [192] Imani A, Ranjbar A A, Esmkhani M. Simultaneous estimation of temperature-dependentthermal conductivity and heat apacity based on modified genetic algorithm. Inverse Problemsin Science and Engineering,2006,14(7):767–783.
    [193] Momayez L, Dupont P, Delacourt G, Lottin O, et al. Genetic algorithm based correlations forheat transfer calculation on concave surfaces. Applied Thermal Engineering,2009,29(17-18):3476–3481.
    [194] Liu F B. A modified genetic algorithm for solving the inverse heat transfer problem ofestimating plan heat source. International Journal of Heat and Mass Transfer,2008,51(15-16):3745-3752.
    [195] Gosselin L, Type-Gingras M, Mathieu-Potvin F. Review of utilization of genetic algorithms inheat transfer problems. International Journal of Heat and Mass Transfer,2009,52(9-10):2169–2188.
    [196] Sahoo N, Peetala R K. Transient temperature data analysis for a supersonic flight test. Journalof Heat Transfer,2010,132:084503-1–084503-5.
    [197] Goge D. Automatic updating of large aircraft models using experimental data from groundvibration testing. Aerospace Science and Technology,2003,7(1):33-45.
    [198]陈国平.粘性阻尼结构振动系统的实空间解耦和迭代求解.振动工程学报,2000,13(4):559-566.
    [199] Cortes F, Elejabarrieta M J. Computational methods for complex eigenproblems in finiteelement analysis of structural systems with viscoelastic damping treatments. Computermethods in applied mechanics and engineering,2006,195(44-47):6448–6462.
    [200] Elbeheiry E M. On eigenproblem solution of damped vibrations associated with gyroscopicmoments. Journal of Sound and Vibration,2009,320(3):691–704.
    [201] Link M, Boettcher T, Zhang L M. Computational model updating of structures withnon-proportional damping. Proceedings of the24th IMAC. Orlando, USA,2006.
    [202]冯文贤,陈新.基于试验复模态参数的有限元模型修正.航空学报,1999,20(1):11-16.
    [203] Lu Y, Yu Z. A two-level neural network approach for dynamic FE model updating includingdamping. Journal of Sound and Vibration,2004,275(3-5):931-952.
    [204]蒋家尚,袁永新.基于复模态试验数据的粘性阻尼矩阵的修正.振动与冲击,2007,26(5):74-80.
    [205] Datta B N, Deng S, Sokolov V O, et al. An optimization technique for damped model updatingwith measured data satisfying quadratic orthogonality constraint. Mechanical Systems andSignal Processing,2009,23(6):1759-1772.
    [206] Link M, Friswell M I. Working Group1: Generation of validated structural dynamicmodels-results of a benchmark study utilizing the GARTEUR SM-AG19test-bed. MechanicalSystems and Signal Processing,2003,17(1):9-20.
    [207] Goge D, Link M. Results obtained by minimizing natural frequency and mode shape errors ofa beam model. Mechanical Systems and Signal Processing,2003,17(1):21-27.
    [208] Thonon C, Golinval J C. Results obtained by minimising natural frequency and MAC-valueerrors of a beam model. Mechanical Systems and Signal Processing,2003,17(1):65-72.
    [209] D'ambrogio W, Fregolent A. Results obtained by minimising natural frequency andantiresonance errors of a beam model. Mechanical Systems and Signal Processing,2003,17(1):29-37.
    [210] Hanson D, Waters T P, Thompson D J, et al. The role of anti-resonance frequencies fromoperational modal analysis in finite element model updating. Mechanical Systems and SignalProcessing.2007,21(1):74-97.
    [211]费庆国,张令弥,李爱群,等.基于不同残差的动态有限元模型修正的比较研究.振动与冲击,2005,24(4):24-26.
    [212] Bijaya J, Ren W X. Finite element model updating based on eigenvalue and strain energyresiduals using multiobjective optimisation technique. Mechanical Systems and SignalProcessing,2007,21(5):2295-2317.
    [213] Bijaya J, Ren W X. Damage detection by finite element model updating using modalflexibility residual. Journal of Sound and Vibration,2006,290(1-2):369-387.
    [214]杨智春,王乐,李斌,等.结构动力学有限元模型修正的目标函数及算法.应用力学学报,2009,26(2):288-296.
    [215] Asma F, Bouazzouni A. Finite element model updating using FRF measurements. Shock andVibration.2005,12(5):377-388.
    [216] Esfandiari A, Bakhtiari-Nejad F, Rahai A. Structural model updating using frequency responsefunction and quasi-linear sensitivity equation. Journal of Sound and Vibration,2009,326(3-5):557-573.
    [217] Link M, Weiland M. Damage identification by multi-model updating in the modal and in thetime domain. Mechanical Systems and Signal Processing,2009,23(6):1734-1746.
    [218] Mottershead J E, Link M, Friswell, F I. The sensitivity method in finite element modelupdating: A tutorial. Mechanical Systems and Signal Processing,2011,25(7):2275-2296.
    [219] Wijker J J. Finite-element-model updating using computational intelligence techniques. NewYork: Springer Publishing Company,2010.
    [220] Levin R I, Lieven A J. Dynamic finite element model updating using simulated annealing andgenetic algorithms. Mechanical Systems and Signal Processing.1998,12(1):91-120.
    [221]周星德,明宝华,潘瑞鸿,等.基于遗传算法的降阶模型修正方法研究.振动、测试与诊断,2007,27(1):25-28.
    [222] Zhou Xingde, Ming Baohua, Pan Ruihong, et al. Research on modification of model reductionbased on genetic algorithms. Journal of Vibration Measurement&Diagnosis,2007,27(1):25-28.
    [223] Tu Z, Lu Y. FE model updating using artificial boundary conditions with genetic algorithms.Computers and structures,2008,86(7-8):714-727.
    [224] McNamara J J. Aeroelastic and aerothermolelastic behavior of two and three dimensionallifting surfaces in hypersonic flow,[Doctor of Philosophy]. Ann arbor, Michigan: TheUniversity of Michigan,2005.
    [225] Culler A J. Coupled fluid-thermal-structural modeling and analysis of hypersonic flight vehiclestructures,[Doctor of Philosophy]. Columbus, Ohio: The Ohio State University,2010.
    [226] McNamara J J, Friedmann P P. Aeroelastic and aerothermoelastic analysis of hypersonic flow:Past, present, and future. AIAA Journal,2011,49(6):1089-1122.
    [227] Falkiewicz N J, Cesnik C E S, Crowell A R, etal. Reduced-order aerothermoelastic frameworkfor hypersonic vehicle control simulation. AIAA Journal,2011,49(8):1625-1646.
    [228] Falkiewicz N J, Crowell A R. Proper orthogonal decomposition for reduced-order thermalsolution in hypersonic aerothermoelastic simulations. AIAA Journal,2011,49(5):994-1009.
    [229] Culler A J, McNamara J J. Model reduction of computational aerothermodynamics forhypersonic aerothermoelasticity. AIAA Journal,2012,50(1):74-84.
    [230]陈文俊.气动加热对飞行器气动弹性特性的影响.现代防御技术,1998,26(3):20-28.
    [231]杨炳渊,史晓鸣,梁强.高超声速有翼导弹多场耦合动力学的研究和进展(下).强度与环境,2008,35(6):55-62.
    [232]吴志刚,惠俊鹏,杨超.高超声速下翼面的热颤振工程分析.北京航空航天大学学报,2005,31(3):270-273.
    [233]杨超,许赟,谢长川.高超声速飞行器气动弹性力学研究综述.航空学报,2010,31(1):1-11.
    [234]杨智春,夏巍.壁板颤振的分析模型、数值求解方法和研究进展.力学进展,2010,40(1):81-98.
    [235] Cheng G F, Mei C. Finite element modal formulation for hypersonic panel flutter analysis withthermal effects. AIAA Journal,2004,42(4):687-695.
    [236] Azzouz M S. Nonlinear flutter of curved panels under yawed supersonic flow using finiteelements,[Doctor of Philosophy]. Norfolk: Old Dominion University,2005.
    [237]夏巍,杨智春.复合材料壁板热颤振的有限元分析.西北工业大学学报,2005,23(2):180-183.
    [238]杨智春,夏巍,张蕊丽.层合复合材料壁板的热颤振特性分析.振动与冲击,2010,29(9):18-22.
    [239]高扬,杨智春.复合材料曲壁板与平壁板热颤振特性的对比.振动与冲击,2011,30(4):55-59.
    [240]杨超,李国曙,万志强.气动热-气动弹性双向耦合的高超声速曲面壁板颤振分析方法.中国科学,2012,42(4):369-377.
    [241] Pettit C. Uncertainty Quantification in aeroelasticity: Recent results and research challenges.Journal of Aircract,2004,41(5):1217-1229.
    [242] Danowsky B, Chrstos J R, Klyde D H, et al. Evaluation of aeroelastic uncertainty analysismethods. Journal of Aircraft,2010,47(4):1266-1273.
    [243] Manan A, Cooper J E. Uncertainty of composite wing aeroelastic behaviour. AIAA,12thAIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Victoria: AIAA-2008-5868.
    [244] Lindsley N J. Uncertainty propagation through an aircraft system aeroelastic model. AIAA,45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada: AIAA-2007-1336.
    [245] Khodaparast H H, Mottershead J E, Badcock K J. Propagation of structural uncertainty tolinear aeroelastic stability. Computers and Structures,2010,88(3-4):223-236.
    [246] Marques S, Badcock K J, Khodaparast, et al. Transonic aeroelastic stability predictions underthe influence of structural variability. Journal of Aircraft,2010,47(4):1229-1239.
    [247] Badcock K J, Timme S, Marques S, et al. Transonic aeroelastic simulation for instabilitysearches and uncertainty analysis. Progress in Aerospace Sciences,2011,47(5):392-423.
    [248] Borello F, Cestino E, Frulla G. Structural uncertainty effect on classical wing fluttercharacteristics. Journal of Aerospace Engineering,2010,23(4):327-338.
    [249] Verhoosel C V, Scholcz T P, Hulshoff S J, et al. Uncertainty and reliability analysis offluid–structure stability boundaries. AIAA Journal,2009,47(1):91-104.
    [250] Chassaing J C, Lucor D, Tregon J. Stochastic nonlinear aeroelastic analysis of a supersoniclifting surface using an adaptive spectral method. Journal of Sound and Vibration,2012,331(2):394-411.
    [251]宋述芳,吕震宙,张伟伟,等.机翼气动弹性的随机不确定性分析研究.振动工程学报,2009,22(3):227-231.
    [252]黄丽丽,韩景龙,员海玮.考虑气动不确定性的气动弹性系统模型确认.航空学报,2009,30(11):2023-2030.
    [253]周秋萍,邱志平.机翼带外挂系统极限环颤振的区间分析.航空学报,2010,31(3):514-518.
    [254]李毅,杨智春.基于参数不确定性的机翼颤振风险评定.西北工业大学学报,2010,28(3):458-463.
    [255]戴玉婷,吴志刚,杨超.不确定性颤振风险定量分析.航空学报,2010,31(9):1788-1795.
    [256]苑凯华,邱志平.含不确定参数的复合材料壁板热颤振分析.航空学报,2010,31(1):119-124.
    [257] Haario H, Laine M. Markov chain Monte Carlo methods for high dimensional inversion inremote sensing. Journal of the Royal Statistical Society: Series B,2004(3),66:591-607.
    [258] Wijker J J. Spacecraft structures. New York: Springer Publishing Company,2008.
    [259] Clough R W, Penzien J. Dynamics of structures. Third edition. Berkeley: Computers andStructures, Inc,1995.
    [260] Sedaghati R, Soucy Y, Etienne N. Experimental estimation of effective mass for structuraldynamics and vibration applications. Proceeding of the21th International Modal AnalysisConference. Kissimmee (FL), USA:2003.
    [261] Sedaghati R, Soucy Y, Etienne N. Efficient estimation of effective mass for complex structuresunder base excitations. Canadian Aeronautics and Space Journal,2003,49(3):1795-1797.
    [262] Paolozzi A, Pesek L. Effective mass sensitivities for systems with repeated eigenvalues. AIAAJournal,1997,35(11):1795-1797.
    [263] Paolozzi A, Peroni I. A procedure for determination of effective mass sensitivities in a generaltridimensional structure. Computers and structures,1997,62(6):1013-1024.
    [264] Sondipon A.Rates of change of eigenvalues and eigenvectors in damped dynamic system.AIAA Journal,1999,37(11):1452-1458.
    [265]傅志方,华宏星.模态分析理论与应用.上海:上海交通大学出版社,上海,2000:241-274.
    [266] Mnaouar C, Najeh G, Hichem S. Eigensensitivity computation of asymmetric damped systemsusing an algebraic approach. Mechanical Systems and Signal Processing,2007,21(7):2761-2776.
    [267] Scott D W. Multivariate density estimation: theory, practice, and visualization. England, JohnWiley and Sons Ltd,1992:149-155.
    [268] H rmann W, Leydold J. Automatic random variate generation for simulation input. IEEE,2000Winter Simulation Conference Proceedings. Piscataway, New Jersey:IEEE,2000:675-682.
    [269] Sch lkopf B, Smola A, Müller K R. Nonlinear component analysis as a kernel eigenvalueproblem. Neural computation.1998,10(5):1299-1319.
    [270] Ferson S, Kreinovich V, Ginzburg L, et al. Constructing probability boxes and dempster-shaferstructures. New Mexico: Sandia National Laboratories Report, SAND2002-4015,2002.
    [271] Zhang H, Mullen R L, Muhanna R L. Interval Monte Carlo methods for structural reliability.Structural Safety,2010,32(2010):183-190.
    [272] Helton J C, Johnson J D, Oberkampf W L, et al. Representation of analysis results involvingaleatory and epistemic uncertainty. International Journal of General Systems,2010,39(6):605-646.
    [273] He D Y, Zhou R X. On methods of decision-making under interval probabilities. IEEE,16thInternational Conference on Management Science&Engineering. Moscow: IEEE Press,2009:277-282.
    [274] He J H. Variational approach for nonlinear oscillators. Chaos, Solitons and Fractals,2007,34(5):1430-1439.
    [275] Dai Y, Zhang Z, Wu Z, et al. Unsteady aerodynamic uncertainty estimation and robust flutteranalysis. AIAA,29th AIAA Applied Aerodynamics Conference, Honolulu, Hawaii:AIAA-2011-3517.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700