期待调节自上而下和自下而上加工的神经活动模式
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
知觉加工的一项重要内容是如何减少大脑的加工负载,从而产生有效加工。从注意定向、有效解释知觉信息和合理分配认知资源三个角度可以减少加工负载。与此一致,期待也有助于提高信息加工效率,减少加工负载。期待是大脑的一种准备状态,是头脑中存储的关于即将出现的环境刺激是什么的先验知识。以往研究将期待看作其他认知过程的影响因素,如考察奖励与注意的关系,并用奖励期待解释奖励对注意的影响。以往文献中常常将期待合并于注意的效应中。近期,一系列研究证实了与期待有关的特异性神经活动。然而,期待与自上而下和自下而上知觉加工的关系不清楚。此外,以往研究并没有将期待看作一个独立的认知过程,可能因为期待与注意或知觉加工在时间进程上的相似性,分离期待与其他认知过程的研究证据很少。本研究的目标为:从时间进程上证明期待对自上而下和自下而上注意定向(研究一)、自上而下加工-启动效应(研究二)、自下而上加工-新异性辨别(研究三)具有调节作用。
     实验设计方面,基于经典的内源性与外源性注意定向范式(实验1和2)、重复强化范式(实验3)、负启动范式(实验4),采用区组-试次的方式控制被试对于不同实验条件的期待状态(包括高期待和低期待),以及基于新异性物体辨别任务(非真实物体新异性-实验5,与任务背景形成的物体新异性-实验6),采用是/否判断和迫选判断的方式控制个体对任务目标的不同期待状态(高期待和低期待),通过6个头皮脑电实验,进行ERP成分分析以及基于Morlet小波转换的时频分析,考察期待与三种影响知觉加工负载因素的相互作用,试图揭示有效知觉加工过程中,期待状态对注意定向、重复启动效应和物体辨别的调节作用。
     研究结果表明:首先,期待对内源注意的调节作用体现在ERP成分N1和P300,集中于额区;以及早期和晚期时段的低频和高频活动,低频活动集中在额中区和左半球顶-枕区,而高频活动集中在前额区,顶区和顶-枕区。期待对外源性注意的调节作用体现在ERP成分P1和N1,集中于后部脑区;集中在早期和晚期时段的低频活动(集中在额区和后部脑区)和高频活动(集中在后部脑区和中央区)。其次.期待对重复强化的调节作用体现在ERP成分N2,集中在左半球中央区;主要集中在300-500ms的低频(额区,中央区和顶区)和高频时段。期待对负启动效应的调节作用体现在ERP成分P2,集中在右半球前额区和额区;以及额区的低频活动和多数脑区高频活动。最后,期待对新异性辨别(包括非真实新异性和当前背景新异性)的调节作用体现在P3a成分,集中于额区;集中在中央区和顶区的低频活动和大部分脑区的高频活动。
     期待对自上而下和自下而上加工的调节作用主要体现在对注意相关ERP成分的调节作用,如N1,P1,N2和P3a。这种调节作用的时频特征主要体现在低频活动的早期时段,定位于后部脑区,反映个体在将头脑存储的表征与任务刺激进行对比时,期待对该匹配过程的促进作用;以及高频活动的早期时段,主要定位于额区。研究结果支持了“预测编码”理论,成功期待(期待满足)与未成功期待(期待违背)相比,诱发的大脑神经活动更少,反映了信息加工过程中,各个层级中(包括高级和低级层级),表征神经元和预测错误神经元对于知觉加工的不同贡献。
Cognitive processes operate through reducing process load by orienting of attention, explanating perceptual information, and allocating cognitive resources. And it was postulated that the brain continuously predicted forthcoming event according to "predictive brain" model. Previous studies have conflated prediction with attention orienting, which mislead the understanding of relationship between prediction and attention or even other cognitive processes. It's probably due to the similiarity in time course between expectation and other cognitive processes. The current study was set to separate expectation from top-down and buttom-up perceptual processing. The purpose of current study was clarifying the neural mechanisms underlying the interaction between expectation and top-down and buttom-up perceptual process.
     Orienting of attention, repetition priming paradigms were adopted, and the stimuli probability was manipulated forming different expectation status. Yes/no and forced-choiced tasks was also used to trigger expectation status accomplished by novelty detection tasks (non-real novelty objects and task-triggered novelty objects detection tasks). Six experiments were carried out using EEG technique which provide high temporal resolution and ERP and time-frequency analysis were computed.
     The results showed that expectation explicitly mediate top-down and buttom-up perceptual processes. Firstly, the endogenous attention and exogenous attention were mediated by expectation on N1and P300ERP components located at frontal lobe, early and late epoches of theta/alpha (at frontal-central and left parietal-occipital areas) and gamma activities (prefrontal, parietal and parietal-occipital areas), and on N1and P1ERP components located at posterior brain area, early and late epochs by theta/alpha (at frontal and posterior areas) and gamma-activities (central and posterior areas), sepetately. Secondly, repetition enhancement and negative priming were mediated by expectation on N2ERP component at left central areas,300-500ms theta/alpha (at frontal, central and parietal) and gamma activities, and on P2ERP component at right prefrontal and frontal areas, theta/alpha activities at frontal and gamma activities at most locations, sepetately. Thirdly, the novelty detection was mediated by expectation on P3a ERP component at frontal and on central and parietal theta/alpha activities and most areas gamma activities.
     In conclustion, the top-down and buttom-up perceptual processes were mediated by expectation on attention related ERP components such as N1, P1, N2and P3a, on early epoch of theta/alpha activities at posterier locations reflecting expectation mediate the matching process between representatons and current presented stimuli, and also on frontal gamma activities. Our results were contributed to'predictive coding' model showed that neural activities were attenuated comparing expection fullfilment to expectation violation, which reflected different impact of representation and error units from divers processing level. Shedding lights on the interaction between prediction and perceptual process was contributed to understanding the predictive brain through the way by anticipating the forthcoming stimuli for saving cognitive resources.
引文
Alink, A., Schwiedrzik, C. M., Kohler, A., Singer, W.,& Muckli, L. (2010). Stimulus predictability reduces responses in primary visual cortex. J. Neurosci.,30:2960-2966.
    Baldeweg, T. (2007). ERP repetition effects and mismatch negativity generation. J. Psychophysiol,21:204-213.
    Bar, M, Kassam, K. S., Ghuman, A. S., et al. (2006). Top-down facilitation of visual recognition. Proceedings of the National Academy of Sciences,103:449-454.
    Bartolomeo, P., Decaix, C.,& Sie'roff, E. (2007). The phenomenology of endogenous orienting. Conscious Cognition,16:144-161.
    Bergerbest, D., Ghahremani, D. G.,& Gabrieli, J. D. (2004). Neural correlates of auditory repetition priming:Reduced fMRI activation in the auditory cortex. Journal of Cognitive Neuroscience,16:966-977.
    Blackford, J.U., Buckholtz, J. W., Avery, S. N.,& Zald, D. H. (2010). A unique role for the human amygdala in novelty detection. Neuroimage,50(3):1188-93.
    Blondin, F.,& Lepage. M. (2005). Decrease and increase in brain activity during visual perceptual priming:An fMRI study on similar but perceptually different complex visual scenes. Neuropsychologia,43:1887-1900.
    Buckner, R. L., Petersen, S. E., Ojemann, J. G., Miezin, F. M., Squire, L. R.,& Raichle. M. E. (1995). Functional anatomical studies of explicit and implicit memory retrieval tasks. Journal of Neuroscience,15:12-29.
    Bunzeck, N., Schutze, H.,& Duzel, E. (2006). Category-specific organization of prefrontal response-facilitation during priming. Neuropsychologia,44,1765-1776.
    Buschman, T. J.,& Miller, E. K. (2007). Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices. Science,315:1860-1862.
    Chica, A. B.,& Lupianez, J. (2009). Effects of endogenous and exogenous attention on visual processing:An Inhibition of return study. Brain Research,1278,75-85.
    Chun, M. M.& Jiang, Y. (1998). Contextual cueing:implicit learning and memory of visual context guides spatial attention. Cognit. Psychol.,36,28-71
    Corbetta, M.,& Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci.,3,201-215.
    Corbetta, M., Patel, G.,& Shulman, G. L. (2008). The reorienting system of the human brain:from environment to theory of mind. Neuron.58:306-324.
    Czigler, I., et al. (2002). Memory-based, detection of task-irrelevant visual changes. Psychophysiology,39,869-873
    Daffner, K. R., Mesulam, M. M, Scinto, L. F., Acar, D., Calvo, V., Faust, R., Chabrerie, A., Kennedy, B.,& Holcomb, P. (2000). The central role of the prefrontal cortex in directing attention to novel events. Brain,123:927-939.
    Daffner, K. R., Scinto, L.F., Weitzman, A.M., Faust, R., Rentz, D. M., Budson, A.E., & Holcomb, P. J. (2003). Frontal and parietal components of a cerebral network mediating voluntary attention to novel events. J. Cogn. Neurosci.,15:294-313.
    de Gardelle, V., Waszczuk, M., Egner, T.,& Summerfield, C. (2012). Concurrent Repetition Enhancement and Suppression Responses in Extrastriate Visual Cortex. Cerebral Cortex, doi:10.1093/cercor/bhs211.
    den Ouden, H. E., Daunizeau, J., Roiser, J., Friston, K. J.,& Stephan, K. E. (2010). Striatal prediction error modulates cortical coupling. J. Neurosci.,30:3210-3219.
    den Ouden, H. E., Friston, K. J., Daw. N. D.. McIntosh, A. R.,& Stephan. K. E. (2009). △ Dual Role for Prediction Error in Associative Learning. Cerebral Cortex. 19:1175-1185.
    Desimone. R. (1996). Neural mechanisms for visual memory and their role in attention. Proceedings of the National Academy of Sciences,93.13494-13499.
    Ding, J., Powell. D.,& Jiang, Y. (2009). Dissociable frontal controls during visible and memory-guided eye-tracking of moving targets. Human Brain Mapping, 30(11):3541-3552.
    Dobbins, G., Schnyer. D. M., Verfaellie, M.,& Schacter, D. L. (2004). Cortical activity reductions during repetition priming can result from rapid response learning-. Nature,428,316-319.
    Donchin, E.. Coles, M. G. H.. (1988). Is the P300 component a manifestation of context updating? Behay Brain Sci..11:357-374.
    Doniger. G. M.. Foxe. J. J.. Schroeder. C. E.. Murray. M. M.. Higgins. B. A.,& Javitt. D. C. (2001). Visual perceptual learning in human object recognition areas:A repetition priming study using high-density electrical mapping. Neuroimage.13. 305-313.
    Dorrichi. F.. Macci, E., Silvetti. M..& Macaluso, E. (2010). Neural correlates of the spatial and expectancy components of endogenous and stimulus-driven orienting of attention in the Posner task. Cerebral Cortex,20:1574-1585.
    Eger, E., Schweinberger, S. R., Dolan, R. J., & Henson, R. N. (2005). Familiarity enhances invariance of face representations in human ventral visual cortex:fMRI evidence. Neuroimage,26,1128-1139.
    Egner, T., Monti, J. M., & Summerfield, C. (2010). Expectation and surprise determine neural population responses in the ventral visual stream. Journal of Neuroscience,30:16601-16608.
    Ewbank, M. P., Barnard, P. J., Croucher, C. J., Ramponi, C., & Calder, A. J. (2009). The amygdala response to images with impact. Soc. Cogn. Affect. Neurosci.,4, 127-133.
    Ewbank, M. P., Lawson, R. P., Henson, R. N., Rowe, J. B., Passamonti, L., & Calder, A. J. (2011). Changes in "Top-Down" Connectivity Underlie Repetition Suppression in the Ventral Visual Pathway. The Journal of Neuroscience, 31(15):5635-5642.
    Fenske, M. J., Aminoff, E., Gronau, N., & Ba, M. (2006). Top-down facilitation of visual object recognition:object-based and context-based contributions. Progress in Brain Research,155:3-21.
    Fiebach, C. J., Gruber, T., & Supp, G. G. (2005). Neuronal mechanisms of repetition priming in occipitotemporal cortex:Spatiotemporal evidence from functional magnetic resonance imaging and eiectroencephalography. Journal of Neuroscience, 25,3414-3422.
    Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L., & Raichle, M. E. (2006). Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proceedings of the National Academy of Sciences,103:10046-10051.
    Fried, I., MacDonald, K. A., Wilson, C. L. (1997). Single neuron activity in human hippocampus and amygdala during recognition of faces and objects. Neuron,18, 753-765.
    Friedrich, F. J., Egly, R., Rafal, R. D., & Beck, D. (1998). Spatial attention deficits in humans:a comparison of superior parietal and temporal-parietal junction lesions. Neuropsychology,12:193-207.
    Friston, K. (2010). The free-energy principle:a unified brain theory? Natural Review Neuroscience,11:127-138.
    Gagnepain, P., Chetelat, G., Landeau, B., Dayan, J., Eustache, F., & Lebreton, K. (2008). Spoken word memory traces within the human auditory cortex revealed by repetition priming and functional magnetic resonance imaging. Journal of Neuroscience,28,5281-5289.
    Ganel, T., Gonzalez, C. L., Valyear, K. F., Culham, J. C., Goodale, M. A.,& Kohler, S. (2006). The relationship between fMRI adaptation and repetition priming. Neuroimage,32,1432-1440.
    Gibbons, H.,& Stahl, J. (2010). Cognitive load reduces visual identity negative priming by disabling the retrieval of task-inappropriate prime information:An ERP study. Brain Research,1330:101-13.
    Giessing, C., Thiel, C. M., Stephan, K. E., Rfsler, F.,& Fink, G. R. (2004). Visuospatial attention:how to measure effects of infrequent, unattended events in a blocked stimulus design. Neuroimage,23:1370-1381.
    Gonsalves, B. D., Kahn, I., Curran, T., Norman, K. A.,& Wagner, A.D. (2005). Memory strength and repetition suppression:multimodal imaging of medial temporal cortical contributions to recognition. Neuron,47.751-761.
    Grill-Spector. K., et al. (2006). Repetition and the brain:neuralmodels of stimulus-specific effects. Trends Cogn. Sci..10.14-23
    Groh-Bordin, C.,& Frings. C. (2009). Where has all the inhibition gone? Insights from electrophysiological measures into negative priming without probe distractors. Brain and Cognition.71,92-98.
    Gruber, T.,& Miiller. M. M. (2005). Oscillatory Brain Activity Dissociates between Associative Stimulus Content in a Repetition Priming Task in the Human EEG. Cerebral Cortex,15:109-116.
    Guillem, F., Bicu, M.,& Debruille, J. B. (2001). Dissociating memory processes involved in direct and indirect tests with ERPs to unfamiliar faces. Cognitive Brain Research,11,113-125.
    Habeck. C. Hilton. H. J.. Zarahn. E.. Brown. T.,& Stern. Y. (2006). An event-related fMRI study of the neural networks underlying repetition suppression and reaction time priming in implicit visual memory. Brain Research.1075.133-141.
    Henson. R. N. (2003). Neuroimaging studies of priming. Progress in Neurokiology. 70,53-81.
    Henson. R. N. A.. Shallice. T., Gorno-Tempini, M. L., & Dolan. R. J. (2002). Face Repetition Effects in Implicit and Explicit Memory Tests as Measured by fMRI. Cerebral Cortex,12.178-186.
    Henson, R. N. A., Rugg, M. D. (2002). Neural response suppression, haemodynamic repetition effects, and behavioural priming. Neuropsychologia,41,263-270.
    Henson, R. N.,& Rugg, M. D. (2003). Neural response suppression, haemodynamic repetition effects, and behavioural priming. Neuropsychologia,41,263-270.
    Henson, R.,& Mouchlianitis, E. (2007). Effect of spatial attention on stimulus-specific haemodynamic repetition effects. Neuroimage,35,1317-1329.
    Henson, R., Shallice, T.,& Dolan, R. (2000). Neuroimaging evidence for dissociable forms of repetition priming. Science,287,1269-1272.
    Hinojosa, J.A., Pozo, M.A., Mendez-Bertolo, C.,& Luna., D. (2009). Event-related potential correlates of visual identity negative priming unbiased by trial-by-trial effects. Brain and Cognition,69,531-537.
    Huang, Y. P.,& Rao, R. P. N. (2011). Predictive coding. Wiley Interdisciplinary Reviews:Cognitive Science,2(5):580-593.
    Hughes, H. C., et al. (2001). Responses of human auditory association cortex to the omission of an expected acoustic event. Neuroimage,13,1073-1089
    Kincade, J. M., Abrams, R. A., Astafiev, S. V., Shulman, G. L.,& Corbetta, M. (2005). An event-related functional magnetic resonance imaging study of voluntary and stimulus-driven orienting of attention. J. Neurosci.,25:4593-4604.
    Kirwan, C. B.,& Stark, C. E. (2004). Medial temporal lobe activation during encoding and retrieval of novel face-name pairs. Hippocampus,14,919-930.
    Knight RT,& Scabini D. (1998). Anatomic bases of event-related potentials and their relationship to novelty detection in humans. J. Clin Neurophysiol.,15:3-13.
    Kveraga, K., Boshyan, J.,& Bar, M. (2007). Magnocellular projections as the trigger of top-down facilitation in recognition. Journal of Neuroscience,27:J-3232-13240.
    Langdon, R.,& Smith, P. (2005). Spatial cueing by social versus nonsocial directional signals. Visual Cognition,12:1497-1527.
    Leboe, J. P., Leboe, L. C.,& Miliiken, B. (2003). Another look at the effect of a surprising intervening event on negative priming Surprising Intervening Event on Negative Priming. Canadian Journal of Experimental Psychology,57(2),115-124.
    Macaluso, E.,& Patria, F. (2007). Spatial re-orienting of visual attention along the horizontal or the vertical axis. Exp. Brain Research,180:23-34.
    Marois, R., Leung, H. C.,& Gore, J. C. (2000). A stimulus-driven approach to object identity and location processing in the human brain. Neuron,25:717-728.
    Maunsell, J. H.,& Treue, S. (2006). Feature-based attention in visual cortex. Trends in Neurosciences,29:317-322.
    Mumford, D. (1992). On the computational architecture of the neocortex. Ⅱ. The role of cortico-cortical loops. Biol. Cybern.,66:241-251.
    Murray, S. O., Kersten, D., Olshausen, B. A., Schrater, P.,& Woods, D. L. (2002). Shape perception reduces activity in human primary visual cortex. Proc. Natl. Acad. Sci.,99:15164-15169.
    Murray, S. O., Olshausen, B. A.,& Woods, D. L. (2003). Processing shape, motion and htree-dimensional shape-from-motion in the human cortex. Cereb Cortex, 13:508-516.
    Naatanen, R., Paavilainen, P., Rinne, T.,& Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing:a review. Clinical Neurophysiology,118:2544-2590.
    Opitz, B., et al. (1999). Combining electrophysiological and hemodynamic measures of the auditory oddball. Psychophysiology.36.142-147
    Pearce. J. M..& Hall. G. (1980). A model for Pavlovian learning:variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychology Review, 87:532-552.
    Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology,32:3-25.
    Posner, M. I., Snyder. C. R..& Davidson, B. J. (1980). Attention and the detection of signals. J. Exp. Psychol.,109:160-174.
    Posner, M. I., Walker, J. A., Friedrich, F. J.,& Rafal, R. D. (1984). Effects of parietal injury on covert orienting of attention. Journal of Neuroscience,4:1863-1874.
    Puri. A. M..& Wojciulik. E. (2008). Expectation both helps and hinders object perception. Vision Research.48.589-597.
    Puri. A. M.. Wojciulik. E.,& Ranganath. C. (2009). Category expectation modulates baseline and stimulus-evoked activity in human inferotemporal cortex. Brain Research.1301.89-99.
    Raichle. M. E., Fiez. J. A., Videen. T. O., MacLeod. A. M., Pardo. J. V.,& Fox. P. T. (1994). Practice-related changes in human brain functional anatomy during nonmotor learning. Cerebral Cortex,4,8-26.
    Rainer, G.,& Miller, E. K. (2000). Effects of visual experience on the representation of objects in the prefrontal cortex. Neuron,27,8-10.
    Ranganath, C. ,& Rainer, G. (2003). Neural mechanisms for detecting and remembering novel events. Nat. Rev. Neurosci.,4,193-202.
    Ranganath, C., Johnson M. K.,& D'Esposito, M. T. (2003). Prefrontal activity associated with working memory and episodic long-term memory.Neuropsychologia,41,378-389.
    Rao, R. P.,& Ballard, D. H. (2005). Probabilistic models of attention based on iconic representations and predictive coding. In:Neurobiology of attention (Itti L, Rees G, Tsotsos JK, eds), pp 553-561. New York:Elsevier Academic.
    Rutishauser, U., Mamelak, A. N.,& Schuman, E. M. (2006). Single-trial learning of novel stimuli by individual neurons of the human hippocampus-amygdala complex. Neuron,49,805-813.
    Scarborough, D. L., Cortese, C.,& Scarborough, H. (1977). Frequency and repetition effects in lexical memory. Journal of Experimental Psychology:Human Perception and Performance,3,1-17.
    Schacter, D. L., Wig, G. S.,& Stevens, W. D. (2007). Reductions in cortical activity during priming. Current Opinion in Neurobiology,17,171-176.
    Schultz, W, Dayan, P.,& Montague, P. R. (1997). A neural substrate of prediction and reward. Science,275:1593-1599.
    Schultz, W.,& Dickinson, A. (2000). Neuronal coding of prediction errors. Annu. Rev. Neurosci.,23:473-500.
    Schwartz, C. E.,Wright, C. I., Shin, L. M., Kagan, J.,Whalen, P. J.,McMullin, K. G., & Rauch, S. L. (2003). Differential amygdalar response to novel versus newly familiar neutral faces:a functional MRI probe developed for studying inhibited temperament. Biol. Psychiatry,53,854-862.
    Shulman, G. L., Astafiev, S. V., Franke, D., Pope, D. L., Snyder, A. Z., McAvoy, M. P.,& Corbetta, M. (2009). Interaction of stimulus-driven reorienting and expectation in ventral and dorsal fronto-parietal and basal ganglia-cortical networks. Journal o/Neuroscience,29:4392-4407.
    Soldan, A., Habeck, C., Gazes, Y.,& Stern, Y. (2010). Neural mechanisms of repetition priming of familiar and globally unfamiliar visual objects. Brain Research,1343:122-134.
    Soldan, A., Zarahn, E., Hilton, H. J.,& Stern, Y. (2008). Global familiarity of visual stimuli affects repetition-related neural plasticity but not repetition priming. Neurolmage,39:515-526.
    Spalek, T. M. (2007). A Direct Assessment of the Role of Expectation in Inhibition of Return. Psychological science,18(9),783-787
    Spalek, T. M., & Hammad, S. (2005). The left-to-right bias in inhibition of return is due to the direction of reading. Psychological Science,16,15-18.
    Spalek, T.M., & Hammad, S. (2004). Supporting the attentional momentum view of inhibition of return:Is attention biased to go right? Perception and Psychophysics, 66,219-233.
    Spratling, M. W. (2008). Predictive coding as a model of biased competition in visual attention. Vision Research,48:1391-1408.
    Strange, B. A.. Duggins, A., Penny, W., Dolan, R. J., & Friston, K. J. (2005). Information theory, novelty and hippocampal responses:unpredicted or unpredictable? Neural Netw.,18,225-230.
    Summerfield, C., & Egner, T. (2009). Expectation (and attention)in visual cognition. Trends in Cognitive Sciences,13:403-409.
    Summerfield, C., & Koechlin, E. (2008). A neural representation of prior information during perceptual inference. Neuron.59:336-347.
    Summerfield. C. Egner. T., Greene. M.. Koechlin. E.. Mangels. J., & Hirsch. J. (2006). Predictive codes for forthcoming perception in the frontal cortex. Science, 314:1311-1314.
    Summerfield. C., et al. (2008). Neural repetition suppression reflects fulfilled perceptual expectations. Nature Neuroscience,11,1004 - 1006.
    Summerfield, C., Wyart, V., Johnen, V. M., & de Gardelle, V. (2011). Human scalp electroencephalography reveals that repetition suppression varies with expectation. Front. Hum. Neurosci.,5:67.
    Summerfield, J. J., et al. (2006). Orienting attention based on long-term memory experience. Neuron.49.905-916.
    Taylor, T. L.(2007). Inhibition of return for expected and unexpected targets. Acta Psychologica.124.257-273.
    Tipples, J. (2002). Eye gaze is not unique:automatic orienting in response to uninformative arrows. Psychonomic bulletin & review.9:314-318.
    Troyer, A. K.,& Craik, F. I. (2000). The effect of divided attention on memory for items and their context. Can. J. Exp. Psychoi,54:161-171.
    Tsotsos, J. K. (1997). Limited capacity of any realizable perceptual system is a sufficient reason for attentive behavior. Conscious and Cognition,6:429-436.
    Tulving, E., Markowitsch, H. J., Craik, F. I. M., Habib, R.,& Houle, S. (1996). Novelty and familiarity activations in PET studies of memory encoding and retrieval. Cereb. Cortex,6,71-79.
    Vachon, F., Hughes, R. W.,& Jones, D. M. (2012). Broken Expec tations:Violation of Expectancies, Not Novelty, Captures Auditory Attention. Journal of Experimental Psychology:Learning, Memory, and Cognition,38(1),164-177.
    Vossel, S., Thiel, C. M.,& Fink, G. R. (2006). Cue validity modulates the neural correlates of covert endogenous orienting of attention in parietal and frontal cortex. Neuroimage,32:1257-1264.
    Whalen, P. J. (1998). Fear, vigilance, and ambiguity:initial neuroimaging studies of the human amygdala. Curr. Dir. Psychol. Sci.,7,177-188.
    Wright, C. I., Martis, B., Schwartz, C.E., Shin, L.M., Fischer, H., McMullin, K.,& Rauch, S. L. (2003). Novelty responses and differential effects of order in the amygdala,substantia innominata, and inferior temporal cortex. Neuroimage,18, 660-669.
    Yamaguchi, S., Hale. L. A., D'Esposito, M.,& Knight, R. (2004). Rapid prefrontal-hyppocampal habituation to novel events. J. Neurosci.,24:5356-5363.
    Yantis, S.,& Jonides, J. (1990). Abrupt visual onsets and selective attention: voluntary versus automatic allocation. Journal of Experimental Psychology: Human Perception and Performance,16:121-134.
    Yoshiura, T., Zhong, J., Shibata, D. K., Kwok, W. E., Shrier, D. A.,& Numaguchi, Y. (1999). Functional MRI study of auditory and visual oddball tasks. Neuroreport,10: 1683-1688.
    Zald, D. H. (2003). The human amygdala and the emotional evaluation of sensory stimuli. Brain Res. Rev.,41,88-123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700