面向认知无线电的数字信号处理器体系结构技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
计算机和微电子技术的高速发展,促进了通信技术的快速革新。当前广泛使用的无线通信技术在人们的工作和生活中扮演着越来越重要的角色。与此同时,随着人们对于高速多媒体无线通信网络需求的不断增长,使得无线通信对无线电频谱资源需求与当前频谱固定分配策略下频谱利用率低下的矛盾变得越来越突出。认知无线电是一种具有频谱感知和智能决策能力的软件无线电,不仅能够提高无线电频谱资源的利用率,还将进一步提高通信系统的智能水平。认知无线电处理器在软件无线电处理器的需求之上,增加了频谱感知、可重构计算和智能决策等更多的功能和更高的计算性能需求。因此,对面向认知无线电的数字信号处理器体系结构进行深入研究具有十分重要的意义。本文在国家“863”高技术研究发展计划项目和多个国家自然科学基金项目的支持下,对认知无线电的频谱感知算法和体系结构、认知无线电可重构基带处理器体系结构以及自主认知无线电节点体系结构等方面展开了深入的分析研究,主要工作包括:
     1、基于能量检测的认知无线电频谱盲感知算法和体系结构设计与实现。频谱盲感知对于认知无线电系统实现来说十分重要,为了加速能量检测计算和适应变化的检测精度需求,设计实现了一种具有动态可重构功能的流水线体系结构的FFT处理器,能够重构处理64到2048点的FFT计算,同时保持了良好的功耗和面积开销。提出了两阶段能量检测算法,基于这一算法和可重构FFT处理器设计实现了检测性能可调的能量检测器。
     2、基于循环平稳特征检测算法的并行实时频谱感知协处理器体系结构设计与实现。循环平稳特征检测广泛应用于窄带信号到达角估计、信号识别以及雷达信号参数估计等领域,但是由于较高的计算复杂度一直限制其作为实时信号处理的工具。提出了一种计算高效的并行循环平稳特征检测算法,并在多核软件无线电处理器了进行了算法映射和实现验证,对于8MHz的32768次采样,频谱感知时间为78.8ms。基于并行循环平稳特征检测算法,设计实现了并行循环平稳特征检测器体系结构。能量检测器具有实现简单的优点,可以作为粗粒度频谱盲感知的手段,基于本文提出的可重构FFT处理器,设计实现了具有能量感知和循环平稳特征检测功能的可重构频谱感知协处理器,实现了频谱感知性能和功耗开销的平衡。
     3、面向认知无线电的可重构基带处理器体系结构设计与实现。认知无线电可重构基带处理对数字信号处理器提出了新的挑战,提出了认知无线电基带系统模型,分析了以NC-OFDM为传输技术的基带处理计算特征。为了满足认知无线电对动态可重构的功能需求,提出了面向基带处理应用的可重构体系结构模型,设计实现了基于这一模型的可重构多处理器体系结构CORA,实验结果表明,这一体系结构设计能够满足基于NC-OFDM技术的认知无线电基带处理计算需求。
     4、自主认知无线电概念模型、认知圈和自主认知无线电节点体系结构原型设计实现。为了实现从频谱感知认知无线电到理想认知无线电的演进,研究了自主系统设计原则并证明了理想认知无线电认知圈与自主系统设计原则的一致性,提出了自主认知无线电概念模型和自主认知无线电认知圈,给出了自主认知无线电概念模型相关部件的功能和详细定义。基于自主通信开源平台ACE Toolkit,设计实现了自主认知无线电模拟环境。设计实现了MPSoC结构的自主认知无线电节点体系结构原型ACRA,将IEEE802.22协议规定的认知无线电功能定义映射到ACRA上的实验结果表明ACRA在频谱管理上的合理性以及频谱感知性能上的优势。
     综上所述,本文针对面向认知无线电的数字信号处理器体系结构技术进行了研究,提出了面向认知无线电的频谱感知协处理器,认知无线电基带处理模型和可重构基带处理器以及自主认知无线电节点体系结构模型和原型实现,对于推动认知无线电的相关研究和体系结构实现具有一定的意义和价值。
With the rapid development of the computer and micro-electronic technologies, thecommunication technology has been changed a lot. The widely used wirelesscommunication technology becomes more and more important in our daily work andlife. However, with the rapidly increasing requirement for faster multimedia wirelesscommunication, the need for more spectrum resources is controdictory to the fixed andlow untilized spectrum allocation policy all around the world. Cognitive radio can beseen as software-defined radio with the capability of spectrum sensing and intellegentdecision. Although the cognitive radio push more requirement for spectrum sensing andreconfiguration computing beyond the software-defined radio, which is really achallenge to software-defined radio processors. The benefit of cognitive radio is quiteobvious, it not only improve the rate of spectrum utilization but also improves theintelligence of communication systems. Thus the relevant research on the digital signalprocessor architecture for cognitive radio is actually very important. This thesis issupported by the National High Technology Research and Development Plans of China(“863” Plan) and a number ofNationalNature Science FundationofChina (NSFC). Thespectrum sensing algorithm and spectrum sensor architecture, the congitive radioreconfigurable baseband processor and the autonomic cognitive radio node architecturehave been investigated. The main research includes the following topics:
     1、 Cognitive radio blind spectrum sensing algorithms based on energy detectionand the spectrum detectors architecture based on these algorithms. Blind spectrumsensing is very important for cognitive radio system implementation beacuse we assumethe cognitive radio know nothing about the primary user information. For therequirement of computing for energy detection and changable detection precision, areconfigurable pipeline FFT processor is proposed, the FFT processing points vary from64to2048, the area and power consumption of this FFT processor is fairly low. Thetwo stages energy detection algorithm is proposed. Based on the two stages energydetection algorithm and the reconfigurable FFT processor, a detection performanceadjustable energy detector is designed and implemented.
     2、 Parallelized cyclostationary feature detection algorithm and the parallelcyclostationary feature detector architecture implementation. Cyclostationary featuredetection has been widely used in multiple narrowband signals difference of arrival(DOA) estimation, weak spread-spectrum communication signal identification, andradar signal parameter estimation. But high computational complexity ofcyclostationary feature detection limits its usage as a signal analysis tool. Acomputational efficient parallel cyclostationary feature detection algorithm is proposedand tested on our multicore software-defined radio processor. For a typical spectrum sensing task with32768samples of8MHz spectrum, the spectrum sensing time is78.8ms. The parallel cyclostationary feature detector architecture based on the abovemetioned parallel detection algorithm is implemented. Combined with energy detector,which is easy to be implemented, a reconfigrable energy and cyclostationary featuredetector is proposed. The detection task of this detector can be devided into two stages,the energy detector for first stage coarse-grained sensing and the cyclostationary featuredetector for second stage fine-grained sensing task. The reconfigurable spectrumdetector achieves a balance in the spectrum sensing performance and powerconsumption overhead.
     3、 Cognitive radio reconfigurable baseband processor architectrue design andimplementation. Cognitive radio reconfigurable baseband processing is a challegingtask for digital signal processor. A cognitive radio baseband processing model isproposed and the NC-OFDM transimission technology based baseband processingcomputing character is analyzed. Cognitive radio put an emphsis on the dynamicreconfigurable, so the reconfigurable architecture model for the baseband processingrequirement is proposed. CORA (Cognitive radio Oriented Reconfigurable basebandArchitecture), a multicore reconfigurable processor architecture based on the model isdesigned. The numerical results show that this architecture is suited for NC-OFDMbased cognitive radio baseband processing with reconfigurable capability.
     4、 Autonomic cognitive radio concept model, cognitive cycle and autonomiccognitive radio node architecture prototype design and implementation. In order toachieve the evolution from contemporary spectrum sensing cognitive radio to the idealcognitive radio, the autonomic system design principles are investigated and the idealcognitive radio cycle is proved consistent with this principles. The autonomic cognitiveradio conceptual model and the autonomic cognitive radio cycle are proposed, alongwith the formal definition of its different parts and function. Based on the open-sourceautonomic communication platform, ACE Toolkit, the autonomic cognitive radiosimulation environment is implemented. The autonomic cognitive radio architecturemodel is the key step to system realization. ACRA (Autonomic Cognitive RadioArchitecture), an MPSoC (Multiple Processor System-on-Chip) based architecture forautonomic cognitive radio, is proposed. We mapped the cognitive radio capabilitiesdefined in the IEEE802.22standard onto the ACRA, and experiment results show thefeasibility of spectrum management function in ACRA and its enhanced performance inspectrum sensing.
     In the summary, this thesis has investigated a number of key technologies for thedigital signal processor architecture for cognitive radio. Spectrums sensing coprocessorarchitectures for cognitive radio, cognitive radio baseband processing model andreconfigurable baseband processor and autonomic cognitive radio node architecture have been proposed. This thesis is expected to accelerate the theoretical andimplemental research on cognitive radio.
引文
[1] Mitola J. The Software Radio Architecture [J]. IEEE Communications Magazine,1995,33(5):26-38.
    [2]杨小牛,楼才义,徐建良.软件无线电技术与应用[M].北京:北京理工大学出版社,2010.
    [3] Mitola J. Cognitive Radio: An Integrated Agent Architecture for SoftwareDefined Radio [D]. Stockholm: Royal Institute of Technology (KTH),2000.
    [4] Badoi C-I, Prasad N, Croitoru V, Prasad R.5G Based on Cognitive Radio [J].Wireless Personal Communications,2011,441-464.
    [5] Huebscher M C, McCann J A. A survey of Autonomic Computing—Degrees,Models, and Applications [J]. ACM Computing Surveys,2008,40(3):1-28.
    [6] Dobson S, Fernandez A, Gelenbe E, Massacci F, Saffre F, Zambonelli F. ASurvey of Autonomic Communications [J]. ACM Transactions on Autonomousand Adaptive Systems2006,1(2):223-259.
    [7] National Telecommunications and Information Administration, USA. U.S.frequency allocations [EB/OL]. http://www.ntia.doc.gov/osmhome/allochrt.pdf,1985-06/2011-01-23.
    [8] Cabric D, et al.. Spectrum Sharing Radios [J]. IEEE Circuits and SystemsMagazine,2006,30-45.
    [9] Federal Communication Commision. Spectrum Policy Task Force, Tech. Report
    [R],2002.
    [10] Beadle H W, Maguire G Q, and Smith M T. Environment Aware Computingand Communications Systems [R]. Stockholm: Royal Institute of Technology(KTH),1998.
    [11] Mitola J, Maguire G Q. Cognitive Radio: Making Software Radios MorePersonal [J]. IEEE Personal Communications,1999,13-18.
    [12] Kephart J O, Chess D M. The Vision of Autonomic Computing. Computer,2003,36(1):41–50.
    [13] Mitola J. Cognitive Radio Architecture [M]. Hoboken, NJ: John Wiley and Sons,Inc.,2006.
    [14] International Electrical and Electric Engineer. Cognitive Radio Concept
    [EB/OL]. http://www.ieeeusa.org/forum/POSITIONS/cognitiveradio.html.
    [15] Federal Communication Commision. Spectrum Policy Task Force, Tech. Report,ET-03-108[R], Dec17,2003.
    [16] Haykin S. Cognitive Radio: Brain-Empowered Wireless Communications [J].IEEE Journal on Selected Areas in Communications,2005,23(2):201-220.
    [17] IBM. An architectural blueprint for autonomic computing [EB/OL].http://www-03.ibm.com/autonomic/pdfs/AC_Blueprint_White_Paper_4th.pdf,2006-09/2009-08.
    [18] Fraunhofer F. Autonomic Communication, White Paper, Second Edition
    [EB/OL]. http://www.autonomic-communication.org/publications/doc/WP_v02.pdf,2004-07/2009-09.
    [19] Cabric D, Mishra S M, Brodersen R W. Implementation issues in spectrumsensing for cognitive radios [C].//The38th Annual Asilomar Conference onSignals, Systems and Computers,2004:772-776.
    [20] Cabric D, Brodersen R W. Physical Layer Design Issues Unique to CognitiveRadio Systems [C].//IEEE International Symposium on Personal, Indoor andMobile Radio Communications (PIMRC),2005.
    [21] Akyildiz I F, Lee W-Y, Vuran M C, Mohanty S. NeXt generation/dynamicspectrum access/cognitive radio wireless networks: A survey [J]. ComputerNetworks,2006,50:2127-2159.
    [22] Tulino A M, Verdu S. Random Matrix Theory and Wireless Communications
    [M]. Hanover, MA: now Publishers Inc.,2004.
    [23] Zeng Y, Liang Y-C, Hoang A T, Zhang R. A Review on Spectrum Sensing forCognitive Radio: Challenges and Solutions [J]. EURASIP Journal on Advancesin Signal Processing,2010:1-15.
    [24] Hartenstein R. A Decade of Reconfigurable Computing: a VisionaryRetrospective (embedded tutorial)[C].//Proceedings of the Design Automationand Test in Europe Conference (DATE),2001.
    [25] Tessier R, Burleson W. Reconfigurable Computing for Digital Signal Processing:A Survey [J]. Journal of VLSI Signal Processing,2001,28:7-27.
    [26] Jozwiak L, Nedjah N. Modern Architectures for Embedded ReconfigurableSystems-A Survey [J]. Journal of Circuits, Systems, and Computers,2009,18(2):209-254.
    [27] Salefski B, Caglar L. Re-Configurable Computing in Wireless [C].//Proceedingsof Design Automation Conference (DAC),2001:178-183.
    [28] Zhang Q, Kokkeler A B J, Smit G J M, Walters K H G. Cognitive Radiobaseband processing on a reconfigurable platform [J]. Physical Communication,2009,2:33-46.
    [29] Weingart T, Yee G V, Sicker D C, Grunwald D. Implementation of aReconfiguration Algorithm for Cognitive Radio [C].//The2nd InternationalConference on Cognitive Radio Oriented Wireless Networks andCommunications (CrownCom),2007:171-180.
    [30] He A, Bae K K, Newman T R, et al. A Survey of Artificial Intelligence forCognitive Radios [J]. IEEE Transactions on Vehicular Technology,2010,59(4):1578-1592.
    [31] Rondeau T W, Bostian C W. Artificial Intelligence in Wireless Communications[M]. Norwood, MA: Artech House,2009.
    [32] Holland, O. Cognitive Communications Projects around the World [R].York-Zhejiang Summer School on Cognitive Communications,2010.
    [33] Woh M, Seo S, Lee H, et al. The Next Generation Challenge for SoftwareDefined Radio [C].//Proceedings of the7th International Workshop on Systems,Architectures, Modeling, and Simulation (SAMOS),2007:pp.343-354.
    [34]方兴.面向软件无线电的数字信号处理器体系结构技术研究[D].长沙:国防科技大学,2009.
    [35] IEEE802.22Working Group on Wireless Regional Area Networks [EB/OL].http://www.ieee802.org/22/.2004-06/2011-06.
    [36] Cordeiro C, Challapali K, Birru D. IEEE802.22: An Introduction to the FirstWireless Standard based on Cognitive Radios [J]. Journal of Communications,2006,1(1):38-47.
    [37] Holland, O. Overview of Dynamic Spectrum Access and CognitiveCommunications Standards [R]. York-Zhejiang Summer School on CognitiveCommunications,2010.
    [38] Sahai A, Hoven N, Tandra R. Some Fundamental Limits on Cognitive Radio [C].//In Allerton Conference on Communication, Control, and Computing,2004.
    [39] Devroye N, Mitran P, Tarokh V. Achievable rates in cognitive radio channels [J].IEEE Transactions on Information Theory,200652(5):1813–1827.
    [40] Jovicic A, Viswanath P. Cognitive radio: An information-theoretic perspective[C].//in Proceedings of the IEEE International Symposium on InformationTheory (ISIT’06),2006,2413-2417.
    [41] Urkowitz H. Energy detection of unknown deterministic signals [J]. Proceedingsof IEEE,1967,55:523-531.
    [42] Kostylev V I. Energy detection of a signal with random amplitude [C].//in Proc.ICC,2002,1606-1610.
    [43] Digham F F, Alouini M-S, Simon M K. On the energy detection of unknownsignals over fading channels [J]. IEEE Trans. Commun.,2007,55:21-24.
    [44] Chen Y. Improved Energy Detector for Random Signals in Gaussian Noise [J].IEEE Transactions on Wireless Communications,2010,9(2):558-563.
    [45] Zeng Y, Liang Y-C. Spectrum-sensing algorithms for cognitive radio based onstatistical covariances [J]. IEEE Trans. Veh. Commun.,2009,58(4):1804-1815.
    [46] Zeng Y, Liang Y-C. Eigenvalue Based Spectrum Sensing Algorithms forCognitive Radio [J]. IEEE Trans. Commun.,2009,57(6):1784-1793.
    [47] Zeng Y, Liang Y-C, Zhang R. Blindly Combined Energy Detection forSpectrum Sensing in Cognitive Radio [J]. IEEE Signal Processing Letters,2008,15:649-652.
    [48] Yang X, Lei K, Peng S, Cao X. Blind Detection for Primary User Based on theSample Covariance Matrix in Cognitive Radio [J]. IEEE CommunicationsLetters,2011,15(1):40-42.
    [49] Gardner W A, Spooner C M. Signal interception: performance advantages ofcyclic-feature detectors [J]. IEEE Trans. Commun.,1992,40(1):149–159.
    [50] Gardner W A, Napolitano A, Paura L. Cyclostationarity: Half a century ofresearch [J]. Signal Processing,2006,86(4):639–697.
    [51] Pace P E. Detecting and Classifying Low Probability of Intercept Radar, SecondEdition [M]. Boston, MA: Artech House Inc.,2009.
    [52] Roberts R S, Brown W A, Loomis H H. Computationally Efficient Algorithmsfor Cyclic Spectral Analysis [J]. IEEE Signal Processing Magazine,1991,8(2):38-49.
    [53] Carter N J. Implementation of cyclic spectral analysis methods [D]. Monterey:Naval Postgraduate School,1993.
    [54] Costa E L. Detection and identification of cyclostationary signals [D]. Monterey:Naval Postgraduate School,1996.
    [55] Upperman G J. Implementation of a Cyclostationary Spectral AnalysisAlgorithm on a SRC Reconfigurable Computer for Real-time Signal Processing[D]. Monterey: Naval Postgraduate School,2008.
    [56] Turunen V, Kosunen M, et al.. Implementation of Cyclostationary FeatureDetector for Cognitive Radios [C].//in4th International Conference onCognitive Radio Oriented Wireless Networks and Communications(CROWNCOM),2009,1-4.
    [57] Kokkeler A B J, Smit G J M, Krol T, Kuper J. Cyclostationary feature detectionon a tiled-SoC [C].//in Design, Automation&Test in Europe Conference&Exhibition (DATE),2007,1-6.
    [58] Ge F, Bostian C W. A Parallel Computing Based Spectrum Sensing Approachfor Signal Detection under Conditions of Low SNR and Rayleigh MultipathFading [C].//in3rd IEEE International Symposium on New Frontiers inDynamic Spectrum Access Networks (DySPAN),2008.
    [59] Bokharaiee S, Nguyen H H, Shwedyk E. Blind Spectrum Sensing forOFDM-Based Cognitive Radio Systems [J]. IEEE Transactions on VehicularTechnology,2011,60(3):858-871.
    [60] Lien J-P, Chen P-A, Chiueh T-D. Design of A MIMO OFDM BasebandTransceiver for Cognitive Radio System [C].//In Proce. ISCAS,2006,4098-4101.
    [61] Chen K-H, Chiueh T-D. A Cognitive Radio System Using Discrete WaveletMultitone Modulation [J]. IEEE Transactions on Circuits and Systems-I:Regular Papers,2008,55(10):3246-3258.
    [62] Chen K-H, Chiueh T-D. A1.8V165mW Discrete Wavelet Multi-ToneBaseband Receiver for Cognitive Radio Applications [C].//In Proce. ISSCC,2007,578-579,623.
    [63] Wolf W, Jerraya A A, Martin G. Multiprocessor System-on-Chip (MPSoC)Technology [J]. IEEE Transactions on Computer-Aided Design of IntegratedCircuits and Systems,2008,27(10):1701-1713.
    [64] Zhang Q. Cognitive Radio on a Reconfigurable MPSoC Platform [D]. Twente:University of Twente,2009.
    [65] Glossner J, et al.. Future Wireless Convergence Platforms [C].//in Proc. ofCODES+ISSS'05,2005,7-12.
    [66] Duller A, Panesar G, Towner D. Parallel Processing—the picoChip way!
    [M]//Broenink J F, Hilderink G H (eds.). Communicating Process Architectures.New York: IOS Press,2003:125-138.
    [67] Smit, G J M, Havinga P J M, Smit L T, Heysters P M, Rosein M A J. DynamicReconfigurable in Mobile Systems [C].//Proce. FPL.2002:171-181.
    [68] Ebeling C, Fisher C, Xing G, Shen M, Liu H. Implementating an OFDMreceiver on the RaPiD Reconfigurable Architecture [C].//Proc. FPL.2003:21-30.
    [69] Abe S, Hasegawa, Y, Toi T, Inuo T, Amano H. Adaptive Computing on theDynamically Reconfigurable Processor [C].//Proc. COOL Chips IX.2006:412-421.
    [70] Mei B, Vernalde S, Verkest D, Man H D, Lauwereins R. ADRES: AnArchitecture with Tightly Coupled VLIW Processor and Coarse-GrainedReconfigurable Matrix [C].//in Proce. FPL,2003:61-70.
    [71] Gustafsson O, Amiri K, et al. Architectures for Cognitive Radio Testbeds andDemonstrators–An Overview [C].//Proceedings of CROWNCOM'10.2010:1-6.
    [72] Rondeau T, Le B, Rieser C, Bostian C W. Cognitive radios with geneticalgorithms: Intelligent control of software defined radios [C].//In Softwaredefined radio forum technical conference,2004:C3–C8.
    [73] Newman T R, Rajbanshi R, Wyglinski A M, Agah A. Cognitive engineimplementation for wireless multicarrier transceivers [J]. WirelessCommunications and Mobile Computing,2007,7(9):1129–1142.
    [74] Newman T R, Rajbanshi R, Wyglinski A M, Evans J B. Population adaptationfor genetic algorithm-based cognitive radios [J]. Mobile Networks andApplications,2008,13(5):442–451.
    [75] Glover F W, Laguna M. Tabu Search [M]. Boston, MA: Kluwer,1997.
    [76] Zhao N, Li S, Wu Z. Cognitive Radio Engine Design Based on Ant ColonyOptimization [J]. Wireless Personal Communications,2011:1-10.
    [77] Zhao Y, Gaeddert J, Morales L, Bae K, Um J-S, Reed J H. Development ofradio environment map enabled case-and knowledge-based learning algorithmsfor IEEE802.22WRAN cognitive engines [C].//in Proc.2nd Int. Conf.CrownCom,2007:44–49.
    [78] Clancy C, Hecker J, Stuntebeck E, Shea T O. Applications of machine learningto cognitive radio networks [J]. IEEE Wireless Commun.,2007,14(4):47–52.
    [79] He A, Gaeddert J, Bae K, et al.. Development of a case-based reasoningcognitive engine for IEEE802.22WRAN applications [J]. ACM Mobile Comput.Commun. Rev.,2009,13(2):37–48.
    [80] He A, et al.. A Survey of Artificial Intelligence for Cognitive Radios [J]. IEEETransactions on Vehicular Technology,2010,59(4):1578–1592.
    [81] Free Software Foundation, Inc. GNU Radio–the GNU software radio [EB/OL].http://www.gnu.org/software/gnuradio,2008-06/2010-02.
    [82] Wireless@Virginia Tech. OSSIE, SCA-Based Open Source Software DefinedRadio [EB/OL]. http://ossie.wireless.vt.edu/,2008-10/2010-12.
    [83] Pawelczak P, Nolan K, Doyle L, Oh S W, Cabric D. Cognitive Radio: Ten Yearsof Experimentation and Development [J]. IEEE Communications Magazine,2011,(3):90-100.
    [84] Ettus Research LLC. Universal Software Radio Peripheral–The Foundation forComplete Software Radio Systems [EB/OL]. http://www.ettus.com/downloads/usrp_v4.pdf,2006-04/2009-08.
    [85] Tkachenko A, Cabric A D, Brodersen R W. Cyclostationary Feature DetectorExperiments Using Reconfigurable BEE2[C].//In2nd IEEE InternationalSymposium on New Frontiers in Dynamic Spectrum Access Networks,2007:216-219.
    [86] Murphy P, Sabharwal A, Aazhang B. Design of WARP: A flexible wirelessopen-access research platform [C].//in Proc. EUSIPCO,2006.
    [87] Minden G J, et al.. KUAR: A Flexible Software-Defined Radio DevelopmentPlatform [C].//In Proc. IEEE DySPAN,2007:17–20.
    [88] Lyrtech Inc. SignalMaster Quad Virtex-4User's Guide [EB/OL].http://www.lyrtech.com/products/signalmaster_quad.php,2008-06/2010-03.
    [89] Miljanic Z, Seskar I, Le K, Raychaudhuri D. The WINLAB Network CentricCognitive Radio Hardware Platform–WiNC2R [J]. Mobile Networks andApplications,2008,13(5):533-541.
    [90] Bowen B A, Brown W R. VLSI Systems Design for Digital Signal Processing,Volume1, Signal Processing and Signal Processors [M]. Englewood Cliffs, N.J.:Prentice-Hall, Inc.,1982:115-120.
    [91]范特里斯H L (著),毛士艺,周荫清,张其善(译).检测、估计和调制理论,卷I,检测、估计和线性调制理论[M].北京:国防工业出版社,1983:28-42.
    [92] Kay S M. Fundamentals of Statistical Signal Processing, Volume II DetectionTheory [M]. Upper Saddle River, N.J.: Prentice Hall PTR,2003:60-74.
    [93] Zhao Q, Swami A. Spectrum Sensing and Identification. Wyglinski A M,Nekovee M, Hou Y T.(eds) Cognitive radio communications and networks:principles and practice [M]. Burlington, MA: Elsevier,2010:88-91.
    [94]奥本海姆A V,谢弗R W,巴克J R.(著),刘树棠,黄建国(译).离散时间信号处理(第2版)[M].西安:西安交通大学出版社,2001:507-510.
    [95]蔚接锁.基于FPGA与流水线CORDIC算法的FFT处理器的实现[D].天津:天津大学电子信息工程学院,2008.
    [96] He S, Torkelson M. A New Approach to Pipeline FFT Processor [C].//inProceedings of Parallel Processing Symposium (IPPS’96),1996,1-5.
    [97] Hasan M, Arslan H, Thompson J S. A Delay Spread Based Low PowerReconfigurable FFT Processor Architecture for Wireless Receivers [C].//inProceedings of International Symposium on System-on-Chip,2003,135-138.
    [98] Lu Q, Wang X, Niu J. A Low-power Variable-length FFT Processor Base onRadix-24Algorithm [C].//in Proceedings of Asia Pacific Conference onPostgraduate Research in Microelectronics&Electronics (PrimeAsia2009),2009,129-132.
    [99] Lin Y T, Tsai P Y, Chiueh T D. Low-power variable-length fast Fouriertransform processor [J]. IEE Proc.-Comput. Digit. Tech.,2005,152(4):499-506.
    [100] Yang G, Jung Y. Design of Low-Complexity FFT Processor for MIMO-OFDMbased SDR Systems [C].//in Proceedings of ICACT2010,107-110.
    [101] Lai C, Hwang W. A Low-Power Reconfigurable Mixed-Radix FFT/IFFTProcessor [C].//in Proceedings of IEEE Asia Pacific Conference on Circuitsand Systems (APCCAS2006),2006,1931-1934.
    [102] Jia L, Gao Y, Isoaho J, and Tenhunen H. A new VLSI-oriented FFT algorithmand implementation [C].//in Proceedings of IEEE ASIC Conf.,1998,337-341.
    [103] Bidet E, Castelain D, Joanblanq C, and Senn P. A fast single-chipimplementation of8192complex point FFT [J]. IEEE J. Solid-State Circuits,1995,30(3):300-305.
    [104] Zhang B, Liu H, et al. Domain Specific Architecture for Next GenerationWireless Communication [C].//in Design, Automation&Test in EuropeConference&Exhibition,2010. DATE’10, March2010, pp.1414-1419.
    [105] Gaisler Research. GRLIB IP Core User's Manual V1.0.15. April2007.
    [106] Lin Y, Lee H, Woh M, et al. SODA: A Low-power Architecture for SoftwareRadio [C].//Proceedings of the33rd International Symposium on ComputerArchitecture (ISCA’06),2006,1-12.
    [107] Woh M, Seo S, Mahlke S, et al. AnySP: Anytime Anywhere Anyway SignalProcessing [C].//Proceedings of the36th International Symposium onComputer Architecture (ISCA’09),2009,1-12.
    [108] Parizi H, Niktash A, Kamalizad A, et al. A Reconfigurable Architecture forWireless Communication Systems [C].//Proceedings of the Third InternationalConference on Information Technology: New Generations,2006.
    [109] Mei B F, Vernalde S, Verkest D, et al. ADRES: An Architecture with TightlyCoupled VLIW Processor and Coarse-grained Reconfigurable Matrix [C].//Proceedings of the13th International Conference on Field-Programmable Logicand Applications,2003.
    [110] Rauwerda G K, Heysters P M, Smit G J M. Towards Software Defined Radiosusing Coarse-grained Reconfigurable Hardware [J]. IEEE Transactions on VeryLarge Scale Integration (VLSI) Systems,2008,16(1):3-13.
    [111]高德远.软件无线电的可重构流处理器体系结构[J].航空学报,2008,29(6).
    [112]刘衡竹,莫方政,张波涛等.软件无线电数字信号处理器体系结构研究[J].国防科学技术大学学报,2009,31(5):6-11.
    [113] Amano H. A Survey on Dynamically Reconfigurable Processors [J]. IEICETrans. Commun.,2006, E89-B(12):3179-3187.
    [114] Dally W J, Towles B. Route packets, not wires: onchip interconnection networks
    [C].//Proceedings of the Design Automation Conference (DAC’01),2001,684–689.
    [115] Schelle G, Fifield J, Grunwald D. A Software Defined Radio ApplicationUtilizing Modern FPGAs and NoC Interconnects [C].//in Proceedings of theInternational Conference on Field Programmable Logic and Applications(FPL’07),2007,177-182.
    [116] Chun A, McCanta K, Sandoval E B, Gulati K. Overview o f the ScalableCommunications Core: A Reconfigurable Wireless Baseband in65nm CMOS
    [C].//in Proceedings of2009IEEE Computer Society Annual Symposium onVLSI (ISVLSI'09),2009,1-6.
    [117] Lattard D, Beigne E, Clermidy F, et al. A Reconfigurable Baseband PlatformBased on an Asynchronous Network-on-Chip [J]. IEEE Journal of Solid-stateCircuits,2008,43(1):223-235.
    [118] Lu W Q, Zhao S, Zhou X F, Ren J Y, Sobelman G E. Reconfigurable basebandprocessing architecture for communication [J]. IET Computers&DigitalTechniques,2011,5(1):63-72.
    [119] Chen S, Wyglinski A M. Digital Communication fundamentals for cognitiveradio. Wyglinski A M, Nekovee M, Hou Y T.(eds) Cognitive radioElsevier,2010:41-42.
    [120] Lee C-H. Power-efficient Integrated Cognitive and Software Radio System:Architecture, Algorithms, and Protocols [D]. Princeton: Princeton University,2008.
    [121] Poston J D, Horne W D. Discontiguous OFDM Considerations for DynamicSpectrum Access in idle TV Channels [C].//in Proc. DySPAN,2005,607-610.
    [122] Markel J D. FFT Pruning [J]. IEEE Transactions on Audio Electroacoustics,1971,19:305-311.
    [123] Rajbanshi R, Wyglinski A M, Minden G J. An Efficient Implementation ofNC-OFDM Transceivers for Cognitive Radio [C].//in Proc. CrownCOM,2006,1-5.
    [124] Dutta A., Saha D., Grunwald D. and Sicker D. An Architecture for SoftwareDefined Cognitive Radio [C].//in Proceedings of ANCS,2010,1-12.
    [125] Vassev E. ASSL: Autonomic System Specification Language—A Frameworkfor Specification and Code Generation of Autonomic Systems [M].Saar-brücken: LAP Lambert Academic Publishing,2009.
    [126] L.Shu, J.Daniel, J.Costello. Error Control Coding.(Second Edition).何元智等译.差错控制编码(第二版)[M].北京:机械工业出版社,2007.
    [127] IEEE Std802.22T M-2011. IEEE Standard for Information Technology-Telecommunications and Information Exchange between Systems-WirelessRegional Area Networks (WRAN)-Specific Requirements-Part22: CognitiveWireless RAN Medium Access Control (MAC) and Physical Layer (PHY)Specifications: Policies and Procedures for Operation in the TV Bands [R],2011,307-439.
    [128]张波涛.片上高性能嵌入式计算—面向软基带的应用并行处理模型及体系结构[D].长沙:国防科学技术大学,2011.
    [129] IBM. Autonomic Computing: IBM’s Perspective on the State of InformationTechnology [EB/OL]. http://www-1.ibm.com/industries/government/doc/content/resource/thought/278606109.html,2004-09/2007-08.
    [130] Kephart J, Chess D. The vision of autonomic computing [J]. IEEE Computer,2003,36(1):41-50.
    [131] Baresi L, Ferdinando A D, Manzalini A, Zambonelli F. The CASCADASFramework for Autonomic Communications. Book chapter in A.V. Vasilakos etal.(eds.). Autonomic Communication [M]. Springer Science+Business Media,LLC,2009,147-168.
    [132] CASCADAS Research Project. CASCADAS Research Project’s ACE toolkit
    [EB/OL]. http://sourceforge.net/projects/acetoolkit/,2007-09/2010-08.
    [133] Gorodnyanskiy I. An Open Service Runtime Environment SupportingAutonomic Communication Principles [D]. Kooperation mit: echnischeUniversitat Dortmund,2008.
    [134] Shen C, Pesch D,Irvine J.A Framework for Self-Management of HybridWireless Networks Using Autonomic Computing Principles [C].//inProceedings of the3rd Annual Communication Networks and Services ResearchConference,2005,1-6.
    [135] Demestichas K, Adamopoulou E, et al. Towards Cognitive B3G Networks:Autonomic Management of Access Points [C].//in Proceedings of the16th ISTMobile and Wireless Communications Summit,2007,1-5.
    [136] Boufidis Z, Alonistioti N, Merakos L.Architecture and Signaling Protocol forMigration to Cognitive Reconfigurable Post-3G Mobile Systems [J]. MobileComputing and Communications Review,2008,12(4):15-31.
    [137] Manzalini A, Minerva R, Moiso C. Bio-inspired Autonomic Structures: amiddleware for Telecommunications Ecosystems. Book chapter in A.V.Vasilakos et al.(eds.). Autonomic Communication [M]. Springer Science+Business Media, LLC,2009,3-30.
    [138] Dirani M, Altman Z, Salaun M. Autonomics in Radio Access Networks. Bookchapter in Agoulmine N (eds.). Autonomic Network Management Principles
    [M]. Elsevier Inc.,2009,141-166.
    [139]廖备水,李石坚,姚远,高济.自主计算概念模型与实现方法[J].软件学报,2008,19(4):779-802.
    [140] Deussen P, Ferrari L, Manzalini A, Moiso C. Highly Distributed Supervision forAutonomic Networks and Services [C].//in Proceedings of the5th AdvancedInternational Conference on Telecommunications,2009,1-6.
    [141] CASCADAS Research Project. ACE Toolkit Documentation [EB/OL].http://www.cascadas-project.org/D1.6.pdf,2007-08/2008-09.
    [142] RuleML–Rule Markup Language. RuleML0.88stripped syntax [EB/OL].http://www.ruleml.org/0.88/,2003-08/2009-09.
    [143] OOjDREW–Object Oriented Java Deductive Reasoning Engine for the Web[EB/OL]. http://www.jdrew.org/oojdrew/,2005-06/2009-09.
    [144] DIET Agent Platform [EB/OL]. http://diet-agents.sourceforge.net,2004-06/2009-09.
    [145] Jondral F K. Cognitive Radio: A Communications Engineering View [J]. IEEEWireless Communications,2007,14(3):28-33.
    [146] Balamuralidhar P, Prasad R. A Context Driven Architecture for Cognitive RadioNodes [J]. Wireless Personal Communications,2008,45(3):423–434.
    [147] Vassev E, Paquet J. ASSL-Autonomic System Specification Language [C].//inProceedings of the31st Annual IEEE/NASA Software Engineering Workshop(SEW-31),2007,300-309.
    [148] Vassev E, Hinchey M. ASSL: A Software Engineering Approach to AutonomicComputing [J]. IEEE Computer,2009,42(6):90-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700