认知模式识别理论及无字库智能造字研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模式识别是人的一种基本的认知能力或智能。现有的模式识别理论和方法在对事物认识方面与人类的认知过程存在较大差异且学习能力不足。本文把认知科学、心理学和信息学结合起来,研究基于原型匹配的认知模式识别的理论和方法。并以此理论为基础,对无字库智能造字的理论和技术进行了研究。
     对认知模式识别理论进行了研究与探讨。将认知心理学知觉理论中的知觉恒常性、成分识别理论和原型匹配理论引入机器模式识别,对模式不变性理论,模式的组成理论和认知匹配理论等进行了研究与探讨,并提出了认知模式识别理论的系统框架。
     以认知模式识别的理论为基础,对无字库汉字智能造字理论进行了深入的研究与探讨。从汉字传统造字理论出发,建立了汉字的智能造字数学模型,提出了汉字智能造字的系统结构和框架。通过对汉字字符集GB18030-2005中的所有汉字组成成分的分析和抽象,总归归纳出汉字的原型即汉字基元1085个。对汉字原型之间的组合关系即汉字结构进行了研究。通过对汉字字符集GB18030-2005中的所有汉字的拆分和结构分析,提出了汉字的18种结构。从而丰富和完善了智能造字理论。
     为了将无字库智能造字理论付诸实施,本文对无字库智能造字存在的一些关键技术进行了深入的研究。
     编码是汉字智能造字首先需要解决的问题。本文以大量实验深入研究了汉字智能造字中汉字的编码方法。在基元+结构的汉字编码方法基础上,应用拓扑知觉理论中整体优先于局部的思想完善了编码方法。开发了汉字编码实验平台,完成了GB18030-2005汉字字符集中共七万多汉字的编码实验,实验表明该编码方法符合人对汉字先整体后局部的认知规律,与中小基础语文教育接轨,并且编码重码率为零。
     深入研究了基元到具体的汉字组成成分的映射方法,任一汉字的各个基元按照相应知识经拓扑几何变换后,就可造出该汉字。从汉字基元映射的特点出发,建立了汉字基元的几何变换模型。深入研究了基元映射知识的获取方法,提出了基于区域的和特征提取的仿射变换系数自动获取算法。对汉字字符集GB18030-2005中的所有汉字进行了映射知识获取和组字实验。
     研究汉字智能造字知识中汉字结构知识、汉字基元知识、汉字编码知识以及汉字基元的映射知识等知识的组织和表示。本文提出了用语义网络来表示汉字智能造字知识。分别以汉字字符集GB2312-80,GB18030-2000和GB18030-2005的汉字智能造字知识作为知识源,构建了语义网络,提出了汉字智能造字的语义网络知识表示的存储和推理方法,并提出了语义网络的性能评价方法并进行了分析。在此基础上,根据汉字智能造字的需求,设计开发了汉字智能造字实验平台。
Pattern recognition is a basic cognitive ability or intelligence of human. The existing pattern recognition theory and method of things with the human cognitive processes are quite different and have some deficiencies on learning ability. This paper combines cognitive science, psychology and informatics to study the cognitive pattern recognition based on the prototype matching theory. The theory and technology of Chinese character intelligent formation was studied and discussed in this paper based on cognitive pattern recognition.
     The theory of cognitive pattern recognition was studied and discussed deeply. The perception perceptual contancy theory of congnitive psychology, component identification theory and prototype matching theory were introduced into the machine pattern recognition, pattern invariable theory, pattern composition theory and cognitive matching theory were studied and discussed, and the structural framework of cognitive pattern recognition theory was proposed.
     Take the cognition pattern recognition theory as a foundation, Chinese character intelligent formation without library was studied and discussed deeply. Based on the traditional Chinese character creation theory, the mathematical model of Chinese character intelligence formation was set up; the framework of Chinese character intelligent formation was proposed. Sumed up 1085 prototypes of Chinese characters through the analysis and abstraction of all the components in Chinese character set GB18030-2005. The relationship between the combinations of Chinese character prototype is known as the structure of Chinese character. 18 kinds of Chinese character structure were proposed through the split and structure analysis of Chinese character set GB18030-2005. Thus enriched and improved the theory of Chinese character intelligent formation.
     In order to make the Chinese character intelligent formation theory into practice, this paper researched on the key technologies of Chinese character intelligent formation deeply.
     Encoding is the first key technologies of Chinese character intelligent formation. The coding method was researched through some experiments. On the basis of basic elements plus structures, enriched the encoding method based on global priority local of topological perception theory. Encoding experimental platform was developed and the encoding of Chinese character set GB18030-2005 which contains a total of more than seventy thousand Chinese characters was completed. Experiments show that the method consistentes with the recognition laws that local after global of characters, integration with the primary basis for language education, and re-encoding rate is zero.
     The mapping method from basic elements to the specific components of Chinese character was studied, a Chinese character can be formed by geometric transformtion of basic elements in according to corresponding knowledge. From the characteristics of basic elements mapping, the geometric transform model of basic elements was built. Put emphasis on how to acquire the mapping knowledge of basic elements, two methods that based on region and feature extraction algorithm for acquiring the affine transform coefficients were proposed. Has carried on the mapping knowledge acquisition and form characters experiments that choose Chinese character set GB18030-2005 as experiment object.
     The organization and representation of Chinese character intelligent formation was studied, the knowledge library of Chinese character intelligent formation are including the structure knowledge, basic elements knowledge, coding knowledge, and basic elements maping knowledge. This paper proposed represents the above knowledge with the semantic network. The semantic networks were built which take the knowledge of Chinese character set GB2312-80, GB18030-2000 and GB18030-2005 as a knowledge source respectively, the storage and reasoning methods of the semantic network were proposed, and the performance evaluation method of the semantic network was proposed and has carried on the analysis. On this basis, according to the needs of Chinese character intelligence formation, the experimental platform of Chinese character intelligent formation was designed and developed.
引文
[1]王甦,汪安圣.认知心理学(重排本) [M].北京:北京大学出版社, 2006
    [2] Richard O, Peter E Duda, David G. Stork Hart. Pattern classification (2nd edition)[M]. New York: Wiley, 2001
    [3] Anil K. Jain, Robert P.W. Duin, Jianchang Mao. Statistical Pattern Recognition: A Review[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2000. 22(1): 4-39
    [4] S. Dormido-Canto, G. Farias, R. Dormido. Structural pattern recognition methods based on string comparison for fusion databases[J]. Fusion Engineering and Design, 2008(83): 421-424
    [5] Sushmita Mitra, Sankar K. Pal. Fuzzy sets in pattern recognition and machine intelligence[J]. Fuzzy Sets and Systems, 2005(156): 381-386
    [6] K. Shanti Swarup. Artificial neural network using pattern recognition for security assessment and analysis[J]. 2008(71): 983-998
    [7]王周生.有一些汉字正在被我们遗忘[J].教师博览, 2005(10)
    [8]孟庆余.汉字编码字符集的新标准—GB18030-2000[J].微型机与应用, 2000. 19(12): 4-6
    [9]邓福禄.《汉语大字典》《中华字海》未识字考[J].湖北大学学报(哲学社会科学版) 2006. 33(3): 334-337
    [10]冯志伟.再谈汉字的熵值[J].语文与信息, 1996(2)
    [11]边肇祺,张学工.模式识别(第二版)[M].北京:清华大学出版社, 2002
    [12] C.M. Bishop. Pattern Recognition and Machine Learning[M]. Springer, 2006
    [13] R.O. Duda, P.E. Hart, D.G. Stork. Pattern Classification, second edition[M]. New York, 2001
    [14] Young-Ah Woo, Hyo-Jin Kim, JungHwan Cho. Identification of Herbal Medicines Using Pattern Recognition Techniques with Near-Infrared Reflectance Spectra[J]. Microchemical Journal, 1999. 63(1): 61-70
    [15] Feng-ying MA, Shu SONG. Improved Algorithm of Pattern Classification and Recognition Applied in a Coal Dust Sensor[J]. Journal of China University of Mining and Technology, 2007. 17(2): 168-171
    [16] Xuewen Wang, Xiaoqing Ding, Changsong Liu. Gabor filters-based feature extraction for character recognition[J]. Pattern Recognition, 2005. 38(3): 369-379
    [17] Chao Kan, Mandyam D. Srinath. Invariant character recognition with Zernike and orthogonal Fourier-Mellin moments[J]. Pattern Recognition, 2002. 35(1): 143-154
    [18] Ronan Flynn, Edward Jones. Combined speech enhancement and auditory modelling for robust distributed speech recognition[J]. Speech Communication, 2008. 50(10): 797-809
    [19] Qiang Huo, Chin-Hui Lee. Speech Communication[J]. Robust speech recognition based on adaptive classification and decision strategies, 2001. 34(1-2): 175-194
    [20] Adnan Amin. Recognition of hand-printed characters based on structural description and inductive logic programming[J]. Pattern Recognition Letters, 2003. 24(16): 3187-3196
    [21] Subhadip Basu, Nibaran Das, Ram Sarkar, et al. A hierarchical approach to recognition of handwritten Bangla characters[J]. Pattern Recognition, 2009. 42(7): 1467-1484
    [22] Yee Wan Wong, Kah Phooi Seng, Li-Minn Ang. Dual optimal multiband features for face recognition[J]. Expert Systems with Applications, 2010. 37(4): 2957-2962
    [23] Olugbenga Ayinde, Yee-Hong Yang. Face recognition approach based on rank correlation of Gabor-filtered images[J]. Pattern Recognition, 2002. 35(6): 1275-1289
    [24] A. J. Willis, L. Myers. A cost-effective fingerprint recognition system for use with low-quality prints and damaged fingertips[J]. Pattern Recognition, 2001. 34(2): 255-270
    [25] Hong Lin Zhai, Fang Di Hu, Xiao Yan Huang, et al. The application of digital image recognition to the analysis of two-dimensional fingerprints[J]. Analytica Chimica Acta, 2010. 657(2): 131-135
    [26] Jing Huang, Xinge You, Yuan Yuan, et al. Rotation invariant iris feature extraction based on non-separable wavelet[J]. Neurocomputing, 2009
    [27] Peihua Li, Xiaomin Liu, Lijuan Xiao, et al. Robust and accurate iris segmentation in very noisy iris images[J]. Image and Vision Computing, 2010. 28(2): 246-253
    [28] K.Fukunaga. Introduction to Statistical Pattern Recognition[M]. New York: Academic Press, 1972
    [29]崔冰,王卫星.基于统计模式识别的岩石节理图像分割方法[J].计算机工程与应用, 2006. 42(10): 213-217
    [30]王壮,胡卫东,郁文贤, et al.一种基于近邻搜索的快速k-近邻分类算法[J].系统工程与电子技术, 2002. 4(24): 100-102
    [31]任江涛,卓晓岚,许盛灿, et al.基于PSO面向K近邻分类的特征权重学习算法[J].计算机科学, 2007. 34(5): 187-189
    [32]俞一彪,赵鹤鸣,周旭东.语音信号互信息估计的非线性搜索算法及识别应用[J].信号处理, 2002. 18(2): 102-106
    [33]韩应哲,张延炘,常胜江, et al.基于最佳小波变换和神经网络的气体非线性荧光光谱的识别[J].光电子·激光, 2005. 16(6): 718-721
    [34]姜卫东,陈曾平,庄钊文.光学区雷达目标散射中心提取及识别方法研究[J].系统工程与电子技术, 2000. 22(7): 72-76
    [35]余华,王治平,赵力.语音信号中情感特征的分析和识别[J].电声技术, 2004(3): 30-38
    [36]沈精虎,王晓红.图像处理在特种动物毛纤维识别中的应用[J].纺织学报, 2004. 25(4):26-29
    [37] A.P. Dempster, N.M. Laird, D.B. Rubin. Maximum-likelihood from incomplete data via the EM algorithm[J]. J. Royal Statistics Society B, 1977. 39: 1-38
    [38] S.J. Roberts, D. Husmeier, W. Penny L. Rezek. Bayesian approaches to Gaussian mixture modeling[J]. IEEE Trans.PAMI, 1998. 20(11): 1133-1142
    [39] J. Zhang, Y. Liu. SVM decision boundary based discriminative subspace induction[J]. Pattern Recognition, 2005. 38(10): 1746-1758
    [40] D.M.J. Tax, R.P.W. Duin. Support vector data description[J]. Machine Learning, 2004. 54(1): 45-66
    [41] R.A. Fisher. The use of multiple measurements in taxonomic problems[J]. Annals of Eugenics, 1936(7): 179-188
    [42] S Wold. Principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987. 2(1-3): 37-52
    [43] Reshma Khemchandani, Jayadeva, Suresh Chandra. Learning the optimal kernel for Fisher discriminant analysis via second order cone programming[J]. European Journal of Operational Research, 2010. 203(3): 692-697
    [44] Bo Chen, Hongwei Liu, Zheng Bao. A kernel optimization method based on the localized kernel Fisher criterion[J]. Pattern Recognition, 2008. 41(3): 1098-1109
    [45] C. J. Twining, C. J. Taylor. The use of kernel principal component analysis to model data distributions[J]. Pattern Recognition, 2003. 36(1): 217-227
    [46] Ji-Hoon Cho, Jong-Min Lee, Sang Wook Choi, et al. Fault identification for process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2005. 60(1): 279-288
    [47] K.S. Fu. Syntactic Pattern Recognition and Applications[M]. Prentice-Hall, 1982
    [48]陈守煜.工程可变模糊集理论与模型--模糊水文水资源学数学基础[J].大连理工大学学报, 2005. 45(2): 308-312
    [49]郭书祥,吕震宙,冯立富.模糊运算和模糊有限元静力控制方程的求解[J].应用数学和力学, 2002. 23(9): 936-942
    [50]莫智文,胡红莉.关于模糊属性正则文法与可比较模糊属性自动机的一个注记[J].模式识别与人工智能, 2004. 17(4): 396-398
    [51]祝丹梅,张铁,陈冬玲, et al.一种实物期权的新型模糊定价方法[J].东北大学学报(自然科学版) 2008. 29(11): 1544-1547
    [52]韩桂武,刘斌,范鹤.模糊择近原则在隧洞围岩分类中的应用[J].东北大学学报(自然科学版), 2006. 27(7): 819-822
    [53]周玉新,周志芳,孙其国.岩体结构面产状的综合模糊聚类分析[J].岩石力学与工程学报,2005. 24(13): 2283-2289
    [54]于春海,樊治平,孙新波.一种基于多指标语言评价信息的聚类方法[J].东北大学学报(自然科学版), 2006. 27(6): 698-701
    [55]于春海,樊治平.一种基于群体语言相似矩阵的聚类方法[J].系统工程, 2004. 22(7): 76-79
    [56]安天瑜,周苏荃,于继来.基于电压薄弱区域监视的PMU非完全观测配置[J].电网技术, 2006. 30(16): 24-28
    [57]于春海,樊治平.基于二元语义信息处理的最大树聚类方法[J].系统工程与电子技术, 2006. 28(10): 1519-1522
    [58]周志华,陈世福.神经网络集成[J].计算机学报, 2002. 25(1): 1-8
    [59]王守觉.仿生模式识别(拓扑模式识别)—一种模式识别新模型的理论与应用[J].电子学报, 2002. 30(10): 1417-1420
    [60]杨国为,王守觉,刘扬阳.仿生模式识别的两个关键技术问题研究[J].电子学报, 2008. 36(12): 2490-2492
    [61]苏谦,邬文锦,王红武, et al.基于近红外光谱和仿生模式识别玉米品种快速鉴别方法[J].光谱学与光谱分析, 2009. 29(9): 2413-2416
    [62]闾海荣,韩慧,王文渊.基于仿生模式识别思想的时间序列匹配[J].电子学报, 2007. 35(7): 1323-1326
    [63]王守觉,徐健,王宪保, et al.基于仿生模式识别的多镜头人脸身份确认系统研究[J].电子学报, 2003. 31(1): 1-3
    [64]周浩华,蔡颖嘉.智能汉字库的研究[J].华南理工大学学报(自然科学版), 1992. 20(2): 1-7
    [65]周浩华.计算机汉字系统的设计与实现[M].广州:华南理工大学出版社, 1992
    [66] P. Lai, M. Pong. Approaches to handle user-defined Chinese characters[C]. in Proceedings of the International Conference on Computer Computing. 1994, 235-241
    [67] PAK-KEUNG LAI, DIT-YAN YEUNG, MAN-CHI PONG. A Heuristic Search Approach to Chinese Glyph Generation Using Hierarchical Character Composition[J]. COMPUTER PROCESSING OF ORIENTAL LANGUAGES, 1996. 10(3): 307-323
    [68] Candy L. K. Yiu, Wai Wong. Chinese character synthesis using METAPOST[C]. in Proceedings of the 2003 Annual Meeting. 2003, 85-94
    [69]冯万仁,金连文.基于部件复用的分级汉字字库的构想与实现[J].计算机应用, 2006. 26(3): 714-716
    [70] LianWen JIN, XiaoNa ZU. Synthesis of Chinese Character Using Affine Transformation[C]. in Ninth International Conference on Document Analysis and Recognition. 2007, 218-222
    [71]梁添才.基于认知机理的汉字智能造字研究[D].广州:华南理工大学, 2008
    [72]丘志文.基于认知机理的汉字智能造字之汉字基元研究[D].广州:华南理工大学, 2008
    [73] Biederman I. Recognition-by-components:A theory of human image understanding[J]. Psychological Review, 1987. 94(2): 115-147
    [74]《新华词典》商务印书馆北京1987年3月北京第十次印刷
    [75]孙克宽,郭驼英.拓扑学[M].武汉:华中师范大学出版社, 2002
    [76]熊金城.点集拓扑讲义(第三版)[M].北京:高等教育出版社, 2004
    [77]王宁.汉字构形理据与现代汉字部件拆分[J].语文建设, 1997(3): 4-9
    [78]林源.现代汉字独体与合体划分探究[J].伊犁教育学院学报, 2006. 19(4): 109-111
    [79]苏培成.现代汉字学纲要(增订本)[M].北京:北京大学出版社, 2001
    [80]陈燕.现代汉字部首法所用单字切分的研究[J].天津师范大学学报(社会科学版), 2006(4): 71-76
    [81]李运富.论汉字结构的演变[J].河北大学学报(哲学社会科学版), 2007. 32(2): 1-7
    [82]黄天树.论汉字结构之新框架[J].南昌大学学报(人文社会科学版), 2009. 40(1): 131-136
    [83]张云艳.现代汉字的结构类型[J].山西大同大学学报(社会科学版), 2008. 22(5): 69-71
    [84]柳泉.汉字结构的基本规律[J].青少年书法, 2004(3): 10-11
    [85]孙继善.关于现行汉字结构的几个问题[J].前沿, 1994(10): 9-13
    [86]傅永和.汉字的结构[J].语文建设, 1991(9): 10-11
    [87]傅永和.中文信息处理[M].广东:广东教育出版社, 1999
    [88]中国文字改革委员会、武汉大学.汉字结构及其构成成分的分析和统计[J].中国语文, 1985(4): 82-85
    [89]傅永和. GB13000.1字符集汉字字序(笔画序)规范[M].上海:上海教育出版社, 2000
    [90]陈霖.拓扑性质检测-计算理论的一朵可能的乌云[M].上海:上海人民出版社, 1986: 250-301
    [91] Chen Lin. The topological approach to perceptual organization[J]. Visual Cognition 2005. 12 (4): 553 - 701
    [92] Chen Lin. Topological structure in visual perception[J]. Science, 1982. 218: 699 - 700
    [93] Lin Chen, Shaowu Zhang, Mandyam V. Srinivasan. Global perception in small brains: Topological pattern recognition in honey bees[C]. in Proceedings of the National Academy of Science 2003, 6884-6889
    [94] http://baike.baidu.com/view/391899.htm
    [95]涂建国.汉字编码和汉字排检法[J].图书馆, 2002(1): 60-62
    [96]李公宜,李海飚,周宪.汉字编码的发展与前途[J].电子计算机与外部设备, 1997(3): 23-26
    [97]潘德孚,詹振权.汉字编码设计学[M].北京:中国城市出版社, 1997
    [98] J.P. Lewis. Fast Normalized Cross-Correlation. 1995, www.idiom.com/~zilla/Work/nvisionInterface/nip.pdf
    [99] Peter J. Angeline. Using selection to improve particle swarm optimization[C]. in Proceedings of the 1998 IEEE Congress on Evolutionary Computation. 1998, 84-89
    [100] Rui Mendes, James Kennedy, Jos′e Neves. The fully informed particle swarm: Simpler, maybe better[J]. IEEE Transactions on Evolutionary Computation, 2004. 8(3): 204-210
    [101] Arvind Mohais, Rui Mendes, Christopher Ward, et al. Neighborhood re-structuring in particle swarm optimization[C]. in Proceedings of the 18th Australian Joint Conference on Artificial Intelligence. 2005, 776-785
    [102] Kang-Ping Wang, Lan Huang, Chun-Guang Zhou, et al. Particle swarm optimization for traveling salesman problem[C]. in Proceedings of the 2003 IEEE International Conference on Machine Learning and Cybernetics. 2003, 1583-1585
    [103] J. Kennedy, R. Eberhart. Particle swarm optimization[C]. in Proceedings of IEEE International Conference on Neural Networks. 1995. Perth Australia 1942-1948
    [104] J. Kennedy, R. C. Eberhart. Swarm Intelligence[M]. Morgan Kaufmann, 2001
    [105] Yuhui Shi, Russell Eberhart. A Modified Particle Swarm Optimizer[C]. in Proceedings of the IEEE International Conference on Evolutionary Computation. 1998, 69-73
    [106] M. Clerc, J. Kennedy. The Particle Swarm-Explosion, Stability, and Convergence in a Multidimensional Complex Space[J]. IEEE Transactions on Evolutionary Computation, 2002. 6(1): 58-73
    [107] M.K.Hu. Visual Pattern Recognition by Moment Invariants[J]. IRE Trans.Inform.Theory, 1962. 8(2): 179-187
    [108] Debasish Bhattacharya, Satyabroto Sinta. Invariant of Stero Images via the Theory of Complex Moments[J]. Pattern Recognition, 1997. 30(9): 1373-1386
    [109] Alireza Khotanzad, Yaw Hua Hong. Invariant Image Recognition by Zernike Moments[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990. 12(5): 489-497
    [110]辜嘉,罗立民,舒华忠.利用Zernike矩对心脏超声图进行光流场计算的领域优化算法[J].电子学报, 2001. 29(3): 350-353
    [111] R.Mukundan, S.H.Ong, P.A.Lee. Image Analysis by Tchebichef Moments[J]. IEEE Transaction on Image Processing, 2001. 10(9): 1357-1364
    [112] Pew-Thian Yap, Raveendran Paramesran, Sen-Huat Ong. Image Analysis by Krawtchouk Moments[J]. IEEE Transaction on Image Processing, 2001. 12(11): 1367-1377
    [113] Yacov Hel-Or, Patrick C.Teo. A Common Framework for Steerability,Motion Estimation,and Invariant Feature Detection[C]. in Proceeding of the IEEE International Symposium on Circuits and System. 1998, 337-340
    [114] Cordelia Schmid, Roger Mohr. Local Grayvalue Invariants for Image Retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005. 19(5): 530-535
    [115] Krystian Mikolajczyk, Cordelia Schmid. Scale&Affine Invariant Interest Point Detectors[J].International Journal of Computer Vision, 2004. 60(1): 63-86
    [116] Krystian Mikolajczyk, Cordelia Schmid. Indexing Based on Scale Invariant Interest Points[C]. in Proceeding of the 8th International Conference on Computer Vision. 2001, 525-531
    [117] Tuytelaars T, L Van Gool. Content-based image retrieval based on local affinely invariant regions[C]. in Conference on Visual Information Systems. 1999, 493-500
    [118] Sivic J., Schaffalitzky F, Zisserman A. Object Level Grouping for Video Shots[C]. in Proceedings of the 8th European Conference on Computer Vision. 2004, 724-734
    [119] Tell D, Carlsson S. Wide Baseline Point Matching Using Affine Invariants Computed from Intensity Profiles[C]. in Proceedings of the 6th European Conference on Computer Vision. 2000, 814-828
    [120] Matas J., Burianek J., Kittler J. Object Recognition Using the Invariant Pixel-Set Signature[C]. in Proceedings of the British Machine Vision Conference. 2000, 606-615
    [121] David G.Lowe. Object Recognition from Local Scale-Invariant Features[C]. in Proceeding of the International Conference on Computer Vision. 1999, 20-27
    [122] David G.Lowe. Distinctive Image Features from Scale-Invariant Keypoints[J]. International Journal of Computer Vision, 2004. 60(2): 99-110
    [123] John F. Sowa. Semantic Networks. http://www.jfsowa.com/pubs/semnet.htm
    [124] Allan M. Collins, Elizabeth F. Loftus. A spreading-activation theory of semantic processing[J]. Psychological Review, 1975. 82(6): 407-428
    [125] Allan M. Collins, M.R. Quillian. Retrieval time from semantic memory[J]. Journal of verbal learning and verbal behavior, 1969. 8(2): 240-248
    [126] Allan M. Collins, M. Ross Quillian. Does category size affect categorization time[J]. Journal of verbal learning and verbal behavior, 1970. 9(4): 432-438
    [127] RF Simmons. Semantic networks: their computation and use for understanding English sentences[J]. Computer models of thought and language, 1973: 68-113
    [128] Gary G.Hendrix. Expanding the utility of semantic networks through partitioning[C]. in Proceedings of the 4th international joint conference on Artificial intelligence 1975, 115-121
    [129] Michel Chein, David Genest. CGs Applications :Where Are We 7 Years after the First ICCS?[C]. in 8th Internatioanal Conference on Conceptual Structures. 2000, 127-140
    [130] Ant′onio Menezes Leit?ao, Jo?ao Pav?ao Martins. SNePS and Semi-Structured Databases[J]. Brazilian Symposium on Databases, 1999: 41-53
    [131] J.R.G. Pulido, M.A.G. Ruiz, R. Herrera, et al. Ontology languages for the semantic web: A never completely updated review[J]. Knowledge-Based Systems, 2006. 19(7): 489-497
    [132] Efstratios Kontopoulos, Nick Bassiliades, Grigoris Antoniou. Deploying defeasible logic rule bases for the semantic web[J]. Data & Knowledge Engineering, 2008. 66(1): 116-146
    [133] Michel Buffa, Fabien Gandon, Guillaume Ereteo, et al. SweetWiki: A semantic wiki[J]. Web Semantics: Science, Services and Agents on the World Wide Web, 2008. 6(1): 84-97
    [134] Norio Nakata, Yasushi Fukuda, Kunihiko Fukuda, et al. DICOM Wiki: Web-based collaboration and knowledge database system for radiologists[J]. International Congress Series, 2005. 1281: 980-985
    [135] Max V?lkel, Markus Kr?tzsch, Denny Vrandecic, et al. Semantic Wikipedia[C]. in Proceedings of the 15th international conference on World Wide Web 2006, 585-594
    [136] Stefan Leyk, Ruedi Boesch, Robert Weibel. Saliency and semantic processing: Extracting forest cover from historical topographic maps[J]. Pattern Recognition, 2006. 39(5): 953-968
    [137] Remco C. de Boer, Hans van Vliet. Architectural knowledge discovery with latent semantic analysis: Constructing a reading guide for software product audits[J]. Journal of Systems and Software, 2008. 81(9): 1456-1469
    [138] Chris Mellish, Xiantang Sun. The semantic web as a Linguistic resource: Opportunities for natural language generation[J]. Knowledge-Based Systems, 2006. 19(5): 298-303
    [139] Dmitri Roussinov, Ozgur Turetken. Exploring models for semantic category verification[J]. Information Systems, 2009. 34(8): 753-765
    [140] G. Almpanidis, C. Kotropoulos, I. Pitas. Combining text and link analysis for focused crawling-An application for vertical search engines[J]. Information Systems, 2007. 32(6): 886-908
    [141] Mark Seyvers, Joshua B. Tenenbaum. The Large-scale Structure of Semantic Networks: Statistical Analyses and a Model of Semantic Growth[J]. Cognitive Science, 2005. 29: 41-78

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700