基于初级视皮层感知机制的轮廓与边界检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轮廓与边界定义了目标的外表形状,确定了区域之间的分界线,它们是人类与计算机进行目标识别的重要特征。然而从纷乱的自然场景中提取目标的轮廓与边界是一件非常困难的任务。为了做到这点,三个主要的问题需要解决:1.排除大量由背景纹理所产生的局部边缘成分;2.根据场景中上下文的信息将局部成分组织成有意义的全局特征;3.有些重要的结构缺乏明确的物理定义(例如纹理的边界),并且有的部分目标可能与背景具有相同的强度,使得边界的响应非常弱甚至缺乏局部的有效证据。针对这些困难,本文根据初级视皮层感知机制建立了各种轮廓与边界的检测模型,并通过合成图像与自然图像检验了算法的性能。
     为了减少背景中的纹理边缘成分并突出区域的边界,本文利用非经典感受野循环抑制的动态属性提出了一种纹理抑制方法。这个方法对纹理与边界采取不同的处理方式,从而很大程度地减少了背景中无意义的干扰成分,并有选择性地保存了孤立的轮廓和区域的边界。
     如何从复杂的场景中将具一致空间结构的成分组织成显著的轮廓是研究的另一个主要方面。本文结合共圆规则与视觉对低曲率路径的偏好定义了一个轮廓结合局部聚集函数,这个函数将同排列与同方位两种属性巧妙的联系起来。通过上下文的相互作用将局部成分整合成一个有意义的全局特征并从背景中突出。
     通过空间分离的兴奋与抑制作用区域,本文将环境抑制与空间增强统一在一个结合模型中,从而允许两种对立的感知行为同时存在。基于这个模型,本文强调了空间增强与环境抑制在轮廓与边界检测中起的不同作用,抑制主要表现在表面与纹理的分割,而增强主要是用于轮廓的结合和图形背景的分离。
     彩色图像比灰度图像携带更多的信息,能有助于图像的分析并产生更好的结果。因此将灰度模型进一步扩展到彩色图像的处理。彩色模型将涉及更多属性的同质性抑制,能更有效的去除纹理边缘;另一方面,颜色为轮廓聚集提供了更多的信息,更有利于相同属性的整合。
     最后通过两个应用项目——血管造影图像的增强与合成孔径雷达图像的道路检测,表明了该模型的广泛用途。
Contours and boundaries that define object shape and indicate outer limits for regions. They are critical for human or computer recognition of objects. However, it is extremely difficult to extract contours from cluttered scenes automatically. To do that, three major problems need to be solved: (1) eliminating non-meaningful edges engendering from texture fields rather than object boundaries; (2) grouping local elements into meaningful global features according to context information; (3) many important structures are only implicitly determined, such as by texture boundaries, or are entirely physically absent, such as where a background is by chance the same color as a foreground object. To address these problems, we construct different models according to perceptual mechanisms of primary visual cortex and verify the performances of the models by synthetic and natural images.
     To order to reduce cluttered and textured elements, we present a method for suppressing texture edges via dynamic properties of recurrent inhibition in non-classical receptive field. The method deals with texture and boundary in different ways, and thus dramatically reduces non-meaningful distractor elements, while selectively retains region boundaries and isolated structures.
     How to organize coherent spatial configurations into salient contours is another important issue of our study. We combine a co-circularity rule with visual preference for low curvature to define a local grouping function of contour integration, which relates the axial specificity with the modular specificity. Local elements are grouped into a meaning global feature according to contextual information, thus allowing them emerge from their backgrounds.
     We unify the dual processes of spatial facilitation and surround inhibition in an integrated model by spatially segregated regions of excitatory and inhibitory inputs, thus allowing the model to implement multiple perceptual tasks that require opposing interactions. Here, we put some emphases on the two different roles– spatial facilitation and surround inhibition - played in the contour extraction. Inhibitory interactions are supposed to play a more important role in the segmentation of surfaces and textures, while excitatory contextual interactions are deemed to be more significant in contour integration and figure-ground segregation.
     Color of an image can carry much more information than gray level, which can help the image analysis process and yield better results than approaches using only gray scale information. Thus we extend the gray-level version to color image processing. The color version involves homogenous inhibition of more properties, which can more effectively remove textured edges; on the other hand, color information provides more cues for contour grouping, which can help to organize the same property.
     Finally, we apply the scheme to two aspects of vessel enhancement in DSA images and road detection in SAR images.
引文
[1] Taylor C., Kriegman D. Structure and Motion from Line Segments in Multiple Images. IEEE Trans. Pattern Anal. Machine Intell. 1995, 17(11):1021- 1032.
    [2] Branson K., Belongie S. Tracking Multiple Mouse Contours (without Too Many Samples). In: Proc. Computer Vision and Pattern Recognition. 2005, 1039– 1046.
    [3] Sullivan J., Carlsson S. Recognizing and Tracking Human Action. In: Proc. European Conf. Computer. 2002, 629- 644.
    [4] Ullman S., Basri R. Recognition by Linear Combinations of Models. IEEE Trans. Pattern Anal. Machine Intell. 1991, 13(10): 992- 1006.
    [5] Marr D. Vision: A computational investigation into the human representation and processing of visual information. San Fransisco, CA: W.H. Freeman, 1982.
    [6] Guo C.E., Zhu S.C., Wu Y.N. A mathematical theory of primal sketch and sketchability. In: Proc. Int’l Conf. Computer Vision, 2003, 1228- 1235.
    [7]蔡自兴,徐光佑.人工智能及其应用.北京:清华大学出版社(第三版), 2004.
    [8]荆其诚.人类的视觉.北京:科学出版社, 1987.
    [9]马颂德,张正友.计算机视觉——计算理论与算法基础.北京:科学出版社, 1998.
    [10]余庆军,谢胜利.基于人类视觉系统的各向异性扩散图像平滑方法.电子学报. 2004, 32(1): 17-20.
    [11]常洪花,张建奇,李勇.背景杂波对经典人眼目标获取性能模型的修正.红外与毫米波学报. 2005 , 24(6): 450-454.
    [12]吴凤和.基于计算机视觉测量技术的图像轮廓提取方法研究.计量学报. 2007, 28(1): 18-22.
    [13] Gonzalez R.C., Woods R.E.数字图像处理(第二版).阮秋琦,阮宇智等译.北京:电子工业出版社, 2003.
    [14]贾云德.机器视觉.北京:科学出版社, 2000.
    [15]寿天德.视觉信息处理的脑机制.上海:上海科技出版社, 1997.
    [16] Kanizsa G. Organization in vision. New York, Praeger, 1979.
    [17] Lowe D.G. Perceptual organization and visual recognition. Kluwer Academic Publishers, 1985.
    [18] Yu S.X., Shi J. Understanding popout: pre-attentive segmentation through nondirectional repulsion. Technical report CMU-RI-TR-01-20, Robotics Institute, Carnegie Mellon University, 2001.
    [19] Grossberg S., Mingolla E., Neural dynamics of perceptual grouping: textures, boundaries, and emergent segmentations. Percept. Psychophys. 1985, 38: 141-171.
    [20] Grossberg S., Mingolla E., Ross W. Visual brain and visual perception: how does the cortex do perceptual grouping? Trends Neurosci. 1997, 20: 106-111.
    [21] Sha’ashua A., Ullman S. Structural saliency: the detection of globally salient structures using a locally connected network. In: Proc. Int’l Conf. Computer Vision. 1988, 321-327.
    [22] Guy G., Medioni G. Perceptual grouping using global saliency-enhancing operators. In: Proc. Int’l Conf. Pattern Recognition. 1992, 99-104.
    [23] Williams L.R., Jacobs D.W. Local parallel computation of stochastic completion fields. In: Proc. Computer Vision and Pattern Recognition. 1996, 161-168.
    [24] Li Z. A neural model of contour integration in the primary visual cortex. Neural comput. 1998, 10: 903-940.
    [25] Li Z. Visual segmentation by contextual influences via intracortical interactions in primary visual cortex. Comput. Neural Syst. 1999, 10:187-212.
    [26] Malik J., Perona P. Preattentive texture discrimination with early vision mechanisms. J. Opt. Soc. Am. 1990, 7: 923–932.
    [27] Grigorescu C., Petkov N., Westenberg M.A. Contour detection based on nonclassical receptive field inhibition, IEEE Trans. Image Processing. 2003, 12 (7):729-739.
    [28] Grigorescu C., Petkov N., Westenberg M.A. Contour and boundary detection improved by surround suppression of texture edges. Image and Vision Computing. 2004, 22 (8): 609-622.
    [29] Deng H., Clausi D.A. Unsupervised image segmentation using a simple MRF model with a new implementation scheme. Pattern Recognition. 2004, 37: 2323-2335.
    [30] Geman S., Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesianrestoration of images. IEEE Trans. Pattern Anal. Machine Intell. 1984, 6: 721–741.
    [31] Zucker S.W., Dobbins A., Iverson L. Two stages of curve detection suggest two styles of visual computation. Neural Computation. 1989, 1: 68-81.
    [32] Farag A.A., Delp E.J. Edge linking by sequential search. Pattern Recognition. 1995, 28 (5): 611- 633.
    [33] Zhu Q., Payne M., Riordan V. Edge linking by a directional potential function. Image and Vision Computing. 1996, 14(1): 59-70.
    [34] Tu Z., Chen X., Yuille A.L., Zhu S.C. Image parsing: unifying segmentation, detection, and object recognition. International Journal of Computer Vision. 2005, 63(2.): 113-140.
    [35] Ren X., Fowlkes C., Malik J. Scale-Invariant Contour Completion using Conditional Random Fields. In: Proc. Int’l Conf. Computer Vision. 2005, 1214 - 1221.
    [36] Wang S., Kubota T., Siskind J.M., Wang J. Salient closed boundary extraction with ratio contour. IEEE Trans. Pattern Anal. Machine Intell. 2005, 27(4): 679-698.
    [37] Shapiro L.G., Stockman G.C.计算机视觉.赵清杰,钱芳,蔡利栋译.北京:机械工业出版社, 2005.
    [38]章毓晋.图像分析(第二版).北京:清华大学出版社, 2005.
    [39] Geisler W.S., Perry J.S., Super B.J., Gallogly D.P. Edge co-occurrence in natural images predicts contours grouping performance. Vision Res. 2001, 41: 711-724.
    [40]顾凡及,汪云久.侧抑制网络中的信息处理.北京:科学出版社, 1983.
    [41]王怀野,李言俊.侧抑制网络在彩色图像边缘增强中的应用.计算机工程与应用. 2003, 39(26): 55-57.
    [42]张永平,郑南宁,雷雅莉.具有侧抑制机制的视觉系统模型及在图像边缘提取中的应用.电子学报. 1998, 28(1): 99-101.
    [43]王润生.图像理解.长沙:国防科技大学出版社, 1998.
    [44] Rossi A.F., Desimone R., Ungerleider L.G. Contextual modulation in primary visual cortex of macaques. J .Neuroscience. 2001, 21(5): 1698–1709.
    [45] Lamme V.A.F. The Neurophysiology of Figure-Ground Segregation in Primary Visual Cortex. J. Neuroscience. 1995, 10(2): 649-669.
    [46] Knierim J.J., van Essen C. Neuronal responses to static texture patterns in area V1 ofthe alert macaque monkeys. J. Neurophysiol. 1992, 67(4): 961-980.
    [47] Blakemore C., Tobin E.A. Lateral inhibition between orientation detectors in the cat’s visual cortex. Exp. Brain Res. 1972, 15: 439-440.
    [48] Kapadia M.K., Westheimer G., Gilbert C.D. Spatial distribution of contextual interactions in primary visual cortex and in visual perception. J. Neurophysiol. 2000, 84(4): 2048-2062.
    [49] Livingstone M.S., Hubel D.H. Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J. Neuroscience. 1987, 7:3416-3468.
    [50] Wilson H. R., Levi D., Maffei L., Rovamo J., De Valois R.L. The perception of form: retina to striate cortex. In: Spillmann L., Werner J.S., eds. Visual Perception: The neurophysiological foundation. New York: Academic Press.1990.
    [51] Hubel D.H., Wiesel T.N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology. 1962, 160: 106-154.
    [52] Hubel D.H., Wiesel T.N.. Functional architecture of macaque monkey visual cortex. In: Proc. R. Soc. Lond. 1977, 198: 1-59.
    [53] Gazzaniga M.S.主编.认知神经科学.沈政等译.上海:上海教育出版社, 1998.
    [54]梅剑锋,张立明.一种新的视觉皮层简单细胞工作机制的模型.生物物理学报. 2003, 19(1): 58-62.
    [55] Daugman J.G. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J. Opt. Soc Am. A. 1985, 2 (7):1160-1169.
    [56]汪云九,齐翔林,邢静,于德山.广义Gabor函数模型和感受野某些特性曲线的模拟.中国科学(B辑).1989, 19(04): 386-394.
    [57] Chan W., Coghill G. Text analysis using local energy. Pattern Recognition. 2001, 34: 2523-2532.
    [58] K?nrad P. K., Kayser C. Einh?user W., and K?nig P., How are complex cell properties adapted to the statistics of natural stimuli? J. Neurophysiol, 2004, 91: 206-212.
    [59]曹洋,顾凡及.视网膜神经节细胞非经典感受野及其方位倾向性的模型研究.复旦学报(自然科学版). 2005, 44(4): 524-527.
    [60]李朝义,邱芳土.视网膜神经节细胞空间传输特性的模拟.生物物理学报. 1995, 11(3): 395-400.
    [61] Allman J., Miezin F., McGuinness E. Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. Ann. Rev. Neurosci. 1985, 8: 407-430.
    [62] Sillito A.M., Grieve K.L., Jones H.E., et al. Visual cortical mechanisms detecting focal orientation discontinuities. Nature. 1995, 378: 492-496.
    [63] M.K. Kapadia, Ito M., Gilbert C.D., Westheimer G. Improvement in visual sensitivity by changes in local context: parallel studies in human ob servers and in V1 of alert monkeys. Neuron. 1995, 15(4): 843-856.
    [64] Kapadia M.K., Westheimer G., Gilbert C.D. Spatial distribution of contextual interactions in primary visual cortex and in visual perception. J. Neurophysiol. 2000, 84: 2048–2062.
    [65]邱志诚,黎臧,顾凡及,寿天德.视网膜神经节细胞感受野的一种新模型Ⅱ神经节细胞方位选择性中心周边相互作用机制.生物物理学报. 2000, 16(2): 296-302.
    [66] Dragoi V., Sur M. Dynamic properties of recurrent inhibition in primary visual cortex: contrast and orientation dependence of contextual effects. J. Neurophysiol. 2000, 83: 1019–1030.
    [67] Morrone M.C., Burr D.C. Feature detection in human vision: a phase-dependent energy model. In: Proc. R. Soc. Lond. [Biol]. 1988, 221-245.
    [68] Heitger F., Rosenthaler L., Heydt von der, et al. Simulation of neuronal contour mechanisms: from simple to enstopped cell. Vision Research. 1992, 32: 963-981.
    [69] Weliky M., Kandler K., Fitzpatrick D., et al. Patterns of excitation and inhibition evoked by horizontal connections in visual cortex share a common relationship to orientation columns. Neuron. 1995, 15: 541-552.
    [70] Hata Y., Tsumoto T., Sato H., et al. Inhibition contributes to orientation selectivity in the visual cortex of the cat. Nature. 1988, 335: 815-817.
    [71] Yen S.-C., Finkel L.H., Extraction of Perceptually Salient Contours by Striate Cortical Networks. Vision Res. 1998, 38 (5): 719-741.
    [72] Yen S.-C., Finkel L.H. Salient contour extraction by temporal binding in acortically-based network. In: Jordan, Mozer, Petsche, eds. Advances in Neural Information Processing Systems 10. MIT Press, Cambridge, MA. 1998, 235-241.
    [73] Ursino M., La Cara G.E. A model of contextual interaction and contour detection in primary visual cortex. Neural Networks. 2004, 17: 719-735.
    [74] La Cara G.E., Bettini M., Ursino M. Extraction of salient contours in primary visual cortex: a neural network model bassed on physiological knowledge. In: Proc. Annual Int’l Conf. IEEE EMBS. 2003, 17-21.
    [75] Canny J.F. A computational approach to edge detection. IEEE Trans. Pattern Anal. Machine Intell. 1986, 8 (6): 679-698.
    [76] Martin D.R., Fowlkes C.C., Malik J. Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal. Machine Intell. 2004, 26 (5): 530 -549.
    [77] Kitchen L., Rosenfeld A. Edge evaluation using local edge coherence. IEEE Trans. Syst., Man, Cybern. 1981, 11(9): 597–605.
    [78] Bowyer K., Kranenburg C., Dougherty A. Edge detector evaluation using empirical ROC curves. Comput. Vis. Image Understand. 2001, 84(1): 77-103.
    [79] Shin M. C., Bowyer K. W., Goldgof D. B. Comparison of edge detectors through use in an object recognition task. Comput. Vis. Image Understand. 2001, 84(1):160-178.
    [80] Heitger F. Feature detection using suppression and enhancement. Communication Technology Laboratory, Swiss Federal Inst. Technol., Lausanne, Tech. Rep. TR-163, 1995.
    [81] Petkov N., Lourens T. Interacting cortical filters for object recognition. In: Proc. Asian Conf. Computer Vision. 1993, 583-586.
    [82] Herzog M.H., Fahle M. Effects of grouping in contextual modulation. Nature. 2002, 415(24): 433-436.
    [83] Kellman P. J., Shipley T.F. A theory of visual interpolation in object perception. Cognitive Psychology. 1991, 23: 141–221.
    [84] Parent P., Zucker S.W. Trace inference, curvature consistency and curve detection. IEEE Trans. Pattern Anal. Machine Intell. 1989, 11 (8): 823- 839.
    [85] Shouval H.Z., Goldberg D.H., Jones J.P., et al. Structures long-range connections canprovide a scaffold for orientation maps. J. Neuroscience. 2000, 20: 1119-1128.
    [86] Polat U., Mizobe K., Pettet M.W. et al. Collinear stimuli regulate visual responses depending on cell’s contrast threshold. Nature. 1998, 391: 580-584.
    [87] Movshon J.A., Thompson I.D., Tolhurst D.J. Spatial summation in the recepive fields of simple cells in the cat’s striate cortex. J. Physiol. 1978, 283: 53-77.
    [88] Dakin S.C., Hess R.F. Spatial-frequency tuning of visual contour integration. J. Opt. Soc. Am. A. 1998, 15(6): 1486-1499.
    [89] Hess R.F., Field D.J. Integration of contours: new insights. Trends in Cognitive Science. 1999, 3(12): 480-486.
    [90] Simoncelli E. P., Schwartz O. Modeling surround suppression in V1 neurons with a statistically-derived normalization model. In: Kearns M.S., Solla S.A., Cohn D.A., eds. Advances in Neural Information Processing Systems 11. Cambridge, MA: MIT Press. 1999, 153–159.
    [91] Bosking W.H., Zhang Y., Schofield B., et al. Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neuroscience. 1997, 17: 2112-2127.
    [92] Xing J., Heeger D.J. Measurement and modeling of center-surround suppression and enhancement. Vision Res. 2001, 41: 571-583.
    [93] Field D.J., Hayes A., Hess R.F. Contour integration by the human visual system: evidence for a local‘association field’. Vision Res. 1993, 33 (2): 173-193.
    [94] Choe Y., Miikkulainen R. Contour integration and segmentation with self-organized lateral connections. Biological Cybernetics. 2004, 90: 75-88.
    [95] VanRullen R., Delorme A., Thorpe S.J. Feed-forward contour integration in primary visual cortex based on asynchronous spike propagation. Neurocomputing. 2001, 38-40: 1003-1009.
    [96] Hugeus E., Guilleux F., Rochel O. Contour detection by synchronization of integrate-and-fire neurons. In: Conf. BMCV, Lecture Notes in Computer Science, Berlin: Springer-Verlag. 2002, 60-69.
    [97] Tang Q., Sang N., Zhang T. Extraction of Salient Contours from Cluttered Scenes. Pattern Recognition. in press, 2007.
    [98] Tang Q., Sang N., Zhang T. Contour detection based on contextual influences. Image and Vision Computing. 2007, 25(8):1282-1290.
    [99] Tang Q., Sang N., Zhang T. Extraction of salient contours via excitatory-inhibitory interactions in the visual cortex. In: Proc. Asian Conf. Computer Vision. 2006, 683-691.
    [100] Bonneh Y., Sagi D. Configuration saliency revealed in short duration binocular rivalry. Vision Res. 1999, 39: 271-281.
    [101] Douglas R.J., Koch C., Majowald M., et al. Recurrent excitation in neocortical circuits. Science. 1995, 269: 981-985.
    [102] Weickert J. Coherence-enhancing diffusion filtering, International Journal of Computer Vision, 1999, 31: 111-127.
    [103] Cheng H.D., Sun Y. A hierarchical approach to color image segmentation using homogeneity. IEEE Trans. Image Processing. 2000, 9 (12): 2071- 2082.
    [104]孙昊,郭爱克.视觉颜色感受野的自组织生成.中国科学(B辑). 1995, 25(11): 1178-1185.
    [105] McIlhagga W.H., Mullen K.T. The contribution of colour to contour detection. In Dickenson C.M., Murray I., Carden D., eds. Colour vision research: Proceedings of the John Dalton Conference. 1997, 187–196.
    [106] Mullen K.T., Beaudot W.H.A., McIlhagga W. Contour integration in color vision: a common process for the blue–yellow, red–green and luminance mechanisms? Vision Res. 2000, 40: 639-655.
    [107] Barrow H.G., Tennenbaum J.M. Recovering intrinsic scene characteristics from images. In: Hanson A., Riseman E., eds. Computer vision systems. New York: Academic Press, 1978.
    [108] Kanade T. Image understanding research at CMU. In: Proc. Image Understanding Workshop. 1987, 32-40.
    [109] Koschan A., Abidi M. Detection and classification of edges in color images. IEEE Signal Processing Magazine. 2005, 22(1): 64-73.
    [110] Gilbert C.D., Wiesel T.N. The influence of contextual stimuli on the orientation selectivity of cells in the primary visual cortex of the cat. Vision Res. 1990, 30: 1689-1701.
    [111] Ross W.D., Grossberg S., Mingolla E. Visual cortical mechanisms of perceptual grouping interacting layers networks columns and maps. Neural Networks. 2000, 13: 571- 588
    [112] Victor A.F.L., The neurophysiology of figure-ground segregation in primary visual cortex. J. Neuroscience. 1995, 12(2):1605-1615.
    [113] Rivest J., Cavanagh P. Localizing contours defined by more than one attribute. Vision Res. 1996, 36(1): 53-66.
    [114] Bonneh Y., Sagi D. Effects of spatial configuration on contrast detection. Vision Res. 1998, 38(22): 3541-3553.
    [115] Perona P., Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Machine Intell. 1990, 12 (7): 629- 639.
    [116] Rudin L., Osher S., Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D. 1992, 60: 259-268.
    [117] Carmona R.A., Zhong S. Adaptive smoothing respecting feature directions. IEEE Trans. Image Processing. 1998, 7 (3): 353- 358.
    [118]陈功,易红,倪中华.基于LOG算法的DSA图像边缘检测.仪器仪表学报. 2006, 27(12): 1641-1646.
    [119]曹津升,王勇,李炜,肖寒,倪重匡.一种新的数字血管减影的算法.计算机工程与应用. 2003, (30): 94-95.
    [120]周正东,鲍旭东,罗立民.脑部数字减影图象增强研究.中国图象图形学报. 2002, 7(7): 649-653.
    [121] Althof R., Wind M.G.J., Dobbins J.T. A rapid and automatic image registration algorithmwith subpixel accuracy. IEEE Trans. Medical Imaging. 1997, 16(1): 308-316.
    [122] Li B., Sang N., Cao Z. Contrast-modulated Nonlinear Diffusion for X-ray Angiogram Images. Proc. Int’l Conf. EMBA. 2005, 736-1738.
    [123] Sun K., Sang N., Zhao E. Extraction of Vascular Tree on Angiogram with Fuzzy Morphological Method. International Journal of Information Technology. 2005, 11(9): 119-127.
    [124]贾承丽,匡纲要. SAR图像自动道路提取.中国图象图形学报. 2005, 10(10): 1218- 1233.
    [125]肖志强,鲍光淑. SAR图象中道路网络提取算法研究.计算机工程与应用. 2004, 40(14): 94-96.
    [126] Tupin F., Mangin J.F., Nicolas J.M., et al. Detection of linear features in SAR images: application to road network extraction. IEEE Trans. Geoscience and Remote Sensing. 1998, 36(2): 434-453.
    [127] Jeon B., Jang J., Hong K. Road detection in space borne SAR images using a genetic algorithm. IEEE Trans. Geoscience and Remote Sensing. 2002, 40(1): 22-29.
    [128] Jeon B., Jang J., Hong K. Road detection in space borne SAR images using a genetic algorithm. In: Proc. Int’l Conf. Image Processing. 1999, 735-739.
    [129]郦苏丹,张翠,王正志. SAR图像中道路检测方法研究.宇航学报. 2002, 23(1): 17-23.
    [130] Estrada F.J., Jepson A.D. Robust boundary detection with adaptive grouping. In: Proc. Computer Vision and Pattern Recognition Workshop. 2006.
    [131] Stein A.N., Hebert M. Using spatio-temporal patches for simultaneous estimation of edge strength, orientation and motion. In: Proc. Computer Vision and Pattern Recognition Workshop. 2006.
    [132] Wang H., Oliensis J. Salient contour detection using a global contour discontinuity measurement. In: Proc. Computer Vision and Pattern Recognition Workshop. 2006.
    [133] Stahl J.S., Wang S. Globally optimal grouping for symmetric boundaries. In: Proc. Computer Vision and Pattern Recognition. 2006, 1030-1037.
    [134] Ge F., Wang S., Liu T. Image-segmentation evaluation from the perspective of salient object extraction. In: Proc. Computer Vision and Pattern Recognition. 2006. 1146-1153.
    [135] Dollár P., Tu Z., Belongie S. Supervised learning of edges and object boundaries. In: Proc. Computer Vision and Pattern Recognition. 2006. 1544-1551.
    [136]张学工.关于统计学习理论与支持向量机.自动化学报. 2000, 26(1): 32-42.
    [137] Konishi S., Yuille A.L., Coughlan J.M., Zhu S.C. Statistical edge detection learning and evaluating edge cues. IEEE Trans. Pattern Anal. Machine Intell. 2003, 25 (1): 57-74.
    [138] Tu. Z. Probabilistic boosting-tree: learning discriminative models for classification, recognition, and clustering. Proc. Int’l Conf. Computer Vision, pp. 1589-1596, 2005.
    [139]边肇祺,张学工等.模式识别(第二版).北京:清华大学出版社, 2000.
    [140] Duda R.O., Hart P.E., Stork D.G..模式分类.李宏东,姚天翔等译.北京:机械工业出版社(第二版), 2005.
    [141] Elder J.H., Goldberg R.M. Ecological statistics of Gestalt laws for the perceptual organization of contours. Journal of Vision. 2002, 2: 324-353.
    [142] Elder J.H., Krupnik A., Johnston L.A. Contour grouping with prior models. IEEE Trans. Pattern Anal. Machine Intell. 2003, 25(6): 661-674.
    [143] Estrada F.J., Jepson A.D. Perceptual grouping for contour extraction. In: Proc. Int’l Conf. Pattern Regognition. 2004, 32-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700