不同时程慢性应激对大鼠抑郁行为与海马神经可塑性相关蛋白BDNF/CREB/Bcl-2的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     抑郁症是以心境低落、情绪低落、思维迟缓、意志活动减退为主要特征的综合征,是情感性精神障碍中的一种,具有高发病、高复发、高致残的特点。最近研究表明全球抑郁症发病率约为3.1%,我国的发病率约为3-5%。约有25-30%的抑郁症患者有过自杀行为,11-19%自杀身亡。WHO的全球疾病负担合作研究指出:预计2020年抑郁症将成为继冠心病后的世界第二大疾病负担源。抑郁症所引起的自杀、社会功能损害和精神残疾给个体、家庭和社会带来沉重的负担,但抑郁症的发病机制及相关问题迄今未明,因此需要迫切深入研究抑郁症的发病机制、治疗机制,寻找合适的生物学标记(biological marker)关联抑郁症状的变化,从而有利于其预防、早期干预、治疗、预防复发等。
     抑郁症的发生与多基因遗传、心理因素和环境因素都有关。其中最重要的环境因素和心理因素是应激事件。目前,应激致抑郁症的病理机制尚不明确。
     研究发现,海马区的神经元在成年后仍能再生,海马区的神经细胞对应激的破坏作用最敏感。在应激过程中,海马参与整合感知的信息、解释环境信息的意义以及调控生物体的行为和神经内分泌反应。多项研究提示应激可导致大脑特定部位、尤其是海马区的神经元萎缩。生物精神病学和心理学的研究均提示:大脑是一个开放、活动的靶器官,它对内源性、外源性的不同应激有着一个可塑(可变换)的调解作用。神经可塑性(Neuroplasticity)指神经系统为不断适应外界环境的变化而改变自身结构的能力,包括神经组织的正常发展和成熟、新技能的获得、在神经系统受损以及感觉剥夺后的代偿,它既有可能是结构(structural)上的可塑性变化、也可能是功能(functional)上的可塑性变化。成年中枢神经系统的神经可塑性的表现为树突功能的改变,长时程增强(LTP),突触重塑,突触发生,轴突出芽,轴突延长,神经元再生和抗凋亡等。多种临床和实验室研究均提出海马区神经可塑性与抑郁症的发生可能有重要关系。
     然而目前为止,仍然不清楚神经结构可塑性和功能可塑性调节的内在发生机制,尤其是在抑郁症的发病过程中。
     抑郁症的神经可塑性假说提出:应激能够调节与神经元再生、抗凋亡、轴突和树突改变相关的因子的表达,如BDNF.CREB.Bcl-2、MAPs等,这些因子能够依次影响海马的神经可塑性,导致神经元损伤和神经元再生之间的平衡被破坏了,使得颗粒细胞减少,锥形神经元萎缩和数目减少,继而海马的体积下降,功能受损,最终出现抑郁症的临床表现,最后导致抑郁症的发生。
     cAMP应答元件结合蛋白(cAMP response element binding protein, CREB)作为一种转录因子参与短时记忆向长时记忆的转化,其磷酸化受到了cAMP通路、Ca2+-CaMK通路等多种信号通路的调控,其中cAMP/PKA是经典的调控通路。在cAMP/PKA—CREB—BDNF信号通路中,G蛋白耦联受体(GPCR)可以与多种神经递质或神经肽结合,其活化可以导致cAMP环化酶(AC)活性升高,随后通过升高cAMP的水平而激活PKA,活化的PKA催化亚基最终使得CREB Serl33磷酸化,调节转录因子得活性,从而介导了细胞对外界刺激的反应。上述这些因子的活动构成环腺苷酸/蛋白激酶A一环腺苷酸反应元件结合蛋白(cAMP/PKA—CREB)信号通路,脑源性神经营养因子(BDNF)和抗凋亡因子Bcl-2的启动子区内含CRE序列,均受到CREB的调控。基于以上的认识,可以选择BDNF—CREB—Bcl—2信号途径进行研究。
     许多研究都已经研究了不同的应激方式对大鼠抑郁行为和不同神经可塑性相关蛋白的研究,但是,目前尚缺乏慢性应激的时程、治疗时程与抑郁行为之间的关联性研究及机制研究。这可能是一个了解抑郁症患者在遭受应激后发病缓慢,临床抗抑郁治疗治疗起效缓慢、起效时间有差别的重要线索之一
     本研究拟探讨慢性应激时间的长短对大鼠抑郁行为和海马神经可塑性相关蛋白BDNF—CREB—Bcl—2信号途径的影响,拟探讨海马神经可塑性相关蛋白BDNF—CREB—Bcl—2信号途径在抑郁症发病中的可能中介机制。
     方法
     1、利用随机数字表将大鼠分为四组:(ⅰ)正常成年组;(ⅱ)1周CMS组;(ⅲ)2周CMS组;(iv)3周CMS组。
     2、慢性不可预见应激抑郁模型(CMS)制备:接受各种不同的不可预知的随机应激,包括冰水游泳(4℃,5min):热应激(45℃,5min):夹尾(1min):禁水(24h):禁食(48h):明暗颠倒(24小时);束缚(2小时,2次)。以一周为一个时程,每天采取的应激方式随意抽取。
     3、行为学测试:在应激前后、用药前后和停药后进行。(1)旷场实验(open filed):反映抑郁行为。行为学实验采用WMZ动物运动轨迹记录分析系统(Ethovision系统,荷兰Noldus公司)。(ⅱ)蔗糖消耗测试(Sucrose preference tests)::每次禁水后,给予1%蔗糖溶液,测定24h内饮用量、体重变化。反映快感缺乏。
     4、海马神经再生的观察:大鼠行为学检测完毕后继续喂养1周,成年大鼠腹腔注射BrdU (50mg/kg)二小时一次,共三次,最后一次后24小时,心脏灌流制备免疫组化切片和HE染色,以光学焦显微镜观测BrdU阳性细胞,记数比较;
     5、实验结束后,麻醉大鼠断头去脑,取海马组织,采用逆转录聚合酶链反应(RT-PCR)检测海马区BDNF/CREB/Bcl-2mRNA的表达,Western-blot方法测定海马区BDNF/CREB/Bcl-2的蛋白的表达。
     6、数据处理:SPSS13.0统计学软件。
     结果
     1、行为学结果:大鼠旷场内10分钟的总行程、内围场地的行程、直立次数,1W应激组大鼠小于C对照组(P<0.05),2W应激组大鼠小于C对照组(P<0.05),3W应激组大鼠也明显小于C对照组(P<0.05),1W应激组大鼠、2W应激组大鼠,3W应激组大鼠之间相比无明显差异(P>0.05);大鼠总液体消耗量、糖水消耗量、糖水偏好率,1W应激组大鼠小于C对照组(P<0.05),2W应激组大鼠小于C对照组(P<0.05),3W应激组大鼠也明显小于C对照组(P<0.05),1W应激组大鼠、2W应激组大鼠,3W应激组大鼠之间相比无明显差异(P>0.05)。在1周、2周、3周的不同慢性应激模型中,大鼠均出现明显的抑郁行为。
     2、冰冻切片HE染色显示:1W应激组大鼠的海马齿状回BrdU阳性细胞数22.19±6.08低于C对照组的海马齿状回BrdU阳性细胞数31.75±8.48(P<0.05),3W应激组大鼠的海马齿状回BrdU阳性细胞数19.57±5.28也明显低于C对照组的海马齿状回BrdU阳性细胞数31.75±8.48(P<0.01),1W应激组大鼠、3W应激组大鼠的海马齿状回BrdU阳性细胞数之间相比无明显差异(P>0.05)。2W应激组大鼠的海马齿状回BrdU阳性细胞数29.78±6.78与C对照组的海马齿状回BrdU阳性细胞数31.75±8.48无显著差异(P>0.05)。
     3、RT-PCR检测显示:与正常对照组C组对比,1W应激组大鼠BDNFmRNA/CREB mRNA/Bcl-2mRNA的水平低于C对照组(P<0.05),3W应激组大鼠BDNFmRNA水平低于C对照组(P<0.05),1W应激组大鼠和3W应激组大鼠之间BDNFmRNA/CREB mRNA/Bcl-2mRNA水平无明显差异(P>0.05);与正常对照组对比,2W应激组大鼠BDNFmRNA/CREB mRNA/Bcl-2mRNA水平无明显差异(P>0.05)。
     4, WESTERN BLOT检测显示:与正常对照组C组对比,lW应激组大鼠的BDNF/CREB/Bcl-2的蛋白水平低于C对照组(P<0.05),3W应激组大鼠的BDNF/CREB/Bcl-2蛋白水平低于C对照组(P<0.05),1W应激组大鼠和3W应激组大鼠之间的BDNF/CREB/Bcl-2蛋白水平无明显差异;与正常对照组对比,2W应激组大鼠的BDNF/CREB/Bcl-2蛋白水平无明显差异(P>0.05)。
     结论
     本研究的结果提示海马区的神经可塑性相关蛋白BDNF/CREB/Bcl-2的水平变化可能与抑郁行为的变化存在一定的关联性。神经可塑性相关蛋自BDNF/CREB/Bcl-2可能与抑郁症的发病有关联,提示了患者遭受应激后发病缓慢、症状波动的可能机制,需进一步探讨
Background:The pathogenesis of depression is complicated and involves multiple genetic, psychological, and environmental factors. The most important environmental factor is stress. The connection between stress and depression is still far from clear.
     The hippocampus is only one of two brain regions where robust neurogenesis continues into adulthood, and nerve cells in the hippocampus are among the most sensitive to the deleterious effects of stress. There are reports that stress can cause damage and atrophy of neurons in certain brain structures, most notably the hippocampus o A decrease of hippocampal volume is detected by MRI in both depressive patients and in postmortem studies. Increasing evidences indicate that hippocampus plays an important role in the pathogenesis of depression.
     Molecular and cellular studies of stress, depression, and antidepressants have moved the field of mood disorder research beyond the monoamine hypothesis. The neuroplasticity hypothesis emerged. It hypothesized that stress can modulate the expression of various factors involved in cell survival and growth/anti-apoptotic factors, such as brain-derived neurotrophic factor (BDNF), cyclic adenosine monophosphate response element binding protein (CREB), B cell leucemia protein2(Bcl-2), and mitogen-activated protein (MAP) kinases, which may, in turn, affect neuroplasticity in the hippocampus, ultimately resulting in depression.
     A number of animal models were developed to study the molecular effects of stress and the underlying neurobiological mechanisms of depression. Chronic mild stress (CMS) model (long-term exposure (i.e, greater than1weeks) to multiple, mild and inescapable stressors) is a commonly used model because it mimics depression-like phenotypes satisfactorily. Its rationale is based on the underlying stress-induced difficulties found in many depressed patients.
     Many researches have studied different stress (acute stress or chronic stress) effect on different neuroplasticity-related proteins. But less is known about how chronic mild stress influences neuroplasticity-related proteins expression in the hippocampus by the time of the stress. This may be an important clue to the pathogenesis of depression. We made some changes in the classic CMS model.7different classic mild stressors were used randomly in a7-days period, and then repeated in the next7-days period. We subjected rats treated with chronic mild stress of three different periods (1week of exposure to CMS group,2weeks of exposure to CMS group and3weeks of exposure to CMS group),
     Our experiments therefore address the following questions:(1) What are the effects of different CMS on the levels of neuroplasticity-related proteins BDNF/CREB/Bcl-2expression?(2) Is there a relationship between the changes of neuroplasticity-related proteins BDNF/CREB/Bcl-2and depressive-like behaviors in the CMS rats?
     Objective:To address these questions, we subjected rats treated with CMS of three different periods, investigated their depression-like behavioral changes and hippocampal neuroplasticity-related proteins'changes, and wanted to explore the possible mechanism.
     Method:(1)Animals were sepatated into one of four groups rcontrol group, rats without stress:M1group, rats subjected to CMS for1week:M2group, rats subjected to CMS for2weeks:and M3group, rats subjected to CMS for3weeks.(2) The CMS procedure, which involves the sequential exposure to various unpredictable mild stressors, is designed to maximize the unpredictable nature of the stressors..(3) Rats' depression-like behaviors were observed in opening field test and1%sucrose preference test were tested before and after the experimentation of each group.(4) After bahvior test, rats were sacrificed and hippocampus were isolated. Neurogenesis in hippocampal dentate gyrus was detected by using immunohistochemistry method.(5)Using reverse transcription-polymerase chain reaction (RT-PCR) and Western blot, we analyzed BDNF/CREB/Bcl-2mRNA and protein expression in the rat hippocampus.(6) Statistics:All values were expressed as mean±SD. A one-way ANOVA was used for comparisons among groups and the Least-significant Difference was used for post-hoc multiple comparisons. Statistical significance was defined as p<0.05.
     Results:(1) Compared with Controlled group, total diatance(cm) in10minutes/center distance(cm) in10minutes/rearing counts were decreased in MI group (P <0.05), M2group (P<0.05), and M3group (P<0.05) There was no significant difference in the total diatance in10minutes/center distance(cm) in10minutes/rearing counts among the M1, M2and M3groups (p>0.05). Compared with Controlled group, levels of total fluid consumption/sucrose consumption/sucrose preference consumption were decreased in MI group (P<0.05), M2group (P<0.05), and M3group (P<0.05). There was no significant difference in levels of total fluid consumption among the M1, M2and M3groups (p>0.05).(2) Compared with Controlled group (31.75±8.48),BrdU-labeled cells in the dentate gyrus were decreased in M1group (22.19±6.08):(P<0.05),and M3group(19.57±5.28)(P<0.05), there was no significant difference in the levels of BrdU-labeled cells in the dentate gyrus between Ml group and M3group(P>0.05).There was no significant difference in the levels of BrdU-labeled cells in the dentate gyrus between M2group(29.78±6.78) and control group(P>0.05).(3) RT-PCR analysis:Compared with controlled group, levels of BDNFmRNA/CREBmRNA/Bcl-2mRNA were decreased in MI group (P<0.05),and M3group (P<0.05), there was no significant difference in the levels of BDNFmRNA between M1group and M3group(P>0.05).There was no significant difference in the levels of BDNFmRNA between M2group and control group(P>0.05).(4) Immunoblotting analysis:Compared to that in the controlled group,the amount of BDNF protein/CREB protein/Bcl-2protein in MI group and M3group both decreased significantly (p<0.05), there was no significant difference in the amount of BDNF protein between M1group and M3group(P>0.05).however,2week's chronic mild stress did not affect the amount of BDNF protein (p>0.05).
     Conclusion:Our findings illustrated that different chronic mild stress might have different effects on proteins implicated in neuroplasticity, providing insight into the role of neuroplasticity-related proteins in the depression.
引文
[1]Phillips MR, Yang G., Zhang Y, et al.Risk factors for suicide in China:a national case—control psychological autopsy study[J]. Lancet.2002,360:138-146.
    [2]Kessler RC, Berglund P, Dernler O, Jin R, Koretz D, Merikangas KR, Rush AJ. The epidemiology of major depressive disorder:Results from the National Comorbidity Survey Replication (NCS-R)[J]. Journal of the American Medical Association,2003, 289(23):3095-3105.
    [3]Charney DS, Manji HK, Life stress, genes, and depression:multiple pathways lead to increased risk and new opportunities for intervention[J]. Sci. STKE,2004,225:re5.
    [4]Carrasco GA, Van de Kar LD, Neuroendocrine pharmacology of stress[J]. Eur J Pharmacol,2003, 463(1-3):235-72.
    [5]Sapolsky R. Depression, antidepressants, and the shrinking hippocampus[J]. Proc Natl Acad Sci. 2001,98:12320-12322.
    [6]Campbell S, Macqueen G, The role of the hippocampus in the pathophysiology of major depression[J]. J Psychiatry Neurosci.2004,29:417-426.
    [7]Duman RS.Depression:A case of neuronal life and death[J]? Biol Psychiatry.2004:56:140-145.
    [8]Duman RS. Role of neurotrophic factors in the etiology and treatment of mood disorders[J]. Neuromolecular Med,2004,5:11-25.
    [9]Ho VM, Lee JA, Martin KC. The cell biology of synaptic plasticity [J]. Science.2011, 334(6056):623-628.
    [10]Helmet A, SvobodaK. Experience-dependent structural synaptic plasticity in the mammalian brain[J]. Nat Rev Neurosci.2009,10(9):647-58.
    [11]Paizanis., Hamon M, Lanfumey L. Hippocampal neurogenesis, depressive disorders, and antidepressant therapy[J]. Neural Plast.2007:737-754.
    [12]Christian KM, Miracle AD, Wellman CL, Nakazawa K. Chronic stress-induced hippocampal dendritic retraction requires CA3 NMDA receptors[J]. Neuroscience.2011,174:26-36.
    [13]Carvalho-Netto EF, Myers B, Jones K, Solomon MB, Herman JP. Sex differences in synaptic plasticity in stress-responsive brain regions following chronic variable stress[J]. Physiol Behav. 2011,104(2):241-247.
    [14]McLaughlin KJ, Gomez JL, Baran SE, Conrad CD. The effects of chronic stress on hippocampal morphology and function:an evaluation of chronic restraint paradigms[J]. Brain Res.2007 3:56-64.
    [15]Gorman JM, Docherty JP. A hypothesized role for dendritic remodeling in the etiology of mood and anxiety disorders[J]. J Neuropsychiatry Clin Neurosci.2010,22(3):256-64.
    [16]Elder GA, De Gasperi R, Gama Sosa MA. Research update:neurogenesis in adult brain and neuropsychiatric disorders[J]. Mt Sinai J Med.2006,73(7):931-40.
    [17]Santarelli L, Saxe M, Gross C. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants[J]. Science.2003,301:805-809.
    [18]Manji HK, Lenox RH. Signaling:Cellular insights into the pathophysiology of bipolar disorder[J]. Biol Psychiatry.2000,48:518-530.
    [19]D'Sa C, Duman R. Antidepressants and neuroplasticity[J]. Bipolar Disord.2002,4:183.
    [20]Manji HK, Quiroz JA, Sporn J, Payne JL. Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics for difficult-to-treat depression[J]. Biol Psychiatry. 2003,53:707-742.
    [21]C S Li, Wang M. Antidepressant like effects of piperine in chronic mild stress treated mice and its possible mechanisms[J]. Life Sciences.2007,80:1373-1381.
    [22]Yogesh Dwivedi, Mondala AC, Rizavia HS, Conleyb R. Suicide Brain is Associated with Decreased Expression of Neurotrophins[J]. Biological Psychiatry.2005,58:315-324.
    [23]Felicien Karege, Guillaume Perretb, Guido Bondolfib, Michele Schwalda, Gilles Bertschyb,Jean-Michel Aubryb. Decreased serum brain-derived neurotrophic factor levels in major depressed patients[J]. Psychiatry Research.2002,109:143-148.
    [24]Biao Chen,Dar Dowlatshahia, Glenda M. MacQueena, Jun-Feng Wang, L. Trevor Young. Increased hippocampal bdnf immunoreactivity in subjects treated with antidepressant medication[J]. Biological Psychiatry.2001,50:260-265.
    [25]Morcuende S, Gadd CA, Peters M, Fisher AS. Increased neurogenesis and brain-derived neurotrophic factor in neurokinin-1 receptor gene knockout mice[J]. European Journal of Neuroscience.2003,18:1828-1836.
    [26]Duman RS. A neurotrophic model for stress-related mood disorders[J]. Biological Psychiatry 2006,59:1116-1127.
    [27]Franklin TB, Perrot-Sinal TS. Sex and ovarian steroids modulate brainderived neurotrophic factor (BDNF) protein levels in rat hippocampus under stressful and non-stressful conditions[J]. Psychoneuroendocrinology.2006,31:38-48.
    [28]Givalois L, Marmigere F, Rage F. Immobilization stress rapidly and differentially modulates BDNF and TrkB mRNA expression in the pituitary gland of adult male rats[J]. Neuroendocrinology.2001,74:148-59.
    [29]Manji HK, Drevets WC, Charney DS.The cellular neurobiology of depression[J].Nat Med.2001,7:541-547.
    [30]Nakagawa S, Kim JE, Lee R. Localization of phosphorylated cAMP response element-binding protein in immature neurons of adult hippocampus[J]. J Neurosci.2002,22:9868-9876.
    [31]Lonze BE, Ginty DD. Function and regulation of CREB fami 1Y transcription factors in the nervo—us systerm[J]. Neuron.2002,35:605-623.
    [32]Waltereit R, Weller M. Signaling from cAMP/PKA to MAPK and synaptic plasticity[J].Neuro—biol.2003,27:99-106.
    [33]Anderson LE, Seybold VS. Calcitonin gene rela—ted peptide regulates gene transcription in primary afferent neurons[J]. Neuroche.2004,91:1417-1429.
    [34]D'Sa C, Duman R. Antidepressants and neuroplasticity[J]. Bipolar Disord.2002,4:183-185.
    [35]Michaloudi HC, Majdoubi ME, Poulain DA. The noradrenergic innervation of identified hypothalamic magnocellular somata and its contribution to lactation-induced synaptic plasticity[J]. J Neuroendo.1997,9:17-23.
    [36]Stern JE,Armstrong WE. Reorganization of the dendritic trees of oxytocin and vasopressin neurons of the rat supraoptic nucleus during lactation[J]. J Neurosci.1998,18,841-853.
    [37]Greenough WT, Bailey CH. The anatomy of a memory:convergence of results across a diversity of tests[J]. TINS.1988,11,142-147.
    [38]Withers GS, Greenough WT. Reach training selectively alters dendritic branching in subpopulations of layer Ⅱ-Ⅲ pyramids in rat motor-somatosensory forelimb cortex[J]. Neuropsychologia.1989.27,61-69.
    [39]American Psychiatric Association. Diagnostic and statistical manual of mental disorders.4th ed. Washington (DC), American Psychiatric Association,1994.
    [40]Keller MB, Klein DN, Hirschfeld RM. Results of the DSM-IV mood disorder field trial, Am J Psychiatry.1995,152,843-849.
    [41]Willner, P. Validation criteria for animal models of human mental disorders:learned helplessness as a paradigm case[J]. Prog Neuropsyopharmacol Biol Psychiatry.1986,10, 677-90.
    [42]Marta K, Agicszaka B, Vladimir H. Effect of mild chronic stress, as a model of depression, on the immunoreactivity of C57BL/6 mice[J]. Int J Immunopharmacol.1998,20,781-9.
    [43]Muscat R, Willner P. Suppression of sucrose drinking by chronic mild unpredictable stress:a methodological analysis[J]. Neurosci Biobehav Rev.1992,16,507-17.
    [44]Riccio A, Ahn S, Davenport CM, Blendy JA, Ginty DD. Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons[J]. Science.1999,286, 2358-2361.
    [45]YanHua Lin, AiHua Liu, Ying Xu. Effect of chronic unpredictable mild stress on brain-pancreas relative protein in rat brain and pancreas[J]. Behavioural brain research.2005,165:63-71.
    [47]Janne Gr(?)nli. Effects of chronic mild stress on sexual behavior, locomotor activity and consumption of sucrose and saccharine solutions[J]. Physiology & Behavior. 2005,84:571-577.
    [48]Angela JG, Elisa SN, Ralph FJ. Sucrose ingestion elicits reduced Fos expression in the nucleus accumbens of anhedonic rats[J]. Brain Research.2004,1019:259-264.
    [49]Anne TM. Konkle Stephanie, Baker L, Amanda CK. Evaluation of the effects of chronic mild stressors on hedonic and physiological responses:sex and strain compared[J].Brain Research. 2003,992:227-238.
    [50]Grippo AJ, Moffitt JA, Johnson AK. Cardiovascular alterations and autonomic imbalance in an experimental model of depression[J]. Am J Physiol Regul Integr Comp Physiol.2002,282: R1333-R1341.
    [51]Grippo AJ, Beltz TG, Johnson AK. Behavioral and cardiovascular changes in the chronic mild stress model of depression[J]. Physiol Behav.2003,78:703-710.
    [52]Willner P, Moreau JL, Nielsen CK. Decreased hedonic responsiveness following chronic mild stress is not secondary to loss of body weight[J]. Physiol Behav.1996,60:129-134.
    [53]刘乃慧,张莉,邵颖等.在体心脏灌滞流术在大鼠脑组织切切片观察中的应用.实验动物科学与管理[J].2005,22:52-53.
    [54]Herman JP, Figueiredo H, Mueller NK, Ulrieh - Lai Y, Ostrander MM, Choi DC. Central mechanisms of stress iniegration:Hierarchical cireuitry controlling Hypothalamo Pituitary-adrenoeortieal responsiveness[J]. Frontiers in Neuroendoerinology, 2003,24:151-180.
    [55]Chery ID. What Is the Functional Significance of Chronic Stress-Induced CA3 Dendritic Retraction Within the Hippocampus[J]? Behav Cogn Neuroseci Rev.2006:5:41 60.
    [56]John M.The medical management of depression [J]. New Engl J Med,2005,353:1819.
    [57]Magarinos AM, Somoza G, De Nicola AF. Glucocorticoid negative feedback and glucocorticoid receptors after hippocampectomy in rats[J]. Horm Metab Res,1987, 19:105-109.
    [58]Deacon RM, Bannerman DM, Rawlins JN. Anxiolytic effects of cytotoxic hippocampal lesions in rats[J]. Behav Neurosci,2002,116:494-497.
    [59]Bannerman DM, Deacon RMJ, Offen S, et al. Double dissociation of function within the hippocampus:spatial memory and hyponeophagia[J]. Behav Neurosci,2003,116:884-901.
    [60]Benninghof J, Schmitt A, Mossner R, et al. When cells become depressed:focus on neural stem cels in novel treatment strategies against depression[J]. J Neural Transm,2002,109:947.
    [61]Thakker-Varia S, Alder J. Neuropeptides in depression:Role of VGF[J]. Behav Brain Res, 2009,197:262-278.
    [62]Perera TD, Dwork AJ, Keegan KA, et al. Necessity of hippocampal neurogenesis for the therapeutic action of antidepressants in adult nonhuman primates[J]. PloS one,2011,6(4): e17600
    [63]Gould E, Gross CG. Neurogenesis in adult mammals:some progress and problems[J]. J Neurosci,2002,22:619-623.
    [64]Perera TD, Coplan JD, Lisanby SH, et al. Antidepressant-induced neurogenesis in the hippocampus of adult nonhuman primates[J]. J Neurosci,2007,27:4894-4901.
    [65]Malberg JE, Eisch AJ, Nestler EJ, et al. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus[J]. J Neurosci,2000,20:9104-9110.
    [66]Huang EJ. Reichardt LF. Neurotrophins:roles in neuronal development and function[J]. Annu Rev Neurosci.2001,24:677-736.
    [67]Numakawa T, Suzuki S, Kumamaru E, Adachi N, Richards M, Kunugi H. BDNF function and intracellular signaling in neurons[J]. Histol Histopathol.2010,25(2):237-58.
    [68]Rattiner LM, Davis M, French CT, Ressler KJ. Brain-derived neurotrophic factor and tyrosine kinase receptor B involvement in amygdala-dependent fear conditioning[J]. J Neurosci. 2004,24(20):4796-806.
    [69]Santos AR, Comprido D, Duarte CB. Regulation of local translation at the synapse by BDNF[J]. Prog Neurobiol.2010,92(4):505-16.
    [70]Yoshii A. Postsynaptic BDNF-TrkB signaling in synapse maturation, plasticity, and disease[J]. Dev Neurobiol.2010,70(5):304-22.
    [71]Yamada K, Nabeshima T. Brain-derived neurotrophic factor/TrkB signaling in memory processes[J]. J Pharmacol Sci.2003,91(4):267-70.
    [72]Tanaka J. Protein synthesis and neurotroph independent structural plasticity of single dendritic spines[J]. Science,2008,319:1683-1687.
    [73]Shi SS, Shao SH, Yuan BP, Pan F, Li ZL. Acute stress and chronic stress change brain-derived neurotrophic factor (BDNF) and tyrosine kinase-coupled receptor (TrkB) expression in both young and aged rathippocampus[J]. Yonsei Med J.2010,51(5):661-71.
    [74]Li XH, Liu NB, Zhang MH, Zhou YL, Liao JW, Liu XQ, Chen HW. Effects of chronic multiple stress on learning and memory and the expression of Fyn, BDNF, TrkB in the hippocampus of rats[J]. Chin Med J (Engl).2007,120(8):669-74.
    [75]Castren E, Voikar V, Rantamki T. Role of n eurotrophic factors in depression[J]. Curr Opi Pharmacol,2007,7:18-21.
    [76]Ma L, Wang DD, Zhang TY, Yu H, Wang Y, Huang SH, Lee FS, Chen ZY. Region-specific involvement of BDNF secretion and synthesis in conditioned taste aversion memory formation[J]. J Neurosci.2011,31(6):2079-90.
    [77]Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders[J]. Biological Psychiatry.2006,59:1116-1127.
    [78]Duman RS, Heninger GR, Nestler FJ. A molecular and cellular theory of depression[J]. Arch Gen Psychiatry.1997,7:597-606.
    [79]Castre'n E. Neurotrophic effects of antidepressant drugs[J]. Curr Opin Pharmacol.2004, 4:58-64.
    [80]Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication[J]. Biol Psychiatry. 2001,50:260-265.
    [81]Karege F, Bondolfi G, Gervasoni N. Low brain-derived neurotrophic factor (BDNF) levels in serum of depressed patients probably results from lowered platelet BDNF release unrelated to platelet reactivity[J]. Biol Psychiatry.2005,57:1068-1072.
    [82]Shimizu E, Hashimoto K, Okamura N, Koike K. Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants[J]. Biol Psychiatry.2003,54:70-75.
    [83]Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, Zaitsev E. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function[J]. Cell.2003,112:257-269.
    [84]Geller B, Badner JA, Tillman R. Linkage disequilibrium in the brain-derived neurotrophic fetor Val66Met polymorphism in children with a prepubertal and early adolescent bipolar disorder phenotype[J]. Am J Psychiatry.2004,161:1698-1700.
    [85]Neves-Pereira M, Mundo E, Muglia P, King N. The brain-derived neurotrophic factor gene confers susceptibility to bipolar disorder:Evidence from a family-based association study[J]. Am J Hum Genet.2002,71:651-655.
    [86]Sklar P, Gabriel SB, McInnis MG. Family-based association study of 76 candidate genes in bipolar disorder:BDNF is a potential risk locus[J]. Mol Psychiatry.2002,7:579-593.
    [87]Jihua Tang, Ling Xiao. Association of the brain-derived neurotrophic factor gene and bipolar disorder with early age of onset in mainland China[J]. Neuroscience Letters.2008, 433:98-102.
    [88]Siuciak JA, Lewis DR, Wiegand SJ. Antidepressant-like effect of brain-derived neurotrophic factor (BDNF) [J]. Pharmacol Biochem Behav.1997,56:131-137.
    [89]Einat H, Manji HK. Cellular plasticity cascades:genes-tobehavior pathways in animal models of bipolar disorder[J]. Biol Psychiatry.2006,59:1160-1171.
    [90]Chen G, Manji HK. The extracellular signal-regulated kinase pathway:an emerging promising target for mood stabilizer[J]. Curr Opin Psychiatry.2006,19:313-323.
    [91]Kalueff AV, Avgustinovich DF, Kudryavtseva NN, Murphy DL. BDNF in anxiety and depression [J]. Science.2006,312:1598-1599.
    [92]Einat H, Yuan P, Gould TD, Li J, Du J, Zhang L, Manji HK, Chen G. The role of the extracellular signal-regulated kinase signaling pathway in mood modulation [J]. J Neurosci. 2003,23,7311-7316.
    [93]Murakami S, Imbe H, Morikawa Y, Kubo C, Senba E. Chronic stress, as well as acute stress, reduces BDNF mRNA expression in the rat hippocampus but less robustly[J]. Neurosci 2005, 53:129-39.
    [94]Nibuya M, Takahashi M, Russell DS, Duman RS. Repeated stress increases catalytic TrkB mRNA in rat hippocampus[J]. Neurosci Lett.1999,267:81-4.
    [95]Bruce S. McEwen. The neurobiology of stress:from serendipity to clinical relevance[J]. Brain Research.2000,886:172-189.
    [96]Smith MA, Makino S, Kvetnansky R. Stress alters the expression of brain-derived neurotrophic factor and neurotropin-3 mRNAs in the hippocampus[J]. J Neurosci.1995,15, 1768-1777.
    [97]Rasmusson AM, Shi L, Duman R. Downregulation of BDNF mRNA in the hippocampal dentate gyrus after re-exposure to cues previously associated with footshock[J]. Neuropsychopharmacology.2002,27:133-142.
    [98]Ying Xu. Curcumin reverses the effects of chronic stress on behavior, the HPA axis, BDNF expression and phosphorylation of CREB[J]. Brain research.2006,1122:56-64.
    [99]Duman R. Role of neurotrophic factors in the etiology and treatment of mood disorders [J]. Neuromolecular Med.2004,5:11-25.
    [100]Givalois L, Arancibia S, Alonso G. Expression of brain-derived neurotrophic factor and its receptors in the median eminence cells with sensitivity to stress[J]. Endocrinology.2004, 145:4737-4747.
    [101]Marmigere, F., Givalois, L., Rage, F., Arancibia, S.,2003. Rapid induction of BDNF expression in the hippocampus during immobilization stress challenge in adult rats[J]. Hippocampus.13:646-655.
    [102]Bailey CH, Bartsch D, Kandel ER. Toward a molecular definition of long-term memory storage[J], Proc Natl Acad Sci.1996,93,13445-13452.
    [103]Finkbeiner S, Tavazoie SF, Maloratsky A, Jacobs KM. CREB:a major mediator of neuronal neurotrophin responses[J]. Neuron.1997,19,1031-1047.
    [104]Palmer TD, Takahashi J, Gage FH. The adult rat hippocampus contains primordial neural stem cells[J]. Mol Cell Neurosci.1997,8,389-404.
    [105]Zhu DY, Lau Li, Liu SH, Wei JS, Lu YM. Activation of cAMPresponse-element-binding protein (CREB) after focal cerebral ischemia stimulates neurogenesis in the adult dentate gyrus[J]. Proc Natl Acad Sci.2004,101,9453-9457.
    [106]Nguyen PV, Woo NH. Regulation of hippocampal synaptic plasticity by cyclic AMP-dependent protein kinases [J]. Prog Neurobiol.2003,71,401-437.
    [107]Duman RS, Malberg J, Nakagawa S. Neuronal plasticity and survival in mood disorders [J]. Biol Psychiatry.2000,48:732-739.
    [108]Dwivedi Y, Rizavi HS, Shukla PK, Lyons J, Faludi G., Palkovits M, Sarosi A. Protein kinase A in postmortem brain of depressed suicide victims:altered expression of specific regulatory and catalytic subunits[J]. Biol Psychiatry.2004,55:234-243.
    [109]Dwivedi Y, Rao JS, Rizavi HS, Kotowski J, Conley RR, Roberts RC. Abnormal expression and functional characteristics of cyclic adenosine monophosphate response element binding protein in postmortem brain of suicide subjects[J]. Arch Gen Psychiatry.2003,60:273-282.
    [110]Dwivedi Y, Rizavi HS, Conley RR, Roberts, RC, Tamminga CA. Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects[J]. Arch Gen Psychiatry.2003,60:804-815.
    [111]Yamada S, Yamamoto M, Ozawa H, Riederer P, Saito T. Reduced phosphorylation of cyclic AMP-responsive element binding protein in the postmortem orbitofrontal cortex of patients with major depressive disorder[J]. J Neural Transm.2003,110:671-680
    [112]Koch JM, Kell S, Hinze-Selch D. Changes in CREB-phosphorylation during recovery from major depression[J]. J Psychiatr Res.2002,36:369-375.
    [113]Odagaki Y, Garcia-Sevilla JA, Huguelet P. Cyclic AMP-mediated signaling components are upregulated in the prefrontal cortex of depressed suicide victims[J]. Brain Res.2001, 898:224-231.
    [114]Dwivedi Y, Mondal AC, Shukla PK., Rizavi HS, Lyons J. Altered protein kinase A in brain of learned helpless rats:effects of acute and repeated stress[J]. Biol Psychiatry.2004,56:30-40.
    [115]Wallace TL, Stellitano KE, Neve RL, Duman RS. Effects of cyclic adenosine monophosphate response element binding protein overexpression in the basolateral amygdala on behavioral models of depression and anxiety[J]. Biol Psychiatry.2004,56:151-160.
    [116]Lai IC, Hong CJ, Tsai SJ. Expression of cAMP response element-binding protein in major depression before and after antidepressant treatment[J]. Neuropsychobiology.2003,48, 182-185.
    [117]Shen CP, Tsimberg Y, Salvadore C, Meller E. Activation of Erk and JNK MAPK pathways by acute swim stress in rat brain regions[J]. BMC Neurosci.2004,20:5-36.
    [118]Trentani A, Kuipers SD, Ter Horst GJ, Den Boer JA. Selective chronic stress-induced in vivo ERK 1/2 hyperphosphorylation in medial prefrontocortical dendrites:implications for stress-related cortical pathology[J]? Eur J Neurosci.2002,15:1681-1691.
    [119]Ying, Xu.,2006. Curcumin reverses the effects of chronic stress on behavior, the HPA axis, BDNF expression and phosphorylation of CREB [J]. Brain research.1122:56-64.
    [120]Grenli J, Bramham C, Murison R, Kanhema T. Chronic mild stress inhibits BDNF protein expression and CREB activation in the dentate gyrus but not in the hippocampus proper[J]. Pharmacology. Biochemistry and Behavior.2006,85:842-849.
    [121]Akhta, RS, Ness JM, Roth KA. Bcl-2 family regulation of neuronal development and neurodegeneration[J]. Biochimica et Biophysica Acta.2004,1644:189-203.
    [122]Kuida K, Haydar TF, Kuan CY, Gu Y, Taya C, Karasuyama H. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9[J]. Cell/1998,94: 325-337.
    [123]Kuida K, Zheng TS, Na S, Kuan C, Yang D, Karasuyama H, Rakic P. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice[J]. Nature.1996,384:368-372.
    [124]Cecconi F, Alvarez-Bolado G., Meyer BI, Roth KA, Gruss P. Apafl (CED-4 homolog) regulates programmed cell death in mammalian development[J]. Cell.1998,94:727-737.
    [125]Jacobson MD, Weil M. Programmed cell death in animal development[J]. Cell.1997,88: 347-354.
    [126]Buss RR, Sun W, Oppenheim RW. Adaptive roles of programmed cell death during nervous system development[J]. Annual Review of Neuroscience.2006,29:1-35.
    [127]Deckwerth TL, Elliott JL, Knudson CM, Johnson EM, Snider WD, Korsmeyer SJ. BAX is required for neuronal death after trophic factor deprivation and during development[J]. Neuron.1996,17,401-411.
    [128]Joels M, Karst H, Alfarez D, Heine VM, Qin Y. Effects of chronic stress on structure and cell function in rat hippocampus and hypothalamus[J]. Stress.2004,7:221-231.
    [129]Krauss G. Apoptosis, Biochemistry of Signal Transduction and Regulation,3rd ed., Wiley-VCH Verlag.2003, pp.511-532.
    [130]Frommel TO. Chronic inflammation and cancer:potential role of Bcl-2 gene family members as regulators of cellular antioxidant status[J]. Med Hypotheses.1999,52:27-30.
    [131]Xu JH, Hu HT, Liu Y, Qian YH, Liu ZH. Neuroprotective effects of ebselen are associated with the regulation of Bcl-2 and Bax proteins in cultured mouse cortical neurons[J]. Neurosci Lett.2006,399:210-214.
    [132]Abe DS, Harada N, Yamada K, Tanaka R. Bcl-2 gene is highly expressed during neurogenesis in the central nervous system[J]. Biochem Biophys Res Commun.1993,191: 915-921.
    [133]Bernier PJ, Vinet J, Cossette M, Parent A. Characterization of the subventricular zone of the adult human brain:evidence for the involvement of Bcl-2[J]. Neurosci Res.2000,37:67-78.
    [134]Bedard A, Levesque M, Bernier PJ, Parent A. The rostral migratory stream in adult squirrel monkeys:contribution of new neurons to the olfactory tubercle and involvement of the antiapoptotic protein Bcl-2 [J]. Eur J Neurosci.2002,16:1917-1924.
    [135]Moore GJ, Bebchuk JM, Hasanat K, Chen G, Seraji-Bozorgzad N, Wilds IB. Lithium increases N-acetyl-aspartate in the human brain:in vivo evidence in support of bcl-2's neurotrophic effects[J]? Biol Psychiatry.2000,48:1-8.
    [136]Lucassen PJ.Antidepressant Treatment with Tianeptine Reduces Apoptosis in the Hippocampal Dentate Gyms and Temporal Cortex[J]. Biol PSYCHIATRY.2004,55:789-796.
    [137]Manji HK, Chen G. PKC, MAP kinases and the bcl-2 family of proteins as long-term targets for mood stabilizers[J]. Mol Psychiatry.2002,7.S46-S56.
    [138]Manji HK, Quiroz JA, Sporn J, Payne JL. Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics for difficult- to-treat depression[J]. Biol Psychiatry.2003,53:707-742.
    [139]Bachis A, Cruz MI, Nosheny RL, Mocchetti I. Chronic unpredictable stress promotes neuronal apoptosis in the cerebral cortex[J]. Neuroscience Letters.2008,442:104-108.
    [140]Kosten TA, Galloway MP, Duman RS, Russell DS, D'Sa C. Repeated unpredictable stress and antidepressants differentially regulate expression of the bcl-2 family of apoptotic genes in rat cortical, hippocampal, and limbic brain structures[J]. Neuropsychopharmacology.2008,33: 1545-1558.
    [141]DeVries AC, Bernard O, Hattori K, Hum PD, Traystman RJ, Alkayed NJ. Social stress exacerbates stroke outcome by suppressing Bcl-2 expression[J]. Proc Natl Acad Sci.2001,98: 11824-11828.
    [142]Lang SB, Stein V, Bonhoeffer T, Lohmann C. Endogenous Brain-Derived Neurotrophic Factor Triggers Fast Calcium Transients at Synapses in Developing Dendrites[J]. J Neurosci. 2007,27:1097-1105.
    [143]Mohajerani MH, Sivakumaran S, Zacchi P.[J]. Proc Natl Acad Sci.2007,104:13176-13181.
    [144]Chen SJ, Kao CL, Chang YL, Yen CJ, Shui JW, Chien CS. Antidepressant administration modulates neural stem cell survival and serotoninergic differentiation through bcl-2[J]. Current neurovascular research.2007,4:9-29.
    [145]Chiou SH, Ku HH, Tsai TH, Lin HL, Chen LH, Chien CS, Ho LL, Lee CH, Chang YL. Moclobemide (MB) up-regulated Bcl-2 expression and induced neural stem cell differentiation into serotoninergic neuron via extracellular-regulated kinase (ERK) pathway[J]. Br J Pharmacol.2006,148:587-598.
    [146]Peng CH, Chiou SH, Chen SJ, Chou YC. Neuroprotection by imipramine against lipopolysaccharide-induced apoptosis in hippocampus-derived neural stem cells mediated by activation of BDNF and the MAPK pathway[J]. Eur Neuropsychopharmacol.2008,18: 128-140.
    [147]Lonze BE, Ginty DD. Function and regulation of CREB family transcription factors in the nervous system[J]. Neuron.2002,35:605-623.
    [148]Chao JR, Ni YG, Bolanos CA, Rahman Z, DiLeone RJ, Nestler EJ. Characterization of the mouse adenylyl cyclase type Ⅷ gene promoter:regulation by cAMP and CREB[J]. The European Journal of Neuroscience.2002,16:1284-1294.
    [149]Tao X, West AE, Chen WG, Corfas G. A calciumresponsive transcription factor, CaRF, that regulates neuronal activity-dependent expression of BDNF[J]. Neuron.200233:383-395.
    [150]Riccio A, Ahn S, Davenport CM, Blendy JA, Ginty DD. Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons[J]. Science.1999,286: 2358-2361.
    [151]Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants[J]. Science.2003,301:805-809.
    [152]Mineur YS, Prasol DJ, Belzung C, Crusio WE. Agonistic behavior and unpredictable chronic mild stress in mice[J]. Behav Genet.2003,33:513-519.
    [153]Joels M, Karst H, Krugers HJ. Chronic stress:Implications for neuronal morphology, function and neurogenesis[J]. Neuroendocrinology.2007,28:72-96.
    [154]Joels M, Kruger HJ. LTP after stress:up or down? Neural Plast doi.2007,10:1155.
    [155]Sandi C, Pinelo-Nava MT. Stress and memory:Behavioral effects and neurobiological mechanisms[J]. Neural Plast doi.2007,10:1155.
    [1]Manji HK, Drevets WC, C harney DS. The cellular neurobiology of depression. Nat Med,2001: 7:541-547.
    [2]Ongur D, Drevets WC, Price JL. Glial reduction in the subgenual prefrontal cortex in mood disorders. PNAS USA,1998:95:13290-13295.
    [3]Rajkowska G, Miguel-Hidalgo JJ, Wei J et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry,1999:45:1085-1098.
    [4]Rajkowska G. Histopathology of the prefrontal cortex in major depression:what does it tell us about dysfunctional monoaminergic circuits? Prog Brain Res,2000:126:397-412.
    [5]Cotter D, Mackay D, Landau S, Kerwin R, Everall I. Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch Gen Psychiatry,2001:58: 545-553.
    [6]Drevets WC. Functional anatomical abnormalities in limbic and prefrontal cortical structures in major depression. Prog Brain Res,2000:126:413-431.
    [7]Sheline Y, Wany P, Gado MH, Csernansky JG, Vannier MW. Hippocampal atrophy in recurrent major depression. PNAS USA,1996:93:3908-3913.
    [8]Bremner J, Narayan M, Anderson ER, Staib LH, Miller H, Charney DS. Smaller hippocampal volume in major depression. Am J Psychiatry,2000:157:115-117.
    [9]Mervaala E, Fohr J, Kononen M et al. Quantitative MRI of the hippocampus and amygdala in severe depression. Psychol Med,2000:30:117-125.
    [10]Kessler RC. The effects of stressful life events on depression. Annu Rev Psychol 1997,48: 191-214.
    [11]Heim C, Nemeroff CB. The role of childhood trauma in the neurobiology of mood and anxiety disorders:preclinical and clinical studies. Biol Psychiatry,2001,49:1023-1039.
    [12]Gold PW, Licinio J, Wong ML, Chrousos GP. Corticotropin releasing hormone in the pathophysiology of melancholic and atypical depression and in the mechanism of action of antidepressant drugs. Ann N Y Acad Sci,1995,771:716-729.
    [13]Sapolsky RM. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry,2000,57:925-935.
    [14]Arborelius L, Owens MJ, Plotsky PM, Nemeroff CB. The role of corticotropin-releasing factor in depression and anxiety disorders. J Endocrinol,1999,160:1-12.
    [15]McEwen BS. Effects of adverse experiences for brain structure and function. Biol Psychiatry, 2000,48:721-731.
    [16]Magarinos AM, McEwen BS, Flugge G, Fuchs E. Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews. J Neurosci,1996,16:3534-3540.
    [17]Gould E, Cameron HA, Daniels DC, Wooley CS, McEwen BS. Adrenal hormones suppress cell division in the adult rat dentate gyrus. J Neurosci,1992,12:3642-3650.
    [18]Gould E, McEwen BS, Tanapat P, Galea LAM, Fuchs E. Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J Neurosci,1997,17:2492-2498.
    [19]McEwen BS. The neurobiology of stress:from serendipity to clinical relevance. Brain Res, 2000,886:172-189.
    [20]Czeh B, Michaelis T, Watanabe T et al. Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc Natl Acad Sci USA,2001,98:12796-12801.
    [21]Bezzi P, Volterra A. A neuron-glia signalling network in the active brain. Curr Opin Neurobiol, 2001,11:387-394.
    [22]Yuan J, Yankner BA. Apoptosis in the nervous system. Nature,2000,407:802-809.
    [23]Lucassen PJ, Muller MB, Holsboer F et al. Hippocampal apoptosis in major depression is a minor event and absent from subareas at risk for glucocorticoid overexposure. Am J Pathol, 2001,158:453-468.
    [24]Smith MA, Makino S, Kvetnansky R, Post RM. Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci,1995,15:1768-1777.
    [25]Thoenen H. Neurotrophins and neuronal plasticity. Science,1995,270:593-598.
    [26]Schinder A, Poo M. The neurotrophin hypothesis for synaptic plasticity. Trends Neurosci, 2000,23:639-645.
    [27]Smith MA, Makino S, Kvetnansky R, Post RM. Stress alters the express of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci,1995,15: 1768-1777.
    [28]Nibuya M, Takahashi M, Russell DS, Duman RS. Chronic stress increases catalytic TrkB mRNA in rat hippocampus. Neurosci Letts,1999,267:81-84.
    [29]Schaaf MJ, De Kloet ER, Vreugdenhil E. Corticosterone effects on BDNF expression in the hippocampus. Implications for memory formation. Stress,2000,3:201-208.
    [30]Duman RS, Heninger GR, Nestler EJ. A molecular and cellular theory of depression. Arch General Psychiatry,1997,54:597-606.
    [31]Dowlatshahi D, MacQueen GM, Wang JF, Young LT. Increased temporal cortex CREB concentrations and antidepressant treatment in major depression. The Lancet,1998,352: 1754-1755.
    [32]Dowlatshahi D, MacQueen GM, Wang JF, Reiach JS, Young LT. G Protein-coupled cyclic AMP signaling in postmortem brain of subjects with mood disorders:effects of diagnosis, suicide, and treatment at the time of death. J Neurochem,1999,73:1121-1126.
    [33]Manier DH, Shelton RC, Ellis TC, Peterson CS, Eiring A, Sulser F. Human fibroblasts as a relevant model to study signal transduction in affective disorders. J Affect Disord,2000,61: 51-58.
    [34]Duman RS. Novel therapeutic approaches beyond the 5-HT receptor. Biol Psychiatry,1998,44: 324-335.
    [35]Ozawa H, Rasenick M. Chronic electroconvulsive treatment augments coupling of the GTP-binding protein Gs to the catalytic moiety of adenylyl cyclase in a manner similar to that seen with chronic antidepressant drugs. J Neurochem,1991,56:330-338.
    [36]Nestler EJ, Terwilliger RZ, Duman RS. Chronic antidepressant administration alters the subcellular distribution of cAMP-dependent protein kinase in rat frontal cortex. J Neurochem, 1989,53:1644-1647.
    [37]Perez J, Tinelli D, Brunello N, Racagni G. cAMP-dependent phosphorylation of soluble and crude microtubule fractions of rat cerebral cortex after prolonged desmethylimipramine treatment. Eur J Pharmacol,1989,172:305-316.
    [38]Jensen J, Mikkelsen JD, Mork A. Increased adenylyl cyclase type 1 mRNA, but not adenylyl cyclase type 2 in the rat hippocampus following antidepressant treatment. Eur Neuropsychopharmacol,2000,10:105-111.
    [39]Duman RS, Malberg J, Nakagawa S, D'Sa CM. Neuronal plasticity and survival in mood disorders. Biol Psychiatry,2000,48:732-739.
    [40]Nibuya M, Nestler EJ, Duman RS. Chronic antidepressant administration increases the expression of cAMP response element binding protein [CREB] in rat hippocampus. J Neurosci, 1996,16:2365-2372.
    [41]Rossby SP, Manier DH, Liang S, Nalepa I, Sulser F. Pharmacological actions of the antidepressant venlafaxine beyond aminergic receptors. Int J Neuropsychopharmcol,1999,2: 1-8.
    [42]Conti M, Jin SL. The molecular biology of cyclic nucleotide phosphodiesterases. Prog Nucl Acid Res Mol Biol,1999,63:1-38.
    [43]Ye Y, Conti M, Houslay MD, Faroqui SM, Chen M, O'Donnell JM. Noradrenergic activity differentially regulates the expression of rolipram-sensitive, high-affinity cyclic AMP phosphodiesterase [PDE4] in rat brain. J. Neurochem,1997,69:2397-2404.
    [44]Takahashi M, Terwilliger R, Lane S, Mezes PS, Conti M, Duman RS. Chronic antidepressant administration increases the expression of cAMP phosphodiesterase 4A and 4B isoforms. J Neurosci,1999,19:610-618.
    [45]Montminy M. Transcriptional regulation by cyclic AMP. Annu Rev Biochem,1997,66: 807-822.
    [46]Shaywitz A, Greenberg M. CREB:a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem,1999,68:821-861.
    [47]Roseboom PH, Klein DC. Norepinephrine stimulation of pineal cyclic AMP response element-binding protein phosphorylation:primary role of a beta-adrenergic receptor/cyclic AMP mechanism. Mol Pharmacol,1995,47:439-449.
    [48]Lin RZ, Chen J, Hu ZW, Hoffman BB. Phosphorylation of the cAMP response element-binding protein and activation of transcription by alphal adrenergic receptors. J Biol Chem,1998,273:30033-30038.
    [49]Markstein R, Matsumoto M, Kohler C, Togashi H, Yoshioka M, Hoyer D. Pharmacological characterisation of 5-HT receptors positively coupled to adenylyl cyclase in the rat hippocampus. Naunyn Schmiedebergs Arch Pharmacol,1999,359:454-459.
    [50]Lambert HW, Weiss ER, Lauder JM. Activation of 5-HT receptors that stimulate the adenylyl cyclase pathway positively regulates IGF-I in cultured craniofacial mesenchymal cells. Dev Neurosci,2001,23:70-77.
    [51]Ghosh A, Carnahan J, Greenberg ME. Requirement for BDNF in activity-dependent survival of cortical neurons. Science,1994,263:1618-1623.
    [52]Luttrell LM, Ferguson SS, Daaka Y et al. Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science,1999,283:655-661.
    [53]Mendez J, Kadia TM, Somayazula RK, El-Badawi KI, Cowen DS. Differential coupling of serotonin 5-HT1A and 5-HT1B receptors to activation of ERK2 and inhibition of adenylyl cyclase in transfected CHO cells. J Neurochem,1999,73:162-168.
    [54]Errico M, Crozier RA, Plummer MR, Cowen DS.5-HT [7] receptors activate the mitogen activated protein kinase extracellular signal related kinase in cultured rat hippocampal neurons. Neuroscience,2001,102:361-367.
    [55]Yuan PX, Huang LD, Jiang YM, Gutkind JS, Manji HK, Chen G. The mood stabilizer valproic acid activates mitogen-activated protein kinases and promotes neurite growth. J Biol Chem, 2001,276:31674-31683.
    [56]Frechilla D, Otano A, Del Rio J. Effect of chronic antidepressant treatment on transcription factor binding activity in rat hippocampus and frontal cortex. Progr Neuro Psychopharm Biol Psychiatr,1998,22:787-802.
    [57]Thome J, Sakai N, Shin K et al. cAMP response element-mediated gene transcription is upregulated by chronic antidepressant treatment. J Neurosci,2000,20:4030-4036.
    [58]Impey S, Mark M, Villacres EC, Poser S, Chavkin C, Storm DR. Induction of CRE-mediated gene expression by stimuli that generate long-lasting LTP in area CA1 of the hippocampus. Neuron,1996,16:973-982.
    [59]Chen AC, Shirayama Y, Shin K, Neve RL, Duman RS. Expression of the cAMP response element binding protein [CREB] in hippocampus produces an antidepressant effect. Biol Psychiatry,2001,49:753-762.
    [60]Poo MM. Neurotrophins as synaptic modulators. Nat Rev Neurosci 2001:2:24-32.
    [61]Nibuya M, Morinobu S, Duman RS. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci,1995,15: 7539-7547.
    [62]Russo-Neustadt A, Beard RC, Cotman CW. Exercise, antidepressant medications, and enhanced brain derived neurotrophic factor expression. Neuropsychopharmacology,1999,21: 679-682.
    [63]Russo-Neustadt A, Ha T, Ramirez R, Kesslak JP. Physical activity-antidepressant treatment combination:impact on brain-derived neurotrophic factor and behavior in an animal model. Behav Brain Res,2001,120:87-95.
    [64]Vaidya VA, Duman RS. Role of 5-HT2A receptors in down-regulation of BDNF by stress. Neurosci Letts,1999,287:1-4.
    [65]Butterweck V, Winterhoff H, Herkenham M. St John's wort, hypericin, and imipramine:a comparative analysis of mRNA levels in brain areas involved in HPA axis control following short-term and long-term administration in normal and stressed rats. Mol Psychiatry,2001,6: 547-564.
    [66]Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry,2001,50: 260-265.
    [67]Fujimaki K, Morinobu S, Duman RS. Administration of a cAMP phosphodiesterase 4 inhibitor enhances antidepressant-induction of BDNF mRNA in rat hippocampus. Neuropsychopharmacology,2000,22:42-51.
    [68]Shieh PB, Hu SC, Bobb K, Timmusk T, Ghosh A. Identification of a signaling pathway involved in calcium regulation of BDNF expression. Neuron,1998,20:727-740.
    [69]Tao X, Finkbeiner S, Arnold DB, Shaywitz AJ, Greenberg ME. Ca2+influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron,1998,20: 709-726.
    [70]Siuciak JA, Lewis DR, Wiegand SJ, Lindsay R. Antidepressant-like effect of brain derived neurotrophic factor [BDNF]. Pharmacol Biochem Beh,1996,56:131-137.
    [71]Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F. GDNF:a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science,1993,260:1130-1132.
    [72]Hisaoka K, Nishida A, Koda T et al. Antidepressant drug treatments induce glial cell line-derived neurotrophic factor [GDNF] synthesis and release in rat C6 glioblastoma cells. J Neurochem,2001,79:25-34.
    [73]Chen AC, Eisch AJ, Sakai N, Takahashi M, Nestler EJ, Duman RS. Regulation of GFR alpha-1 and GFR alpha-2 mRNAs in rat brain by electroconvulsive seizure. Synapse,2001,39: 42-50.
    [74]Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and-independent mechanisms. Science,1999,286:1358-1362.
    [75]Riccio A, Ahn S, Davenport CM, Blendy JA, Ginty DD. Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science,1999,286: 2358-2361.
    [76]Manji HK, Moore GJ, Chen G. Clinical and preclinical evidence for the neurotrophic effects of mood stabilizers:implications for the pathophysiology and treatment of manic-depressive illness. Biol Psychiatry,2000,48:740-754.
    [77]Kohara K, Kitamura A, Morishima M, Tsumoto T. Activity-dependent transfer of brain-derived neurotrophic factor to postsynaptic neurons. Science,2001,291:2419-2423.
    [78]Hering H, Sheng M. Dendritic spines:structure, dynamics and regulation. Nat Rev Neurosci,2001,2:880-888.
    [79]Watanabe Y, Gould E, Daniels DC, Cameron H, McEwen BS. Tianeptine attenuates stress-induced morphological changes in the hippocampus. Eur J Pharmacol,1992,222: 157-162.
    [80]Norrholm SD, Ouimet CC. Chronic fluoxetine administration to juvenile rats prevents age-associated dendritic spine proliferation in hippocampus. Brain Res,2000,883:205-215.
    [81]Vaidya VA, Du Siuciak JF, Duman RS. Hippocampal mossy fiber sprouting induced by chronic electroconvulsive seizures. Neuroscience,1999,89:157-166.
    [82]Lamont SR, Paulls A, Stewart CA. Repeated electroconvulsive stimulation, but not antidepressant drugs, induces mossy fibre sprouting in the rat hippocampus. Brain Res,2001, 893:53-58.
    [83]Qiao X, Suri C, Knusel B, Noebels JL. Absence of hippocampal mossy fiber sprouting in transgenic mice overexpressing brain-derived neurotrophic factor. J Neurosci Res,2001,64: 268-276.
    [84]Horch HW, Kruttgen A, Portbury SD, Katz LC. Destabilization of cortical dendrites and spines by BDNF. Neuron,1999,23:353-364.
    [85]Patel MN, McNamara JO. Selective enhancement of axonal branching of cultured dentate gyrus neurons by neurotrophic factors. Neuroscience,1995,69:763-770.
    [86]Duman RS, Nakagawa S, Malberg J. Regulation of adult neurogenesis by antidepressant treatment. Neuropsychopharmacology,2001,25:836-844.
    [87]Gould E, Tanapat P, Rydel T, Hastings N. Regulation of hippocampal neurogenesis in adulthood. Biol Psychiatry,2000,48:715-720.
    [88]Shors TJ, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E. Neurogenesis in the adult is involved in the formation of trace memories. Nature,2001,410:372-376.
    [89]Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult hippocampus. J Neurosci,2000,20:9104-9110.
    [90]Palmer T, Takahashi J, Gage FH. The adult rat hippocampus contains primordial neural stem cells. Mol Cellular Neuroscience,1997,8:389-404.
    [91]Gould E, Reeves AJ, Graziano MSA, Gross CG. Neurogenesis in the neocortex of adult primates. Science,1999,286:548-552.
    [92]Gould E, Vail N, Wagers M, Gross CG. Adult-generated hippocampal and neocortical neurons in macaques have a transient existence. Proc Natl Acad Sci USA,2001,98:10910-10917.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700