环境中冲突信息加工的认知与神经机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一个人可以迅速从嘈杂的交通噪音中分辨出救护车的警示声音。一个人可以排除一段音乐的干扰参加另一段旋律的演奏。一个人可以在餐厅中阅读报纸上的新闻不受旁边人们谈话的影响。人们可以很容易了解环境中新颖和变化的刺激,并且不断的同步更新和整合刺激源。这是人类日常生活需要的一种能力,使个体有选择地运用环境中的某些特点,并且排除其他冲突或分心刺激,从而进行认知加工。这是对环境中冲突信息加工的能力,它对人类生存和适应是必不可少的。然而,由于冲突信息加工研究范式的多样性,国内外关于冲突信息加工的认知与神经机制的研究还是处在比较不系统的情况下。依据人类在真实生活环境中经常出现的接受外界信息的方式(单一感觉通道信息输入和跨感觉通道信息输入),本论文设计利用和发展经典冲突信息加工的实验范式,并以事件相关电位(ERP)和功能性磁共振成像(fMRI)作为技术手段,从多个维度系统地探讨了环境中冲突信息加工的认知与神经机制。
     首先,研究一以颜色、大小、形状以及距离方面的冲突信息素材为实验材料,使用单一感觉通道刺激呈现方式建立冲突信息加工范式,利用ERP作为技术手段,记录分析环境中单一感觉通道冲突信息加工的相关脑电信号。通过数据分析发现,单一感觉通道冲突信息加工是分为两个阶段的,主要涉及到冲突信息察觉监视和冲突信息反应抑制。在脑电信号上,对不同类型冲突信息的察觉监视的表现形式是相似的,“不一致”条件比“一致”条件诱发出了一个更加负性的ERP成分。对不同类型冲突信息反应抑制的表现形式与任务的类型有关。其中,在对颜色冲突信息加工中和大小冲突信息加工中,与冲突信息反应抑制相关的脑电成分是以晚期负成分(N500或者N500-700)的形式出现的。而在对形状冲突信息加工中和距离冲突信息加工中,与冲突信息反应抑制相关的脑电成分是以晚期正成分(LPC)的形式出现的。此外,在距离冲突信息加工中,从差异波(“距离不一致”条件减“距离一致”条件)观察分析,在150到300毫秒时间窗口中,出现一个显著负成分N280。该负成分反映了认知加工初期大脑在表象层面对冲突信息的加工。
     其次,研究二以“视-听”、“视-嗅”、“视-味”以及“视-触”方面的冲突信息素材为实验材料,使用跨感觉通道刺激呈现方式建立冲突信息加工范式,利用ERP作为技术手段,记录分析环境中跨感觉通道冲突信息加工的相关脑电信号。通过数据分析发现,跨感觉通道冲突信息加工涉及到一个阶段,冲突信息整合反应阶段。在脑电信号上,对不同类型冲突信息整合反应的表现形式是相似的,“不一致”条件比“一致”条件诱发出了一个更加负性的ERP成分。但是只有当“听”、“味”以及“触”所呈现的信息是负性,被试的情绪心境为负性时,与冲突信息整合反应相关的负性脑电成分(“不一致”条件减去“一致”条件)才会出现。而在正性情绪心境条件下,“不一致”条件与“一致”条件所诱发的脑电信号之间没有差异。这是由于正性情绪对人脑加工冲突信息的认知能力有促进作用。此外,当被试在看见具有刺激性嗅觉特征的植物的图片后会比看见具有清香性嗅觉特征的植物的图片后,诱发一个更大波幅的N1成分。当被试在看见具有酸性味觉特征的食物的图片后会比看见具有甜性味觉特征的食物的图片后,诱发一个更大波幅的P2成分。这反映了,大脑对具有负性嗅觉特征的物体和负性味觉特征的物体重视程度更高。具有负性感觉特征的刺激对人的生存和环境适应很重要。
     最后,研究三两个实验从单一感觉通道冲突信息加工范式和跨感觉通道冲突信息加工范式中选取了形状冲突信息加工范式和“视-味”冲突信息加工范式,结合fMRI技术考察了环境中冲突信息加工的脑激活模式。实验结果显示,单一感觉通道冲突信息加工会激活腹内侧前额叶、额下回、颞上回以及缘上回。其中颞上回可能与冲突信息察觉监视有关,而腹内侧前额叶、额下回以及缘上回是负责单一感觉通道冲突信息反应抑制这一认知过程。同时,跨感觉通道冲突信息加工会激活额中回、舌回以及中央后回。其中额中回与舌回被认为是负责对跨感觉通道冲突信息整合加工,而中央后回可能与感觉对比有关。fMRI实验与ERP实验同样发现,只有当“味”所呈现的信息是负性的时候,“不一致”条件减去“一致”条件才会出现相应脑部区域的激活。也就是说在跨感觉通道信息加工过程中,只有在情绪心境是负性的情况下,大脑才会反映出对冲突信息的加工困难。从而进一步论证了ERP实验的推测,人类对环境中冲突信息加工能力会受到情绪心境的影响。
     综合本论文设计中三个研究的10个实验,得到的结论如下。第一,颜色、大小、形状和距离冲突信息加工范式以及“视-听”、“视-嗅”、“视-味”和“视-触”冲突信息加工范式,是研究环境中冲突信息加工的认知与神经机制的有效可靠的实验范式。第二,单一感觉通道冲突信息加工是分为两个阶段,主要涉及到冲突信息察觉监视和冲突信息反应抑制。第三,跨感觉通道冲突信息加工涉及到一个阶段,冲突信息整合反应阶段。第四,颞上回与单一感觉通道冲突信息察觉监视有关,而腹内侧前额叶、额下回以及缘上回是负责对单一感觉通道冲突信息反应抑制。此外,额中回与舌回是负责对跨感觉通道冲突信息整合加工,而中央后回可能与感觉对比有关。第五,在跨感觉通道冲突信息加工过程中,环境中的信息会从不同的感觉通道输入,可能进行语义编码,最后进行整合反应。正性情绪心境会对人脑冲突信息加工的认知能力有促进和加强的作用。
A person can quickly identify the warning sound of an ambulance from the loud traffic noise. One can exclude the interference of a piece of music to play a melody. A person can read the newspaper without being affected by the talk from the next table. Human can easily understand the stimulus novelty and change in the environment to synchronize and integrate the source of stimuli. Activity in daily life requires an ability to make individuals choose to use some of the characteristics of the environment and exclude other conflict or distraction stimuli. After that an individual could make cognitive processing successfully, which is the conflict information processing in environment. It is essential for the adaptation and the survival of human. However, the present situation about the cognitive and neural basis of conflict information processing in environment is still not systematic due to the diversity of the conflict information processing research paradigms. Based on the human styles of accepting outside information (single-sensory-channel information input and cross-feeling-channel information input), the thesis design has developed the classic conflict information processing paradigms. Using event-related potentials (ERPs) and functional magnetic resonance imaging (fMRI), the present study aimed to systematically explore the cognitive and neural mechanisms of the conflict information processing in environment from multiple dimensions.
     Firstly, study1has utilized the conflict information materials from color, size, shape and distance aspects as the experimental materials in the single sensory conflict information processing paradigm. The ERPs technology was used to record the physiological electrical signals during the single sensory conflict information processing. Scalp event-related potential analysis revealed the single sensory channel conflict information process was divided into two phases, mainly related to the conflict information monitoring and the conflict information response. Manifestations about physiological electrical signals of the different types of the conflict information monitoring were similar. The conflict information monitoring was reflected by a negative ERP component elicited by the incongruent condition than the congruent condition. Manifestations about physiological electrical signals of the different types of conflict information response were related to the stimulus dimensions. In color conflict information processing and size conflict information processing, the conflict information response was reflected by a late negative ERP component (N500or N500-700) elicited by the incongruent condition than the congruent condition. However, in shape conflict information processing and distance conflict information processing, the conflict information response was reflected by a late positive ERP component (LPC) elicited by the incongruent condition than the congruent condition. In addition, in distance conflict information processing paradigm, observing from the difference wave, a significant negative component N280was elicited by the distance incongruent condition than the distance congruent condition. This negative component reflected the conflict information processing in the representation level at the early phase of the cognitive processing.
     Then. study2has utilized the conflict information materials from visual-audio, visual-olfactory, visual-taste and visual-touch aspects as the experimental materials in the cross-modal conflict information processing paradigm. The ERP technology was used to record the physiological electrical signals during the cross-modal conflict information processing. Scalp event-related potential analysis revealed the cross-modal conflict information processing happened in the conflict information integration and response stage. Manifestations about physiological electrical signals of the different types of the conflict information integration and response were similar. The conflict information integration and response were reflected by a negative ERP component elicited by the incongruent condition than the congruent condition. However, only when the stimuli on auditory channel, gustatory channel and tactile channel are negative, the participants would gain negative emotions. After that, the negative ERP component related to the conflict information integration and response would appear. When the participants gain positive emotions, there would be no difference on the physiological electrical signals between the incongruent condition and the congruent condition. The reason of this phenomenon was the positive emotion would facilitate the cognitive abilities of human brain about the conflict information processing. In addition, after the participants saw a photo of the plant with a pungent olfactory characteristic, a more negative N1component would be elicited, compared with seeing a photo of the plant with fragrance olfactory characteristic. After the participants saw a photo of the food with the sour feature, a more positive P2component would be elicited, compared with seeing a photo of the food with the sweet feature. This reflects that human brains pay more attention on the object with a negative taste characteristic or a negative olfactory characteristic. The stimuli with the negative characteristics are very important for human survival and adaptation to the environment.
     Finally, study3has chosen the shape conflict information materials and the visual-taste conflict information materials as the experimental materials, combining fMRI technology, to explore the cognitive and the neural mechanisms of the conflict information processing in environment. The pattern of the neural activity from the contrast between the shape incongruent condition and the shape congruent condition showed that the inferior frontal gyrus, the medial frontal gyrus, the supramarginal gyrus and the superior temporal gyrus might be related to the conflict information processing in the single sensory channel. Specifically, the superior temporal gyrus might be involved in the conflict information monitoring; the inferior frontal gyrus, the medial frontal gyrus and the supramarginal gyrus were probably involved in the conflict information response. The pattern of the neural activity from the contrast between the negative visual-taste incongruent condition and the negative visual-taste congruent condition showed that the middle frontal gyrus, the lingual gyrus, and the postcentral gyrus might be related to the conflict information processing in the cross modality. Specifically, middle frontal gyrus and the lingual gyrus might be involved in the conflict information integration and response; the postcentral gyrus was probably involved in the sensory contrast. The results of fMRI experiment and ERP experiment were similar. Only when the stimuli on gustatory channel were negative, the participants would gain negative emotions. After that, there were three regions that showed positive activation from the contrast between the visual-taste incongruent condition and the visual-taste congruent condition. When the participants gain positive emotions, there would be no regions that showed positive activation from the contrast between the visual-taste incongruent condition and the visual-taste congruent condition. In other words, conflict information processing appears only in the negative environment in the cross modality. These results further demonstrate the ERP experiments speculation, the capacity of the conflict information processing is influenced by the emotional state of human.
     Together with the10experiments in the present study, the results indicated that, firstly, four single sensory conflict information processing paradigms (color, size, shape and distance) and four cross-modal conflict information processing paradigms (visual-audio, visual-olfactory, visual-taste and visual-touch) are effective and reliable paradigms to explore the cognitive and neural mechanisms of the conflict information processing in environment. Secondly, the single sensory channel conflict information process is divided into two phases, mainly related to the conflict information monitoring and conflict information response. Thirdly, the cross-modal conflict information processing happens in the conflict information integration and response stage. Fourthly, the superior temporal gyrus might be involved in the conflict information monitoring; the inferior frontal gyrus, the medial frontal gyrus and the supramarginal gyrus are probably involved in the conflict information response; The middle frontal gyrus and the lingual gyrus might be involved in the conflict information integration and response; the postcentral gyrus is probably involved in the sensory contrast. Fifthly, during the cross-modal information processing, the environmental information is imported through different sensory channels then converted into the semantic coding. The conflict information integration and response happens in the end. Positive emotional state of mind will promote and strengthen the cognitive capacity of human brain about the conflict information processing.
引文
刘强,张志杰,王琪,张庆林.(2008).多种感觉信息整合的认知与神经机制研究.心理科学,31(4),1021-1023.
    彭聃龄.(2001).普通心理学(修订版).北京:北京师范大学出版社.
    邵志芳.(2006).以知心理学:理论、实验和应用.上海:上海教育出版社.
    王甦,汪安圣.(1992).以知心理学北京:北京大学出版社.
    杨炯炯,翁旭初,管林初,匡培梓,张懋植,孙伟建,等(2003).内侧颞叶系统在知觉启动中的作用及其机制.心理学报,35(6),761-766.
    钟炽兴.(2010).大型商业建筑表皮的当代视觉文化特征.硕士学位论文,湖南大学.
    周晓林,曲延轩,舒华,Gareth Gaskell,William Marslen-Wilson. (2004)汉语听觉词汇加工中声调信息对语义激活的制约作用.心理学报,36(4),379-392.
    Aarts, E., Roelofs, A., & van Turennout, M. (2009). Attentional control of task and response in lateral and medial frontal cortex:Brain activity and reaction time distributions. Neuropsychologia,47(10),2089-2099.
    Aine, C., & Harter, M. (1984). Event-related potentials to stroop stimuli:Color and word processing. Annals of the New York Academy of Sciences,425,152-153.
    Alais, D., & Burr, D. (2004). The ventriloquist effect results from near-optimal bimodal integration. Current biology,14(3),257-262.
    Ashby, F., Isen, A., & Turken, A. (1999). A neuropsychological theory of positive affect and its influence on cognition. Psychological review,106(3),529-550.
    Atkinson, C., Drysdale, K., & Fulham, W. (2003). Event-related potentials to Stroop and reverse Stroop stimuli. International journal of psychophysiology,47(1),1-21.
    Beauchamp, M., Nath, A.,& Pasalar, S. (2010). fMRI-guided transcranial magnetic stimulation reveals that the superior temporal sulcus is a cortical locus of the McGurk effect. The journal of neuroscience,30(7),2414-2417.
    Botvinick, M., Braver, T., Barch, D., Carter, C., & Cohen, J. (2001). Conflict monitoring and cognitive control. Psychological review,108(3),624-652.
    Braver, T., Barch, D., Gray, J., Molfese, D., & Snyder, A. (2001). Anterior cingulate cortex and response conflict:Effects of frequency, inhibition and errors. Cerebral cortex,11(9),825-836.
    Brewer, J., Worhunsky, P., Carroll, K., Rounsaville, B., & Potenza, M. (2008). Pre-treatment brain activation during Stroop task is associated with outcomes in Cocaine dependent patients. Biological psychiatry,64(11),998-1004.
    Bunge, S., Hazeltine, E., Scanlon, M., Rosen, A., & Gabrieli, J. (2002). Dissociable contributions of prefrontal and parietal cortices to response selection. Neuroimage,17(3),1562-1571.
    Bunge, S., Dudukovic, N., Thomason, M., Vaidya, C., & Gabrieli, J. (2002). Immature frontal lobe contributions to cognitive control in children:Evidence from fMRI. Neuron,33(2),301-311.
    Bush, G., Luu, P., & Posner, M. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in cognitive sciences,4(6),215-222.
    Bush, G, Vogt, B., Holmes, J., Dale, A., Greve, D., Jenike, M., et al. (2002). Dorsal anterior cingulate cortex:A role in reward-based decision making. Proceedings of the National Academy of Sciences of the United States of America,99(1), 523-528.
    Bush, G, Whalen, P., Rosen, B., Jenike, M., Mclnerney, S., & Rauch, S. (1998). The counting Stroop:an interference task specialized for functional neuroimaging—validation study with functional MRI. Human brain mapping, 6(4),270-282.
    Carretie, L., Mercado, F., Tapia, M., & Hinojosa, J. (2001). Emotion, attention, and the 'negativity bias', studied through event-related potentials. International journal of psychophysiology,41(1),75-85.
    Carter, C., Braver, T., Barch, D., Botvinick, M., Noll, D., & Cohen, J. (1998). Anterior cingulate cortex, error detection, and the online monitoring of performance. Science,280(5364),747-749.
    Cohen, J., Dunbar, K., & McClelland, J. (1990). On the control of automatic processes: A parallel distributed processing account of the Stroop effect. Psychological review,97(3),332-361.
    Correll, J., Park, B., Judd, C., & Wittenbrink, B. (2002). The police officer's dilemma: Using ethnicity to disambiguate potentially threatening individuals. Journal of personality and social psychology,83(6),1314-1326.
    Dalgleish, T., & Power, M. (2000). Handbook of Cognition and Emotion. New York: John. Wiley & Sons Ltd.
    Delplanque, S., Lavoie, M., Hot, P., Silvert, L., & Sequeira, H. (2004). Modulation of cognitive processing by emotional valence studied through event-related potentials in humans. Neuroscience letters,356(1),1-4.
    Delplanque, S., Silvert, L., Hot, P., & Sequeira, H. (2005). Event-related P3a and P3b in response to unpredictable emotional stimuli. Biological psychology,68(2), 107-120.
    Donkers, F., & van Boxtel, G. (2004). The N2 in go/no-go tasks reflects conflict monitoring not response inhibition. Brain and Cognition,56(2),165-176.
    Drewe, E. (1975). Go-no go learning after frontal lobe lesions in humans. Cortex,11(1), 8-16.
    Eriksen, B., & Eriksen, C. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics,16(1),143-149.
    Eriksen, C., & Schultz, D. (1979). Information processing in visual search:A continuous flow conception and experimental results. Perception & Psychophysics,25(4),249-263.
    Ernst, M., & Bulthoff, H. (2004). Merging the senses into a robust percept. Trends in cognitive sciences,8(4),162-169.
    Ernst, M., & Banks, M. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature,415(6870),429-433.
    Fan, J., Flombaum, J., McCandliss, B., Thomas, K., & Posner, M. (2003). Cognitive and brain consequences of conflict. Neuroimage,18(1),42-57.
    Farah, M., Peronnet, F., Gonon, M., & Giard, M. (1988). Electrophysiological evidence for a shared representational medium for visual images and visual percepts. Journal of experimental psychology General,117(3),248-257.
    Fehr, T., Wiedenmann, P., & Herrmann, M. (2006). Nicotine Stroop and addiction memory—An ERP study. International journal of psychophysiology,62(2), 224-232.
    Gomez, C., Fernandez, A., Maestu, F., Amo, C., Gonzalez-Rosa, J., Vaquero, E., et al. (2004). Task-specific sensory and motor preparatory activation revealed by contingent magnetic variation. Brain research. Cognitive brain research,21(1), 59-68.
    Gemba, H., Sasaki, K., & Brooks, V. (1986).'Error' potentials in limbic cortex (anterior cingulate area 24) of monkeys during motor learning. Neuroscience letters, 70(2),223-227.
    Gepshtein, S., & Banks, M. (2003). Viewing geometry determines how vision and haptics combine in size perception. Current biology,13(6),483-488.
    Hagoort, P., Hald, L., Bastiaansen, M., & Petersson, K. (2004). Integration of word meaning and world knowledge in language comprehension. Science,304(5669), 438-441.
    Hallett, P., & Adams, B. (1980). The predictability of saccadic latency in a novel voluntary oculomotor task. Vision research,20(4),329-339.
    Helbig, H., & Ernst, M. (2007). Optimal integration of shape information from vision and touch. Experimental brain research,179(4),595-606.
    Huang, Y. X., & Luo, Y. J. (2006). Temporal course of emotional negativity bias:An ERP study. Neuroscience letters,398(1-2),91-96.
    Ito, S., Stuphorn, V., Brown, J., & Schall, J. (2003). Performance monitoring by the anterior cingulate cortex during saccade countermanding. Science 302(5642), 120-122.
    Ito, T., & Bartholow, B. (2009). The neural correlates of race. Trends in cognitive sciences,13(12),524-531.
    Joassin, F., Maurage, P., Bruyer, R., Crommelinck, M., & Campanella, S. (2004). When audition alters vision:An event-related potential study of the cross-modal interactions between faces and voices. Neuroscience letters,369(2),132-137.
    Jousmaki, V., & Hari, R. (1998). Parchment-skin illusion:sound-biased touch. Current biology,8(6),190.
    Keetels, M., Stekelenburg, J., & Vroomen, J. (2007). Auditory grouping occurs prior to intersensory pairing:Evidence from temporal ventriloquism. Experimental brain research,180(3),449-456.
    Kiehl, K., Liddle, P., & Hopfinger, J. (2000). Error processing and the rostral anterior cingulate:An event-related fMRI study. Psychophysiology,37(2),216-223.
    Knill, D., & Saunders, J. (2003). Do humans optimally integrate stereo and texture information for judgments of surface slant? Vision research,43(24),2539-2558.
    Kobayashi, M., Takeda, M., Hattori, N., Fukunaga, M., Sasabe, T., Inoue, N., et al. (2004). Functional imaging of gustatory perception and imagery:"top-down" processing of gustatory signals. Neuroimage,23(4),1271-1282.
    Kok, A. (1986). Effects of degradation of visual stimuli on components of the event-related potential (ERP) in go/nogo reaction tasks. Biological psychology, 23(1),21-38.
    Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap:Cognitive basis for stimulus-response compatibility--a model and taxonomy. Psychological review,97(2),253-270.
    Kusak, G., Grune, K., Hagendorf, H., & Metz, A. (2003). Updating of working memory in a running memory task:An event-related potential study. International Journal of Psychophysiology,39 (1),51-65.
    Kutas, M., & Hillyard, S. (1980). Reading senseless sentences:Brain potentials reflect semantic incongruity. Science,207(4427),203-205.
    Lalanne, C., & Lorenceau, J. (2004). Crossmodal integration for perception and action. Journal of physiology-Paris,98(1-3),265-279.
    Liotti, M., Woldorff, M., Perez, R., & Mayberg, H. (2000). An ERP study of the temporal course of the Stroop color-word interference effect. Neuropsychologia, 38(5),701-711.
    Luck, S., Hillyard, S., Mouloua, M., Woldorff, M., Clark, V., & Hawkins, H. (1994). Effects of spatial cuing on luminance detectability:Psychophysical and electrophysiological evidence for early selection. Journal of experimental psychology. Human perception and performance,20(4),887-904.
    Luck, S., Woodman, G., & Vogel, E. (2000). Event-related potential studies of attention. Trends in cognitive sciences,4(11),432-440.
    Markela-Lerenc, J., Ille, N., Kaiser, S., Fiedler, P., Mundt, C., & Weisbrod, M. (2004). Prefrontal cingulate activation during executive control:which comes first? Brain research.Cognitive brain research,18(3),278-287.
    McCallum, W., Farmer, S., & Pocock, P. (1984). The effects of physical and semantic incongruities on auditory event-related potentials. Electroencephalography and Clinical neurophysiology,59(6),477-488.
    McGurk, H., & MacDonald, J. (1976). Hearing lips and seeing voices. Nature, 264(5588),746-748.
    Menon, V., Adleman, N., White, C., Glover, G., & Reiss, A. (2001). Error-related brain activation during a Go/Nogo response inhibition task. Human brain mapping, 12(3),131-143.
    Menon, V., White, C., Eliez, S., Glover, G., & Reiss, A. (2000). Analysis of a distributed neural system involved in spatial information, novelty, and memory processing. Human brain mapping,11(2),117-129.
    Milham, M., Banich, M., & Barad, V. (2003). Competition for priority in processing increases prefrontal cortex's involvement in top-down control:An event-related fMRI study of the stroop task. Brain research. Cognitive brain research,17(2), 212-222.
    Milham, M., Banich, M., Webb, A., Barad, V., Cohen, N., Wszalek, T., et al. (2001). The relative involvement of anterior cingulate and prefrontal cortex in attentional control depends on nature of conflict. Brain research. Cognitive brain research, 72(3),467-473.
    Mitchell, R., & Phillips, L. (2007). The psychological, neurochemical and functional neuroanatomical mediators of the effects of positive and negative mood on executive functions. Neuropsychologia,45(4),617-629.
    Nelson, J., Reuter-Lorenz, P., Sylvester, C., Jonides, J., & Smith, E. (2003). Dissociable neural mechanisms underlying response-based and familiarity-based conflict in working memory. Proceedings of the National Academy of Sciences of the United States of America,100(19),11171-11175.
    Nieuwenhuis, S., Ridderinkhof, K., Blom, J., Band, G., & Kok, A. (2001). Error-related brain potentials are differentially related to awareness of response errors: Evidence from an antisaccade task. Psychophysiology,38(5),752-760.
    Nieuwenhuis, S., Yeung, N., van den Wildenberg, W., & Ridderinkhof, K. (2003). Electrophysiological correlates of anterior cingulate function in a go/no-go task: Effects of response conflict and trial type frequency. Cognitive, Affective & Behavioral neuroscience,5(1),17-26.
    O'Doherty, J., Kringelbach, M., Rolls, E., Hornak, J., & Andrews, C. (2001). Abstract reward and punishment representations in the human orbitofrontal cortex. Nature neuroscience,4(1),95-102.
    Pauli, P., Bourne, L., Diekmann, H., & Birbaumer, N. (1999). Cross-modality priming between odors and odor-congruent words. The American journal of psychology, 112(2),175-186.
    Paus, T. (2001). Primate anterior cingulate cortex:Where motor control, drive and cognition interface. Nature reviews. Neuroscience,2(6),417-424.
    Peterson, E., Deary, I., & Austin, E. (2003). On the assessment of cognitive style:Four red herrings. Personality and Individual differences,34(5),899-904.
    Pfefferbaum, A., Ford, J., Weller, B., & Kopell, B. (1985). ERPs to response production and inhibition. Electroencephalography and Clinical neurophysiology,60(5), 423-434.
    Phillips, L. H., Bull, R., Adams, E., & Fraser, L. (2002). Positive mood and executive function:Evidence from Stroop and fluency tasks. Emotion,2(1),12-22.
    Picard, N., & Strick, P. (1996). Motor areas of the medial wall:A review of their location and functional activation. Cerebral cortex,6(3),342-353.
    Polich, J. (2007). Updating P300:An integrative theory of P3a and P3b. Clinical neurophysiology,118(10),2128-2148.
    Puce, A., Epling, J., Thompson, J., & Carrick, O. (2007). Neural responses elicited to face motion and vocalization pairings. Neuropsychologia,45(1),93-106.
    Qiu, J., Li, H., Liu, Q., & Zhang, Q. L. (2007). Brain mechanisms underlying visual perception and visual mental imagery of Chinese pseudo-characters:An event-related potential study. Brain research,1184,202-209.
    Qiu, J., Luo, Y. J., Wang, Q. H., Zhang, F. H., & Zhang, Q. L. (2006). Brain mechanism of Stroop interference effect in Chinese characters. Brain research,1072(1), 186-193.
    Qiu, J., Zhang, Q. L., Li, H., Luo, Y. J., Yin, Q. Q., Chen, A. T, et al. (2007). The event-related potential effects of cognitive conflict in a Chinese character-generation task. Neuroreport,18(9),881-886.
    Rebai, M., Bernard, C., & Lannou, J. (1997). The Stroop's test evokes a negative brain potential, the N400. The International journal of neuroscience,91(1-2),85-94.
    Ridderinkhof, K., Ullsperger, M., Crone, E., & Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. Science 306(5695),443-447.
    Rubia, K., Russell, T., Overmeyer, S., Brammer, M., Bulhnore, E., Sharma, T., et al. (2001). Mapping motor inhibition:Conjunctive brain activations across different versions of go/no-go and stop tasks. Neuroimage,13(2),250-261.
    Saito, D. N., Okada, T., Morita, Y., Yonekura, Y, & Sadato, N. (2003). Tactile-visual cross-modal shape matching:A functional MRI study. Brain research. Cognitive brain research,17(1),14-25.
    Schneider, T., Lorenz, S., Senkowski, D., & Engel, A. (2011). Gamma-band activity as a signature for cross-modal priming of auditory object recognition by active haptic exploration. The journal of neuroscience,31 (7),2502-2510.
    Schroeter, M., Vogt, B., Frisch, S., Becker, G., Barthel, H., Mueller, K., et al. (2012). Executive deficits are related to the inferior frontal junction in early dementia. Brain,135(1),201-215.
    Schutz, M., & Kubovy, M. (2009). Causality and cross-modal integration. Journal of experimental psychology:Human perception and performance,35(6), 1791-1810.
    Schutz, M., & Lipscomb, S. (2007). Hearing gestures, seeing music:Vision influences perceived tone duration. Perception,36(6),888-897.
    Shams, L., Kamitani, Y., & Shimojo, S. (2000). Illusion:What you see is what you hear. Nature,405(6814),788.
    Shams, L., Ma, W. J., & Beierholm, U. (2005). Sound-induced flash illusion as an optimal percept. Neuroreport,16(17),1923-1927.
    Shidara, M., & Richmond, B. (2002). Anterior cingulate:single neuronal signals related to degree of reward expectancy. Science,296(5573),1709-1711.
    Shima, K., & Tanji, J. (1998). Role for cingulate motor area cells in voluntary movement selection based on reward. Science,282(5392),1335-1338.
    Simon, J. (1969). Reactions toward the source of stimulation. Journal of experimental psychology,81(1),174-176.
    Simon, J., & Berbaum, K. (1990). Effect of conflicting cues on information processing: the'Stroop effect' vs. the 'Simon effect'. Acta psychologica,73(2),159-170.
    Smeets, P., de Graaf, C., Stafleu, A., van Osch, M., Nievelstein, R., & van der Grond, J. (2006). Effect of satiety on brain activation during chocolate tasting in men and women. The American journal of clinical nutrition,83(6),1297-1305.
    Stoppel, C., Boehler, C., Strumpf, H., Heinze, H., Hopf, J., Duzel, E., et al. (2009). Neural correlates of exemplar novelty processing under different spatial attention conditions. Human brain mapping,30(11),3759-3771.
    Stroop, J. (1935). Studies of interference in serial verbal reactions. Journal of experimental psychology,18(6),643-661.
    Swick, D., Ashley, V., & Turken, A. (2008). Left inferior frontal gyrus is critical for response inhibition. BMC Neuroscience,9,102.
    Tracy, J., Flanders, A., Madi, S., Natale, P., Delvecchio, N., Pyrros, A., et al. (2003). The brain's response to incidental intruded words during focal text processing. Neuroimage,18(1),117-126.
    Tsakiris, M., Longo, M., & Haggard, P. (2010). Having a body versus moving your body:neural signatures of agency and body-ownership. Neuropsychologia,48(9), 2740-2749.
    Valle-Inclan, F. (1996). The locus of interference in the Simon effect:An ERP study. Biological psychology,43(2),147-162.
    van Boxtel, G, van der Molen, M., Jennings, J., & Brunia, C. (2001). A psychophysiological analysis of inhibitory motor control in the stop-signal paradigm. Biological psychology,58(3),229-262.
    van Veen, V., & Carter, C. (2002). The timing of action-monitoring processes in the anterior cingulate cortex. Journal of cognitive neuroscience,14(4),593-602.
    van Veen, V., Cohen, J., Botvinick, M., Stenger, V., & Carter, C. (2001). Anterior cingulate cortex, conflict monitoring, and levels of processing. Neuroimage, 14(6),1302-1308.
    Vroomen, J., & de Gelder, B. (2000). Sound enhances visual perception:Cross-modal effects of auditory organization on vision. Journal of experimental psychology: Human perception and performance,26(5),1583-1590.
    Wang, Y. W., Lin, C. D., Liang, J., Wang, Y., & Zhang, W. X. (2011). Neural correlates of audio-visual modal interference inhibition investigated in children by ERR Science China Life Sciences,54(2),194-200.
    Ward, W. (1969). Creativity and environmental cues in nursery school children. Developmental psychology,1(5),543-547.
    West, R., & Alain, C. (1999). Event-related neural activity associated with the Stroop task.. Brain research. Cognitive brain research,8(2),157-164.
    White, T., & Prescott, J. (2007). Chemosensory cross-modal stroop effects:Congruent odors facilitate taste identification. Chemical senses,32(4),337-341.
    Wittfoth, M., Schroder, C., Schardt, D., Dengler, R., Heinze, H., & Kotz, S. (2010). On emotional conflict:Interference resolution of happy and angry prosody reveals valence-specific effects. Cerebral cortex 20(2),383-392.
    Wolach, A., McHale, M., & Tarlea, A. (2004). Numerical stroop effect. Perceptual and Motor skills,98(1),67-77.
    Xiao, X., Qiu, J., & Zhang, Q. L. (2009). The dissociation of neural circuits in a Stroop task. Neuroreport,20(1),674-678.
    Xiao, X., Yang, W. J., Jia, L., Lei, M., Chen, A. T., & Zhang, Q. L. (2011). Neural mechanism of conflict control in a number interference task. Neuroreport, 22(18),979-983.
    Yeung, N., Botvinick, M., & Cohen, J. (2004). The neural basis of error detection: Conflict monitoring and the error-related negativity. Psychological review, 111(4),931-959.
    Yin, Q. Q., Qiu, J., Zhang, Q. L., & Wen, X. H. (2008). Cognitive conflict in audiovisual integration:an event-related potential study. Neuroreport,19(5), 575-578.
    Yuan, J. J., Xu, S., Yang, J. M., Liu, Q., Chen, A. T., Zhu, L. P., et al. (2011). Pleasant mood intensifies brain processing of cognitive control:ERP correlates. Biological psychology,87(1),17-24.
    Yuan, J. J., Yang, J. M., Chen, J., Meng, X. X., & Li, H. (2010). Enhanced sensitivity to rare, emotion-irrelevant stimuli in females:Neural correlates. Neuroscience, 169(4),1758-1767.
    Yuille, A., & Bulthoff, H. (1996). Bayesian decision theory and psychophysics. In:Knill, D., Richards, W.(Eds.), Perception as Bayesian Inference, (pp.123-162). New York:Cambridge University Press.
    Zysset, S., Huber, O., Ferstl, E., & von Cramon, D. (2002). The anterior frontomedian cortex and evaluative judgment:An fMRI study. Neuroimage,15(4),983-991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700