颅骨修补术促进神经功能改善的机制研究及手术时机探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的与意义颅骨修补或成形术是外科医师最早涉足的颅脑手术之一,也是现代神经外科最普通的常规手术。近年来,大量的临床观察提示颅骨缺损后患者出现一系列神经症状,包括严重的头痛、眩晕、易疲劳、易激惹、记忆力下降、抑郁、对震动及声响耐受力下降,同时在颅骨缺损的病理状态下,肢体障碍及失语等神经功能障碍不易恢复,且易诱发癫痫发作。但其确切机制尚不十分清楚,Yamaura将其称为“皮瓣凹陷综合征”(sinking skin flap syndrome, SSFS),归因于大气压对缺乏保护脑组织的压迫。也有学者认为是颅骨缺损后脑脊液循环失常及受阻所致。但可以达成共识的是,颅骨修补已不仅仅是美容整形手术,更是对患者神经功能康复有治疗作用的手术。大量研究都证实颅骨修补后一系列神经症状及不适可明显改善甚至逆转意识状态,正是基于颅骨修补可改善神经功能的现实观察,近年来颅骨修补的手术时机问题成为临床研究中的热点,主要关注早期(缺损3月内)甚至超早期(6周内)修补对神经功能康复的影响(是否改善神经功能、脑灌注、脑血流等)及并发症。研究结果众多但差异也不小,大多数研究认为早期手术对于术后并发症特别是感染发生率无影响,也有研究者证实早期修补将导致较高的并发症发生率。但是现有研究中,大多局限于颅骨修补术对某个指标的影响,缺乏从总体上多角度分析手术影响的实验设计,而且早晚期修补的优缺点对比研究极少,大多数局限于小样本的观察,不设对照组,说服力不足。
     正基于此,本研究分两部分,从颅骨修补术后颅内血流速度、脑灌注、颅内压、脑电图、认知功能、生存质量等多个角度对颅骨修补促进神经功能改善做一全景式描述。另通过设计不同手术时机的同质患者之间的对比,观察早期修补与晚期修补对脑灌注、手术时间、出血量以及术后并发症影响的不同,为手术时机的选择提供理论和实践依据。
     研究方法
     研究分以下两部分:
     一、颅骨修补术促进神经功能改善的机制研究。利用多种技术手段对颅骨修补前及术后3月的脑血流速度(采用TCD技术)、脑灌注情况(采用PWI技术)、颅内压变化(腰穿压力)、脑电功率谱变化、心理状况(SAS、SDS)、生存质量(WHOQOL-BREF)等进行对比研究观察有无异同。
     二、颅骨修补手术时机的初步探讨。基于第一部分研究,颅骨修补术本身具备促进脑灌注、改善脑功能、提高生存质量、缓解患者不良情绪等多种治疗效用。但仅凭上述结果远远不能推测出早期颅骨修补一定能使患者获益的结论。首先,修补本身能带来益处并不意味着早期修补就一定较晚期修补带来的益处多。这种严格意义上不同手术时机患者受益程度的比较研究目前极少。其次,手术时机的改变不仅要考虑到可能带来的益处,更要考虑到是否可能对患者带来不利,术后并发症(感染、伤口问题等)就是一个不容回避的问题,而且国外文献在并发症方面的研究结论并不一致。因此,设计一个能够在早期和晚期间比较手术效果利弊的对比研究就显得十分必要。我们筛选符合条件(具体纳入及排除标准,患者一般资料见正文)的患者分别行早期及常规修补,对不同手术时机组患者的年龄、性别、术前GCS、GOS评分、颅骨缺损直径、缺损部位行统计学的同质性检验,结果显示不同手术时机组的患者年龄、性别、术前GCS、GOS评分及颅骨缺损直径比较P值均明显大于0.05,提示两组在上述因素中无显著性差异。使用Chi-square test检验不同手术时机组中缺损部位比例的同质性,F=0.507意味着不存在显著性差异。由此证明了两组患者在分配中的同质性。而在距去骨瓣减压术的时间的比较中,两组P值小于0.05,提示两组确是不同手术时机完成的研究。在上述前提下,比较颅骨修补前及术后3月的脑血流平均速度(采用TCD技术)、手术耗时(特别是皮瓣分离时间)、术中出血量、并发症的异同。
     研究结果
     第一部分:颅骨修补后,修补侧大脑中动脉的流速从术前的50.8±13.83cm/s提高到了术后的64.4±10.2cm/s,具有统计学意义上的显著性差异(t=-25.62,P<0.001),而同侧颈内动脉,对侧大脑中动脉及颈内动脉在颅骨修补术前后无显著性差异;颅骨修补后,在感兴趣区(主要选取为颅骨修补材料下方的脑皮层区域),不论是采用CTP技术还是采用DSC-PWI技术,灌注异常指数都显著性降低;随着时间的变化,颅内压存在统计学意义上的显著性改变(F=4826.592,P<0.001)。其中颅骨修补术后3月的颅内压较术前、术后1天、术后1周均有显著性差异;脑电功率分析显示:θ/β与(δ+θ)/(α+β)功率比在颅骨修补手术后明显降低,术后功率比与正常对照组的功率比更为接近,更接近正常人状态;心理评估和生存质量研究显示:修补术后患者的SAS评分较前显著下降(术前61.7±11.1vs.术后46.2±9.97,t=14.21,P<0.001),但是SDS评分未见显著性差异(t=-0.384,P=0.703),而NIHSS也是较术前有显著性下降(术前6.4±1.6vs.术后4.9±1.9,t=16.793,P<0.001)。
     第二部分:TCD结果显示,在早期修补组中,修补侧的大脑中动脉MCA平均流速(术前54.3±9.90cm/s vs.术后69.2±14.1cm/s;t=-4.712,P<0.001)及颈内动脉ICA (术前33.2±7.08cm/s vs.术后48.5±9.43cm/s;t=-6.154, P<0.001)平均流速较术前均显著性增高。非修补侧的大脑中动脉MCA平均流速(术前57.8±7.60vs.术后66.9±7.97cm/s;t=-4.107,P<0.001)也较术前有显著性增高。非修补侧的颈内动脉ICA平均流速(术前29.6±6.25cm/s vs.术后30.3±8.37cm/s;t=-0.340,P=0.737)则与术前无明显差异。常规修补组中,修补侧的大脑中动脉MCA平均流速(术前52.8±12.70cm/s vs.术后63.4±13.52cm/s;t=-2.167,P=0.045)较术前显著性升高。但与早期修补组不同的是,在其他血管包括修补侧的颈内动脉,非修补侧的大脑中动脉均未观察到术前术后平均流速的显著性差异:修补侧ICA术前38.6±10.39cm/s vs.术后43.2±10.93cm/s:t=-1.444,P=0.167;非修补侧MCA术前59.7±12.61cm/s vs.术后67.4±13.08cm/s;t=-1.609,P=0.126。非修补侧颈内动脉则和早期组相似,未观察到术前术后的显著性差异(非修补侧ICA术前31.5±9.76cm/s vs.术后28.5±9.06cm/s;t=0.929,P=0.366)。将△定义为两组中术前术后血流速度的增量,利用协方差分析,研究结果显示早期组△较常规△有显著性升高(F=4.443,P=0.042)。同时,研究显示,早期颅骨修补的手术时间(85.6±18.2分钟)、皮瓣分离时间(12.9±7.2分钟)均较常规组(手术时间129.2±48.7分钟,皮瓣分离时间30.1±10.8分钟)明显缩短(P<0.001),出血量(早期组226.3±40.3ml vs.常规组381.5±58.9分钟)明显减少(P<0.001)。不同手术时机组中出现慢性硬膜下积液的差异未见统计学差异(P=0.634)。
     结论
     第一部分的研究显示:a颅骨修补后3月,修补侧大脑中动脉平均流速较术前显著性增高;b修补后3月,修补区域脑皮层灌注异常指数[(健侧灌注值-患侧灌注值)/健侧灌注值]评估脑灌注水平都显著性降低,说明修补后在修补材料下方的脑皮层灌注较术前显著性改善;c在颅内压变化方面,修补后1天颅内压较术前无显著性变化,术后1周与术前相比无显著性差异,术后3月则较术前显著性上升,总体趋势上,术后短期颅内压无明显变化,但随后出现明显恢复的过程,术后3月颅内压力则较术前显著性升高。提示颅骨修补术后ICP的变化有其独特时间曲线;d颅骨修补1月后,患者脑电e/β与(δ+θ)/(α+β)功率比显著性下降,说明慢波成分相应降低,快波成分相应升高,从脑电功率谱的角度反映了脑功能的恢复;e颅骨修补术后3月,患者的焦虑评分较术前显著下降,焦虑症状较前明显好转,但抑郁症状未观察到显著性的差异;f颅骨修补术后3月,患者的生存质量较术前显著性提高。
     第二部分研究显示:a.早期修补能够影响颅内更多的血管提升流速。而且,早期颅骨修补后修补侧大脑中动脉流速的升高程度较常规颅骨修补后升高的程度更大,更显著;b.不同手术时机的两组中出现术后并发症(慢性硬膜下积液)的差异未见统计学差异;c.去骨瓣减压术后早期颅骨修补有利于减少瘢痕组织的形成,能够明显减少手术中的出血量,缩短手术时间,特别是缩短皮瓣分离的时间,从而提高手术效率并减低由于患者输血所伴随的风险。
     综上所述,本研究证实,颅骨修补术后3月,患侧皮层脑血流速度明显增高,皮层灌注明显改善,颅内压提升至正常水平,脑电功率谱慢波成分减少,快波增多。患者焦虑评分下降,神经功能评估及生存质量均明显改善。究其原因,结合前人的研究成果,我们认为,颅骨修补恢复了颅腔的闭合性,排除了大气压对脑组织的压迫,最直接的影响到了颅内压以及脑血流,基于以上两点(颅内压的稳定以及脑灌注的恢复),脑功能也随之逐渐恢复(体现在脑电功率谱的变化,神经功能评估及生存质量的改善等等)。因此,我们所观察到的一系列变化正是恢复了正常颅内压和脑血流的结果,为颅骨修补的治疗作用机制增加了新的临床证据。
     同时,我们发现,在严格适应症(a.去骨瓣减压术后骨窗塌陷满意(塌陷大于1cm),b.头皮愈合良好且术后营养状况满意,c.无合并其他影响生命体征的重大伤情或疾病,生命体征平稳能耐受修补手术,d.在去骨瓣减压术中,保持了硬膜完整性)的前提下,早期颅骨修补较常规修补能够更广泛和有力的提升脑血流灌注水平,有利于提高手术效率,减少出血,缩短皮瓣分离时间,且其并发症发生率并未升高。因此,我们建议,从有利于脑灌注恢复、神经功能康复和提高手术效率这两个方面出发,在严格适应症的前提下应尽早行颅骨修补。
Objective: The first documented use of Cranioplasty(CP) was before the16th century. As a routine neurosurgery operation, in more recent medicine, its use has primarily been limited to cosmetic and protective indications. However, CP gained recent attention after numerous clinical case studies documented neurological benefits, although by yet-unknown mechanisms. Magnaes et al. found that the zero CSF pressure level and the hydrostatic indifferent point were cranially shifted in five patients with large skull defects, and that those parameters returned to normal after CP. Yamaura et al. coined the term "syndrome of the sinking skin flap," reasoning that the neurological benefits of CP were secondary to a micro change in the atmospheric pressure within the brain. Therefore, people believed that the timing of CP should be reconsidered in light of recent studies. Several studies have discussed the topic of CP timing, in terms of complications and outcomes. However, the results remain controversial. Most studies found that early surgery had no effect on the rate of complications, including infections, and improved patient outcome. Conversely, other studies indicated that early CP was associated with a higher risk of complications. To date, the effects and mechanisms of early CP compared to late CP on neurological recovery are poorly understood and have been scarcely evaluated. The present study addresses this topic as it pertains to the recovery after DC and discussion of timing of CP.
     Our research was designed in two steps:observing therapeutic benefits when performed after DC, as measured by an improvement of cerebral blood flow (CBF), cerebral perfusion, intracranial pressure, EEG, cognitive function, and quality of life; investigating the effects and mechanisms of early CP compared to late CP on neurological recovery, from the perspective of cerebral blood flow, operation efficiency and complication rate.
     Methods and Results:
     Part1Observing therapeutic benefits and underlying mechanism when performed after DC. We employed several methods to measure the improvement of cerebral blood flow (with TCD technique), cerebral perfusion (with CTP and PWI-MRI), intracranial pressure, neurological function (with BEAM technique), cognitive function (with SAS and SDS evaluation), and quality of life (with WHOQOL-BREF) after DC. The results showed that after DC, blood flow velocity of MCA ipsilateral to the CP raised significantly from50.8±13.83cm/s (pre-DC) to64.4±10.2cm/s (post-DC)(t=-25.62, P<0.001). Meanwhile, no significant improvement was observed in the other vessels. We also assessed the cerebral perfusion by MR perfusion weighted imaging and CT perfusion techniques before and after3months the CP.And the abnormal index A of cerebral perfusion was significantly lower3months after the CP than that before CP. And the ICP after CP changed significantly (F=4826.592, P<0.001). For EEG examination,θ/β and (δ+θ)/(α+β) power ratio declined significantly after CP. SAS score and NIHSS score declined significantly after CP (SAS t-0.384, P=0.703,NIHSS t=16.793, P<0.001) while the SDS score had no significantly change (t=-0.384, P=0.703)
     Part2Discussing the timing of early CP and possible benefit-risks. This study retrospectively reviewed43patients undergoing early (<12weeks) or late (≥12weeks) cranioplasty after DC. The CBF velocity was measured by transcranial Doppler ultrasonography and was analyzed prior to and after CP in every patient. The operating time, dissection time and blood loss was measured during the surgery. Complications and NIHSS scoring were recorded. In the early CP group, the CBF velocity increased after the CP procedure in both the ipsilateral MCA (54.3±9.90cm/s vs.69.2±14.1cm/s; t=-4.712, P<0.001) and the ipsilateral ICA (33.2±7.08vs.48.5±9.43cm/s; t=-6.154, P<0.001). In the MCA contralateral to the CP, the CBF velocity also increased (57.8±7.60vs.66.9±7.97cm/s; t=-4.107, P<0.001) after CP. There was no difference in the velocity change in the contralateral ICA (29.6±6.25cm/s vs.30.3±8.37cm/s; t=-0.340, P=0.737).In the late CP group, the CBF velocity increased in the ipsilateral MCA (52.8±12.70cm/s vs.63.4±13.52cm/s; t=-2.167, P=0.045) after CP. In contrast to the early CP group, the CBF velocity in the ipsilateral ICA (38.6±10.39cm/s vs.43.2±10.93cm/s; t=-1.444, P=0.167) and contralateral MCA (59.7±12.61cm/s vs.67.4±13.08cm/s; t=-1.609, P=0.126) increased, but the differences were not statistically significant between pre-and postoperative status. Similar to the early CP group, there was no change in the CBF velocity in the contralateral ICA (31.5±9.76cm/s vs.28.5±9.06cm/s; t=0.929, P=0.366). Change (expressed as delta,△) was defined as the difference in CBF velocity between pre-and postoperative status in the early and late CP groups. In the ipsilateral MCA, the patients in the early CP group had a greater increase in velocity compared to patients in the late CP group (F=4.443, P=0.042). Comparing with the control group, the mean time for dissection was much shorter (12.9±7.2vs30.1±10.8min, P<0.001) and estimated blood loss (226.3±40.3vs381.5±58.9ml, P<0.001) was much smaller in the early cranioplasty group. The difference in subdural fluid collection between the early and late CP groups was not statistically significant (P=0.634). No other statistically significant differences of complication were found.
     Conclusions:
     Part1Observing therapeutic benefits and underlying mechanism when performed after DC. The study showed obvious improvement of cerebral blood flow (with TCD technique), cerebral perfusion (with CTP and PWI-MRI), intracranial pressure, neurological function (with BEAM technique), cognitive function (with SAS and SDS evaluation), and quality of life (with WHOQOL-BREF) after DC.
     Part2Discussing the timing of early CP and possible benefit-risks. The CBF velocity in the middle cerebral artery (MCA) ipsilateral to the CP was increased in both groups and statistically different between groups (p<0.05). On the contralateral side, however, the CBF in the MCA was increased in the early CP group but not the late CP group. Change (expressed as delta,△) was defined as the difference in CBF velocity between pre-and postoperative status in the early and late CP groups. A statistically significant difference was detected in the△of MCA on the ipsilateral side between the early and late groups. There were no differences in the incidence of complications between groups. Early cranioplasty provides more efficiency surgery procedure and losses less blood during the operation. Therefore, early CP has potential benefits for cerebral perfusion and operation efficiency.
引文
1. Grant FC, Norcross NC. Repair of Cranial Defects by Cranioplasty. Ann Surg 1939; 110: 488-512.
    2. Dujovny M, Aviles A, Agner C et al. Cranioplasty:cosmetic or therapeutic? Surg Neurol 1997; 47:238-41.
    3. Grantham EC, Landis HP. Cranioplasty and the post-traumatic syndrome. J Neurosurg 1948; 5:19-22.
    4. Gladstone HB, McDermott MW, Cooke DD. Implants for cranioplasty. Otolaryngol Clin North Am 1995; 28:381-400.
    5. Goldstein JA, Paliga JT, Bartlett SP. Cranioplasty:indications and advances. Current opinion in otolaryngology & head and neck surgery 2013; 21:400-9.
    6. van der Meer WJ, Bos RR, Vissink A, Visser A. Digital planning of cranial implants. The British journal of oral & maxillofacial surgery 2013; 51:450-2.
    7. Isago T, Nozaki M, Kikuchi Y et al. Sinking skin flap syndrome:a case of improved cerebral blood flow after cranioplasty. Ann Plast Surg 2004; 53:288-92.
    8. Yamaura A, Sato M, Meguro K et al. [Cranioplasty following decompressive craniectomy-analysis of 300 cases (author's transl)]. No Shinkei Geka 1977; 5:345-53.
    9. Di Stefano C, Sturiale C, Trentini P et al. Unexpected neuropsychological improvement after cranioplasty:a case series study. Br J Neurosurg 2012; 26:827-31.
    10. Jelcic N, De Pellegrin S, Cecchin D et al. Cognitive improvement after cranioplasty:A possible volume transmission-related effect Acta Neurochir (Wien) 2012.
    11. Kuo JR, Wang CC, Chio CC, Cheng TJ. Neurological improvement after cranioplasty-analysis by transcranial doppler ultrasonography. JClin Neurosci 2004; 11:486-9.
    12. Chun HJ, Yi HJ. Efficacy and safety of early cranioplasty, at least within 1 month. J Craniofac Surg 2011; 22:203-7.
    13. Yadla S, Campbell PG, Chitale R et al. Effect of early surgery, material, and method of flap preservation on cranioplasty infections:a systematic review. Neurosurgery 2011; 68:1124-9; discussion 30.
    14. Schuss P, Vatter H, Marquardt G et al. Cranioplasty after decompressive craniectomy:the effect of timing on postoperative complications. J Neurotrauma 2012; 29:1090-5.
    15. Taormina MA, Nichols FT,3rd. Use of transcranial Doppler sonography to evaluate patients with cerebrovascular disease. Neurosurgery clinics of North America 1996; 7:589-603.
    16. Naqvi J, Yap KH, Ahmad G, Ghosh J. Transcranial Doppler Ultrasound:A Review of the Physical Principles and Major Applications in Critical Care. International journal of vascular medicine 2013; 2013:629378.
    17. Wintermark M, Sesay M, Barbier E et al. Comparative overview of brain perfusion imaging techniques. Journal of neuroradiology Journal de neuroradiologie 2005; 32:294-314.
    18. Voss HU, Heier LA, Schiff ND. Multimodal imaging of recovery of functional networks associated with reversal of paradoxical herniation after cranioplasty. Clinical imaging 2011; 35:253-8.
    19. Liasis A, Thompson DA, Hayward R, Nischal KK. Sustained raised intracranial pressure implicated only by pattern reversal visual evoked potentials after cranial vault expansion surgery. Pediatric neurosurgery 2003; 39:75-80.
    20. Schimpf MM. Diagnosing increased intracranial pressure. Journal of trauma nursing:the official journal of the Society of Trauma Nurses 2012; 19:160-7.
    21. Haneef Z, Levin HS, Frost JD, Jr., Mizrahi EM. Electroencephalography and quantitative electroencephalography in mild traumatic brain injury. JNeurotrauma 2013; 30:653-6.
    22. Rosenthal ES. The utility of EEG, SSEP, and other neurophysiologic tools to guide neurocritical care. Neurotherapeutics:the journal of the American Society for Experimental NeuroTherapeutics 2012; 9:24-36.
    23. Winkler PA, Sturmmer W, Linke R et al. Influence of cranioplasty on postural blood flow regulation, cerebrovascular reserve capacity, and cerebral glucose metabolism. J Neurosurg 2000; 93:53-61.
    24. Erdogan E, Duz B, Kocaoglu M et al. The effect of cranioplasty on cerebral hemodynamics: evaluation with transcranial Doppler sonography. Neurology India 2003; 51:479-81.
    25. Liang W, Xiaofeng Y, Weiguo L et al. Cranioplasty of large cranial defect at an early stage after decompressive craniectomy performed for severe head trauma. J Craniofac Surg 2007; 18:526-32.
    26. Richaud J, Boetto S, Guell A, Lazorthes Y. [Effects of cranioplasty on neurological function and cerebral blood flow]. Neurochirurgie 1985; 31:183-8.
    27. Suzuki N, Suzuki S, Iwabuchi T. Neurological improvement after cranioplasty. Analysis by dynamic CT scan. Acta Neurochir (Wien) 1993; 122:49-53.
    28. Yoshida K, Furuse M, Izawa A et al. Dynamics of cerebral blood flow and metabolism in patients with cranioplasty as evaluated by 133Xe CT and 3 IP magnetic resonance spectroscopy. J Neurol Neurosurg Psychiatry 1996; 61:166-71.
    29. Maekawa M, Awaya S, Teramoto A. [Cerebral blood flow (CBF) before and after cranioplasty performed during the chronic stage after decompressive craniectomy evaluated by xenon-enhanced computerized tomography (Xe-CT) CBF scanning]. No Shinkei Geka 1999; 27:717-22.
    30. Magnaes B. Body position and cerebrospinal fluid pressure. Part 2:clinical studies on orthostatic pressure and the hydrostatic indifferent point. JNeurosurg 1976; 44:698-705.
    31. Ikeda K, Yamauchi D, Tomita K. Preliminary study for prevention of neural adhesion using an absorbable oxidised regenerated cellulose sheet. Hand Surg 2002; 7:11-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700