具有二阶段固化特征形状记忆环氧固化动力学及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着热固性形状记忆环氧材料在空间结构技术中应用范围的不断扩大,减少功能器件占用空间以缩小发射体积来降低成本的理念得到广泛的关注,而空间展开结构的应用为解决此问题提供了有效的途径。由于空间展开结构采用的形状记忆材料普遍存在形状记忆双向可逆性、受温度影响大、耐热性和力学强度不能满足某些应用等缺点,本课题提出了一种空间形状记忆展开结构刚化技术,称为“二阶段固化技术”,可较好的解决温度对材料形状记忆性能的不良影响,并提高材料的力学和耐热性能。本文对其可行性、材料制备条件、等温和非等温条件下的固化反应动力学、形状记忆性能、动态力学性能、拉伸强度、微观形貌、耐热性能以及材料的储存期和稳定性进行了研究和探讨,并建立了可以描述体系两个相对独立反应过程的动力学方程。
     本文首先根据课题需要从种类繁多的固化剂中选取了合适的常温和潜伏型固化剂,采用非等温DSC的方法和凝胶时间的测定对二阶段固化技术的可行性进行分析,证明“二阶段固化技术”确实可行。通过不同升温速率下的非等温DSC测试确定了最优固化工艺,制备了不同理论固化度体系,并应用红外测试对体系的特征基团和固化度进行表征和分析。
     然后,本文采用非等温DSC模型拟合法中的n级反应模型和自催化反应模型对一阶段固化和其对比体系以及二阶段固化和其对比体系进行固化动力学研究,应用非模型拟合法的FR,FWO和KAS法对以上四个体系的固化过程进行考察以推测其反应机理,探讨潜伏型固化剂的加入对一阶段固化的影响,以及在一阶段固化后的体系引发二阶段固化对其固化过程的影响,实验结果证明,潜伏性固化剂的加入对一阶段固化几乎没有明显影响,在进行一阶段固化的过程中未引发二阶段固化反应,而对于在已经形成一定网络结构中引发的二阶段固化反应,由于一阶段反应后体系生成大量羟基,因此对二阶段固化有促进作用。同时,建立了可以描述四个体系化学反应的动力学方程。
     而后,采用等温DSC模型拟合法对以上四个体系进行等温条件下的固化过程研究,考察其反应机理,探讨两个阶段固化反应的相互影响,建立了可以描述反应过程的固化动力学方程,并应用FWO法对其相应体系进行等温条件下时间与转化率关系的预测,将预测结果与等温测试结果相对比以验证预测的准确性,实验结果证明,预测效果良好。
     最后,对材料进行动态力学性能测试以确定其玻璃化转变温度(Tg)和储能模量(Er),以Tg为参考温度进行形状记忆性能测试,包括回复率、回复时间、固定率和折叠-展开循环次数,实验结果证明经过一阶段固化后的材料具有良好形状记忆性能。通过动力学方程和预测曲线建立一阶段固化体系中转化率与Tg的经验方程,探讨材料成型条件的灵活性和稳定性。应用电子万能材料试验机对材料进行拉伸强度测试,其断口经过喷金处理做SEM测试,以表征其拉伸强度和断裂机理。通过不同的折叠-展开次数和不同时间的静置储存,考察材料的稳定性和储存期,实验结果证明经过一阶段固化后所制备的材料在常温下可保持98%以上的形状固定率至少12个月,并且在此时间内二阶段固化不会被引发。
With more application of thermoset epoxy resin shape memory composites in space structure technology, the challenge of using smaller launch volume to reduce cost is geting more attention. Application of space deployable structure provides an effective way to solve this problem. Shape memory materials for space deployable structure have some disadvantages, including two-way shape memory reversibility, poor thermal stability, low heat resistant and mechanical strength. Hence, we design a new two stage curing method to improve the properties of composites. The feasibility of two stage curing method, the material preparation conditions, isothermal and non-isothermal curing kinetics, shape memory property, dynamic mechanical properties, tensile strength, microstructure, heat resistant, the storage life and stability of thermoset epoxy resin composites have been studied. At the same time, the kinetic equations of various systems have been established.
     Firstly, the appropriate room temperature and latent curing agents have been selected among a wide variety of curing agents. The non-isothermal differential scanning calorimetry (DSC) and gel time tests are used to investigate the feasibility of two stage curing method, the results prove that the two different curing stages can implement successfully. The optimal curing processes have been confirmed by non-isothermal DSC method with different heating rates, and various theory curing degree systems have been prepared. The characteristics groups and theory curing degree are studied by fourier transform infrared spectroscopy (FTIR) tests.
     Secondly, the n-order and autocatalytic reaction models under non-isothermal condition are used to fit the experimental results of two different curing stages, and the kinetic equations are established. On the other hand, the reaction mechanisms of two different reaction processes are discussed by three FR,FWO and KAS non-model fitting methods. The results show that the addition of latent curing agent hardly influence the first curing stage, and during this curing period, the latent curing agent is not triggered by carefully controlling the curing conditions. For the second curing stage, plenty of hydroxyl (-OH) are generated during the first curing stage, and these–OH promote the second curing stage effectively. Then, the model fitting method under isothermal condition is used to study the
     reaction processes, reaction mechanisms and the interplay between two different curing stages. The kinetic equations are established. The relationships between reaction time and conversion in various systems are successfully predicted by the FWO method.
     Lastly, the dynamic mechanical analysis (DMA) tests are utilized to determine the glass transition temperature (Tg) and storage modulus (Er). The fold-deploy shape memory tests are used to evaluate the shape-memory performance of thermoset epoxy resin composites, including shape memory response rate, response time, fixed rate and fold-deploy cycles times. The results show that the composites, after first stage curing, possess good shape memory property. The empirical equations between Tg and conversion are established by combining dynamic equations and predicted curves, showing the credible kinetic equation can guide the desired of the practical reactive process. The tensile tests and scanning electron microscope (SEM) characterization are used to evaluate tensile strength and fracture morphology respectively. Moreover, the storage life and stability of thermoset epoxy resin materials after first curing stage are evaluated by the fold-deploy cycles and standing storage tests. The results show that these composites can store for at least12months at room temperature. Moreover, the shape memory fixed rate can be kept above98%, and the second curing stage is not triggered.
引文
[1] B.A. Nelson, W.P. King, K. Gall. Shape Recovery of Nanoscale Imprintsin AThermoset “Shape Memory” Polymer [J]. Applied Physics Letters.2005,86:103-108.
    [2] W.M. Thomas. A Test Method to Assess the Foldability of Flexible StructuralMaterials [J]. AIAA2007-1820:5634-5641.
    [3] S. Gampbell, S.L. Mark, R.S. Mark. Elastic Memory Composite Material: AnEnabling Technology for Future Furlable Space Structures[J]. AIAA-2005-2362.
    [4] D.P. Cadogan, S.E. Scarborough. Rigidizable Materials for Use in GossamerSpace Inflatable Structures [C] AIAA-2001-1417,42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference andExhibit, AIAA Gossamer Spacecraft Forum, Seattle, WA, April16-19,2001.
    [5] S.E. Scarborough, D.P. Cadogan. Rigidizable Materials for Inflatable Spaceand Terrestrial Structures [C]. SAMPE Symposium, Long Beach, CA, May1-5,2005.
    [6] C.A. Steven, A.M. Naseem, S.L. Mark. Elastic Memory Composites forDeployable Space Structures. http://www.ctd-materials.com.
    [7] C. Douglas, B. Rory, S.L. Mark et al. Development of a Novel, PassivelyDeployed Solar Array [J]. AIAA-2005-3845.
    [8] R.G. Keith, S.L. Mark. Development of a Shockless Thermally ActuatedRelease Nut Using Elastic Memory Composite Material [J]. AIAA-2003-1582.
    [9] J.H. Yang, B.C. Chuna, Y.C. Chung, J.H. Cho. Comparison of Thermal/sMechanical Properties and Shape Memory Effect of Polyurethane Block-Copolymers with Planar or Bent Shape of Hard Segment [J]. Polymer.2003,44:3251-3258.
    [10] X. Tao, I.A. Rousseau. Facile Tailoring of Thermal Transition Temperaturesof Epoxy Shape Memory Polymers [J]. Polymer.2009,50:1852-1856.
    [11] K.B. Kyu, L. Sangyup. Polyurethanes Having Shape Memory Effects [J].Polymer.1996,37:5781-5793.
    [12] T.K. Ohki, Q.Q. Ni. Mechanical and Shape Memory Behavior of Compositeswith Shape Memory Polymer [J]. Composites.2004,35(9):206-209.
    [13]朱光明.形状记忆聚合物及其应用[M].北京:化学工业出版社,2002:12-13.
    [14]朱光明,梁国正.具有形状记忆功能的高分子材料[J].化工新型材料.2002,30(2):20-23.
    [15] H.B. Lu, W.M. Huang, J.S. Leng. Functionally Graded and Self-AssembledCarbon Nanofiber and Boron Nitride in Nanopaper for Electrical Actuation ofShape Memory Nanocomposites [J]. Composites: Part B.2014,62:1-4.
    [16] H.B. Lu, Y.T. Yao, W.M. Huang, J.S. Leng, D. Hui. Significantly ImprovingInfrared Light-Induced Shape Recovery Behavior of Shape MemoryPolymeric Nanocomposite via a Synergistic Effect of Carbon Nanotube andBoron Nitride [J]. Composites: Part B.2014,62:256-261.
    [17] J.S. Leng, X. Lan, Y.J. Liu, S.Y. Du. Shape-Memory Polymers and TheirComposites: Stimulus Methods and Applications [J]. Progress in MaterialsScience.2011,56:1077-1135.
    [18] T.F. Wu, K. Kelly, B.Q. Chen. Poly(vinyl alcohol) Particle-ReinforcedElastomer Composites with Water-Active Shape-Memory Effects [J].European Polymer Journal.2014,53:230-237.
    [19] J.W. Cho, J.W. Kim, Y.C. Jung. Electroactive Shape-Memory PolyurethaneComposites Incorporating Carbon Nanotubes [J]. Macromolecular RapidCommunications.2005,26(5):412-416.
    [20]肖建华.形状记忆聚合物.工程塑料应用[M].2005,33(1):64-67.
    [21]左兰,陈大俊.形状记忆聚氨酯的研究进展[M].高分子材料科学与工程.2004,20(6):37-41.
    [22] J.L. Hu, Y. Zhu, H.H. Huang, J. Lu. Recent Advances in Shape-MemoryPolymers: Structure, Mechanism, Functionality, Modeling and Applications[J]. Progress in Polymer Science.2012,37:1720-1763.
    [23] K.S. Santhosh Kumar, A.K. Khatwa, C.P. Reghunadhan Nair. High TransitionTemperature Shape Memory Polymers (Smps) by Telechelic OligomerApproach [J]. Reactive&Functional Polymers.2014,78:7-13.
    [24] Y. Yuan, J. Goodson, M. Johnson, D. Gerrard, H. Baker. In-situMechanical-And Functional-Behavior Characterization of A Shape-MemoryPolymer for Sand-Control Applications [J]. SPE Drilling and Completion.2012,2(27):253-263.
    [25] M. Behl, M.Y. Razzaq, A. Lendlein. Multifunctional Shape-Memory Polymers[J]. Advanced Materials.2010,22:3388-3410.
    [26] P.C. David, E.S. Stephen, K.L. John et al. Shape Memory CompositeDevelopment for Use in Gossamer Space Inflatable Structures [J]. AmericanInstitute of Aeronautics and Astronautics.2002,1372:1-13.
    [27] E.S. Stephen, P.C. David. Elevated Temperature Mechanical Characterzationof Isogrid Booms [J]. AIAA-2003-8641.
    [28] R.A. Erik, S.L. Mark, A.M. Naseem. Shape Memory Polymers for ElasticMemory Composites [J]. AIAA-2002-1562.
    [29] J.K.H. Lin, C.F. Knoll, C.E. Willey. Shape Memory Rigidizable Inflatable (RI)Structures for Large Space Systems Applications [C]. Collection of TechnicalPapers-AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics andMaterials Conference,2006,5:3695-3704.
    [30] W.B. Song, L.Y. Wang, Z.D. Wang. Synthesis and ThermomechanicalResearch of Shape Memory Epoxy Systems [J]. Materials Science andEngineering A.2011,529:29-34.
    [31] A.B. Leonardi, L.A. Fasce, I.A. Zucchi et al. Shape Memory Epoxies Basedon Networks with Chemical and Physical Crosslinks [J]. European PolymerJournal,2011,47:362-369.
    [32] A.S.C. Leal, C.J. Araújo, S.M.L. Silva, A. G. B. Lima. Thermal Behavior ofClay/Epoxy Nanocomposites [J]. Journal of Nano Research.2012,21:23-28.
    [33] B. Rajendran, C. Gouri, C.P. Reghunadhan Nair. Shape Memory PolymersBased on Cyanate Ester-Epoxy-Poly (tetramethyleneoxide) Co-ReactedSystem [J]. European Polymer Journal.2012,48:499-511.
    [34] B. Rajendran, K.S. Santhosh, R.S. Rajeev, C.P. Reghunadhan. Epoxy-CyanateEster Shape Memory Thermoset: Some Aspects of Phase Transition,Viscoelasticity and Shape Memory Characteristics [J]. Advances in Polymer.Technology.2013,24:623-629.
    [35] Y.Y. Liu, C.M. Han, H.F. Tan, X.W. Du. Thermal, Mechanical and ShapeMemory Properties of Shape Memory Epoxy Resin [J]. Materials Scienceand Engineering: A.2010,527:2510-2514.
    [36] C.M. Han, Y.Y. Liu,H. F.Tan. Preparation and Investigation on Properties ofShape Memory Epoxy Modified by Hyperbranched Polyester [J]. AdvancedMaterials Research.2011,335-336:851-855.
    [37] Y.Y. Liu, C.M. Han, H.F. Tan, X. W. Du. Organic-Montmorillonite ModifiedShape Memory Epoxy Composite [J]. Polymers for Advanced Technologies.2011,22(12):2017-2021.
    [38] H.F Tan, T. Zhou, Y.Y. Liu, L. Lan. Isothermal Recovery Response andConstitutive Model of Thermoset Shape Memory Polymers [C].3rdInternational Conference on Smart Materials and Nanotechnology inEngineering.2011,5-8, Shenzhen,2012,8409.
    [39] X.H. Jing, Y.Y. Liu, Y.X. Liu, H.F. Tan. Preparation and Properties of ShapeMemory Epoxy Resin Composites [J]. Applied Mechanics and Materials.2012,214:12-16.
    [40] C.H. Zhang, H.G. Wei, Y.Y Liu. Enhanced Toughness and Shape MemoryBehaviors of Toughed Epoxy Resin [J]. High Performance Polymers.2012,24(8):702-709.
    [41] S. Zhang, Z.J Yu, T. Govender, H.Y. Luo, B.J. Li. A Novel SupramolecularShape Memory Material Based on Partial-CD–PEG Inclusion Complex [J].Polymer.2008,49:3205-3210.
    [42] S. Rimdusit, M. Lohwerathama1, K. Hemvichian, P. Kasemsiri, I. Dueramae.Shape Memory Polymers from Benzoxazine-Modified Epoxy [J]. Smartmaterials&structures.2013,22:1-12.
    [43] P. Stefano, B. Fabio, B. Francesco, P. Simone. Network Architecture andShape Memory Behavior of Cold-Worked Epoxies [J]. Journal of IntelligentMaterial Systems and Structures.2013,24(13):1583-1597.
    [44] E. A. Squeo, Q. Fabrizio. Shape Memory Epoxy Foams by Solid-StateFoaming [J]. Smart materials&structures.2010,19:1-8.
    [45] S. Loredana. Shape Memory Epoxy Foams: New Materials for AerospaceApplications [J]. Materials Science Forum.2012,706-709:165-172.
    [46] Q. Fabrizio, S. Loredana, S.E. Anna. Shape Memory Epoxy Foams for SpaceApplications [J]. Materials Letters.2012,69:20-23.
    [47] S. Loredana, S.F. Quadrini, D.C. Leonardo. Forming of Shape MemoryComposite Structures [J]. Key Engineering Materials.2013,554-557:1930-1937.
    [48] Y.B. Dong, J. Ding, J. Wang et al. Synthesis and Properties of theVapour-Grown Carbon Nanofiber/Epoxy Shape Memory and ConductiveFoams Prepared via Latex Technology [J]. Composites Science andTechnology.2013,76:8-13.
    [49] J.A. Shumaker, A.J.W. Clung, J.W. Baur. Synthesis of High TemperaturePolyaspartimide-Urea Based Shape Memory Polymers [J]. Polymer.2012,53:4637-4642.
    [50] K. Wei, G.M Zhu, Y.S. Tang, G.M. Tian, J.Q. Xie. ThermomechanicalProperties of Shape-Memory Hydro-Epoxy Resin [J]. Smart Materials&Structures2012,21:1-8.
    [51] K. Wei, G. M. Zhu, Y.S. Tang, L. Niu. Shape-Memory Effects of AHydro-Epoxy Resin System [J]. Journal of Polymer Research.2013,20:123.
    [52]魏堃,唐玉生,朱光明,李喜民,门倩妮,师瑞峰.氢化环氧树脂体系形状记忆效应的研究[J].航空材料学报.2012,32(3):57-62.
    [53] K. Wei, G.M. Zhu, Y.S. Tang, X.M. Li, T.T. Liu, L. Niu. An Investigation onShape Memory Behaviours of Hydro-Epoxy/Glass Fibre Composites [J].Composites: Part B.2013,51:169-174.
    [54] K. Sunitha, K.S.S. Kumar, D. Mathew, C.P.R. Nair. Shape Memory Polymers(SMPs) Derived from Phenolic Cross-Linked Epoxy Resin via ClickChemistry [J]. Materials Letters.2013,99:101-104.
    [55] P. Burtscher. Stability of Radicals in Cured Composite Materials [J]. DentalMaterials.1990,9:218-221.
    [56] D.A. Covey, S.R. Tahaney, J.M. Davenport. Mechanical Properties ofHeat-Treated Composite Resin Restorative Materials [J]. Journal ofProsthetic Dentistry.1992,68:458-461.
    [57] A.D. Gee, P. Pallaw, A. Werner. Annealing as A Mechanism of IncreasingWear Resistance of Composites [J]. Dental Materials.1990,6:266-270.
    [58] P. Dionysopoulos, D.C. Watts. Dynamic Mechanical Properties of An InlayComposite [J]. Journal of Dentistry.1989,17:140-144.
    [59] W.A. Gregory, S. Berry, E. Duke, J.B. Dennison. Physical Properties andRepair Bond Strength of Directand Indirect Composite Resins [J]. Journal ofProsthetic Dentistry.1992,68:406-411.
    [60] Y.H. Basis, F.A. Rueggeberg. Effect of Post-Cure Temperature and HeatDuration on Monomer Conversion of Photo-Activated Dental ResinComposite [J]. Dental Materials.1997,13:228-232.
    [61] Y.H. Bagis, F.A. Rueggeberg. The Effect of Post-Cure Heating on Residual,Unreacted Monomer in A Commercial Resin Composite [J]. Dental Materials.2000,16:244-247.
    [62] J.L. Ferracane, J.R. Condon. Postcure Heat-Treatments for CompositesProperties and Fractography [J]. Dental Materials.1992,8:290-295.
    [63] J.L. Ferracane, J.K. Hopkin, J.R. Condon. Properties of Heat-TreatedComposites after Aging in Water [J]. Dental Materials.1995,11:354-358.
    [64] E. Asmussen, A. Peutzfeldt. Mechanical properties of heat-treated restorativeresins for use in the inlay onlay technique [J]. European Journal of OralSciences.1990,98:564-567.
    [65] R.J.C. Carbas, L.F.M. Silva, E.A.S. Marques, A.M. Lopes. Effect ofPost-Cure on the Glass Transition Temperature and Mechanical Properties ofEpoxy Adhesives [J]. Journal of Adhesion Science and Technology,2013,27(23):2542-2557.
    [66] C.P. Ernst, R. Kurschner, G. Rippin, B. Willershausen. Stress Reduction inResin-Based Composites Cured with A Two-Step Light-Curing Unit [J].American Journal of Dentistry.2000,13:69-72.
    [67] K. Kim, H. Kim, M. Kim, H.G. Kim, S.W. Choi, S.S. Kim. Two-StepPolyimide Curing Technique for Flexible Plastic Liquid Crystal Devices [J].Japanese Journal of Applied Physics.2009,48:1-6.
    [68] M. Edelmann, M. Gedan-Smolka, G. Heinjuch, D. Lehmann. Formal KineticAnalysis of Two-Step Curing Reactions in Melts: Simulation of The ReactionBehavior [C]. Proceedings of the2007International Conference on AdvancedFibers and Polymer Materials.2007:15-18.
    [69] Y.C. Hsaio, Z.T. Chen. Preparation and Characterization of PDLC FilmsFormed Using A Two-Step Procedure [J]. Advances in Polymer Technology.2007,26(1):14-20.
    [70] C.W. Chang, K.T. Lu. Epoxy Acrylate UV/PU Dual-Cured Wood Coatings [J].Journal of Applied Polymer Science.2010,115(4):2197-2202.
    [71] K.C. Li, K. Zhang, G.Z Wu. Fabrication of Electrically Conductive PolymerComposites for Bipolar Plate by Two-Step Compression Molding Technique[J]. Journal of applied polymer science.2013, DOI:10.1002/APP.39444.
    [72]潘鹏举,单国荣,黄志明,翁志学.2-乙基-4-甲基咪唑固化环氧树脂体系动力学模型[J].高分子学报.2006,1:21-25.
    [73] C.L. Lee. Curing Kineties and Viseosiry Change of A Two Part Epoxy ResinDuring Mold Filling in Resin-Transfer Molding Pocress [J]. Journal ofapplied polymer science,2000,77:2139-2148.
    [74] M.R. Kamal. Thermoset Characterization for Moldability Analysis[J]. Polymer engineering and science.1974,14(3):231.
    [75]毛友安,童乙青.用DSC研究环氧树脂固化动力学[J].高分子材料科学与工程.1991,3:18-22.
    [76] N. Sbirrazzuoli, L. Vincent, A. Mija, N. Guigo. Integral, Differential andAdvanced Isoconversional methods [J]. Chemometrics and intelligentlaboratory systems.2009,96:219-226.
    [77] S. Vyazovkin, N. Sbirrazzuoli. Isoconversional Kinetic Analysis of ThermallyStimulated Processes in Polymers [J].Macromolecular rapid communications,2006,27(18):1515.
    [78]代晓青,肖加余,曾竞成等.等温DSC法研究RFI用环氧树脂固化动力学[J].复合材料学报.2008,25(4):18.
    [79] F. Fraga, M. Penas, C. Castro et al. Cure Kinetics of a Diglycidyl Ether ofBisphenol A Epoxy Network (n=0) with Isophorone Diamine [J]. Journal ofApplied Polymer Science.2007,106:4169-4173.
    [80] G. Li, X.P. Yang. Curing Kinetics Study of Epoxy Resin/Flexible AmineToughness Systems by Dynamic and Isothermal DSC [J]. ThermochimicaActa.2008,473:101-105.
    [81] G.P. Zhang, J. Cheng, L. Shi, X. Lin, J.Y. Zhang. Study on Curing Kinetics ofDiallyl-Bearing Epoxy Resin Using Sulfur as Curing Agent [J].Thermochimica Acta.2012,538:36-42.
    [82] G.L. Wu, K.C. Kou, M. Chao, L.H. Zhuo, J.Q. Zhang, N. Li. Preparation andCharacterization of Bismaleimide-Triazine/Epoxy Interpenetrating PolymerNetworks [J]. Thermochimica Acta.2012,537:44-50.
    [83] C. Garschke, P.P. Weimer, B.L. Fox. Cure Kinetics and Viscosity Modellingof A High-Performance Epoxy Resin Film [J]. Polymer Testing.2013,32:150-157.
    [84] X.Y. He, J. Wang, Y.D. Wang, C.J. Liu, W.B. Liu, L. Yang. Synthesis,Thermal Properties and Curing Kinetics of Fluorene Diamine-BasedBenzoxazine Containing Ester Groups [J]. European Polymer Journal.2013,49:2759-2768.
    [85] X.Y. He, J. Wang, N. Ramdani, W.B. Liu, L.J. Liu, L. Yang. Investigation ofSynthesis, Thermal Properties and Curing Kinetics of FluoreneDiamine-Based Benzoxazine by Using Two Curing Kinetic Methods [J].Thermochimica Acta.2013,564:51-58.
    [86] D.X. Tan, Y.L. Wang, Z. Li, H.L. Xing. Synthesis and Cure Kinetics ofDiphenyl (Diphenylethynyl) Silane Monomer [J]. Research on chemicalintermediates.2013,39:3427-3440.
    [87] F. Mustata, N. Tudorachi, I. Bicu. Thermosetting Resins Obtained viaSequential Photo and Thermal Crosslinking of Epoxy Resins: Curing Kinetics,Thermal Properties and Morphology [J]. Composites: Part B.2013,55:470-478.
    [88] J. Zhang, H.X. Dong, L,L. Tong, L. Meng, Y. Chen, G.J. Yue. Investigationof Curing Kinetics of Sodium Carboxymethyl Cellulose/Epoxy Resin Systemby Differential Scanning Calorimetry [J]. Thermochimica Acta.2012,549:63-68.
    [89]杨超,江学良,孙康.酸酐固化环氧树脂/蒙脱土复合材料的等温固化动力学[J].物理化学学报.2005,21(6):681-685.
    [90] P.F. Ca amero, J.L. Fuente, M. Fernandez-Garcia. Curing Kinetic StudyUsing A Well-Controlled Multifunctional Copolymer Based on GlycidylMethacrylate [J]. European Polymer Journal.2009,45:2665-2673.
    [91]张竞,黄培.环氧树脂固化动力学研究进展[J].材料导报:综述篇.2009,7(23):58-61.
    [92] M.J. Starink. The Determination of Activation Energy From Linear HeatingRateexperiments: A Comparison of the Accuracy of Isoconversion Methods[J]. Thermochimica. Acta.2003,404:163-176.
    [93] W. Xu, S. Bao, S. Shen, W. Wang, G. Hang, P. He. Differential ScanningCalori-Metric Study on The Curing Behavior of EpoxyResin/Diethylenetriamine/Organicmontmorillonite Nanocomposite [J].Journal of polymer science part b-polymer physics.2003,41(4):378-386.
    [94]甘丽,孙志杰,顾轶卓等.升温与等温法非模型动力学研究环氧树脂固化反应[J].高分子学报,2010(8):1016-1022.
    [95] W.B. Xu, S.P. Bao, S.J. Shen, G.P. Hang, P.S. He. Curing Kinetics of EpoxyResin-Imidazole-Organic Montmorillonite Nanocomposites Determined byDifferential Scanning Calorimetry [J]. Journal of Applied Polymer Science.2003,88(13):2932-2941.
    [96] F.R Huang, X.Q. Wang, S.J. Li. Thermal Stability of Polyetherimide [J].Polymer Degradation and Stability.1987,18:247-259.
    [97] Y.G. Liang, B.J. Cheng, Y.B. Si et al. Thermal Decomposition Kinetics andCharacteristics of Spartina Alterniflora via Thermogravimetric Analysis [J].Renewable Energy.2014,68:111-117.
    [98] I. Sava, A. Burescu, G. Lisa. Study of Thermal Behavior of PolyimidesContaining Pendent-Substituted Azobenzene Units [J]. Polymer Bulletin.2014,21:385.
    [99] G. Pitchaimari, C.T. Vijayakumar. Functionalized N-(4-Hydroxy Phenyl)Maleimide Monomers: Kinetics of Thermal Polymerization and DegradationUsing Model-Free Approach [J]. Journal of Applied Polymer Science.2014,DOI:10.1002/APP.39935
    [100] X.F. Wen, W. Wang, Z.Q. Cai et al. Studies on Cure Kinetics ofPoly(Phenylene Ether)/Epoxy Resin System Using an Advanced Iso-Conversional Method [J]. Polymer-Plastics Technology and Engineering,2011,50:1515-1518.
    [101] M. Ghaffari, M. Ehsani, H.A. Khonakdar, G.V. Assche, H. Terryn.Evaluation of Curing Kinetic Parameters of An Epoxy/Polyaminoamide/Nano-Glassflake System by Non-Isothermal Differential Scanning Calorimetry [J].Thermochimica Acta2012,533:10-15.
    [102] C. Li, C.M. Zuo, H. Fan, M.X. Yu, B.G. Li. Novel Silicone Aliphatic AmineCuring Agent for Epoxy Resin:1,3-Bis (2-Aminoethylaminomethyl)Tetramethy-Ldisiloxane.1. Non-Isothermal Cure and Thermal DecompositionProperty [J]. Thermochimica Acta.2012,545:75-81.
    [103] V.L. Zvetkov, S. Djoumaliisky, E. Simeonova-Ivanova. The Non-IsothermalDSC Kinetics of Polyethylene Tereftalate-Epoxy Compatible Blends [J].Thermochimica Acta.2013,553:16-22.
    [104]吕健勇,孟焱,何立凡等.聚苯醚型超支化环氧/E-51的非模型固化动力学[J].北京化工大学学报.2013,3(40):38-43.
    [105] T. Geipel, U. Eitner. Cure Kinetics of Electrically Conductive Adhesives forSolar Cell Interconnection [J]. IEEE Journal of Photovoltaics.2013,3:1208-1213.
    [106] E.T. Nayef, M. Tizazu, M. Paolo, B. David, C. Phillip. Nonisothermal DSCStudy of Epoxy Resins Cured with Hydrolyzed Specified Risk Material [J].Industrial&Engineering Chemistry Research.2013,52,8189-8199.
    [107]李恒,王德海,钱夏庆.非等温DSC法研究环氧树脂体系固化动力学[J].固体火箭技术.2013,36(2):266-269.
    [108] P.P. Adroja, R.Y. Ghumara, P.H. Parsania. Dynamic DSC Curing KineticStudy of Epoxy Resin of1,3-Bis(4-hydroxyphenyl) prop-2-en-1-one UsingAromatic Diamines and Phthalic Anhydride [J]. Journal of Applied PolymerScience.2013,572-578.
    [109] M.J. Fan, J.L. Liu, X.Y. Li, J. Cheng, J.Y. Zhang. Curing Behaviors andProperties of An Extrinsic Toughened Epoxy/Anhydride System and anIntrinsic Toughened Epoxy/Anhydride System [J]. Thermochimica Acta.2013,554:39-47.
    [110] F. Ferdosian, M. Ebrahimia, A. Jannesarib. Curing Kinetics of Solid Epoxy/DDM/Nanoclay: Isoconversional Modelsversus Fitting Model [J].Thermochimica Acta.2013,568:67-73.
    [111]胡玉明,吴良义.固化剂[M].北京:化学工业出版社,2004:9,20-24.
    [112]孙曼灵.环氧树脂的应用原理与技术[M].北京:机械工业出版社.2002,115-139.
    [113]陈平,王德中.环氧树脂及其应用[M].北京:化学工业出版社.2004:79-85.
    [114]河内真二.纤维强化复合材料用环氧树脂组合物、纤维强化复合材料的制法以及纤维强化复合材料. CN1578799,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700