新型二次化学电源的探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类很早就对化学电源产生了原始的认识,但是直到1800年,意大利人Volt发明了伏打电池,人们才对电池的原理有所了解并使电池得到应用。经过铅酸电池、Ni-Cd电池、镍氢电池直到20世纪90年代初出现的锂离子电池,电池在人类的生活领域中得到了广泛的应用,对人类的发展作出了不可磨灭的贡献。同时,由于人类的不断发展,对能源的需求,环境问题的日益突出,人们对化学电源的要求也越来越高,促使人们不断探索新的化学电源和能量存储系统。本论文旨在探索新型的化学电源方面做点有益的和富有启发性的工作。
     锂离子电池以其能量密度高、输出电压高、自放电小、无记忆效应等优点,自1991年诞生以来,得到了非常迅速的发展。目前,锂离子电池已成为许多高附加值电子产品如移动电话、笔记本电脑、便携摄像机等的首选动力源。锂离子电池也被认为是电动汽车的理想动力源之一,受到了广泛的关注。然而锂离子电池应用于电动汽车主要受制于是否安全、价廉。最近发生的一系列笔记本电脑、手机电池爆炸的事件,不仅造成了经济上的巨大损失,也揭示了锂离子电池存在严重的安全问题。锂离子电池所用的电解液、隔膜价格比较高,其制造过程复杂,需要严格控制水份,从而导致锂离子电池的价格较高,不能满足电动汽车市场的要求。
     以水溶液做电解质的电池由来已久,而且种类繁多,如常用的碱锰电池、氢镍电池、镍镉电池、铅酸电池,各种空气电池等等。虽然由于受到水的电化学窗口的限制,电池的电压比较低,但是采用水溶液做电解质也具有诸多的优点,如廉价易得、导电率高、安全性好、无需无水无氧的环境、对环境友好等。能否以水溶液作为电解质制备新型的水溶液可充锂电池(简称水锂电,ARLB)?嵌锂材料在水溶液中的电化学行为如何?与在有机电解质中的行为有什么不同?虽然有少量的文献探讨了这些问题,但是研究的不系统,不深入,而且所制备的水溶液可充锂电池的性能不好,尤其是循环性能。
     本论文首先通过阅读相关的一些文献,进行深入的思考和理论分析,试着归纳总结出水溶液可充锂电池的理论基础以及目前存在的问题。概述了现行的储能系统,并指出储能系统的发展趋势可能是建造小规模、分散式、投资少的储能体系及其必要性。
     在第三章中,采用传统的固相方法合成了几种常见的电极材料,如LiCoO_2、LiMn_2O_4、LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2、LiFePO_4等,采用X射线衍射(XRD)分析产物的结构,证实了其结构与文献报道的结构一致;采用扫描电子显微镜(SEM)观察了产物的形貌;详细研究了它们在水溶液中的电化学性能。循环伏安的研究表明,这些材料在水溶液中都能够进行锂离子的嵌入和脱出反应。由于过电位的作用,水溶液的电化学窗口可以比理论计算的更宽,氢气和氧气的析出不影响锂离子在这些材料中的插入和脱出。另外,采用交流阻抗的技术研究了材料的阻抗和界面行为,并计算了一些动力学参数。交流阻抗的测试表明,上述的电极材料在水溶液中不能在电极表面形成表面膜,这一点与电极材料在有机电解液中的行为不同,这也是导致水溶液可充锂电池循环性能不好的原因之一。
     在第四章中,采用传统的固相法合成了LiV_3O_8电极材料,采用慢速循环伏安扫描对LiV_3O_8在有机电解液中的电化学行为进行研究,发现在2.25V、2.21V、1.72V(vs.Li)左右分别出现三个还原峰。表明锂离子嵌入LiV_3O_8过程中,出现三种情况;而氧化峰只有两个,分别在2.36V和2.99V(vs.Li)左右,说明锂离子从LiV_3O_8中脱出时有两种情况。恒流充放电实验表明,所合成材料的比容量为150mAh/g,比文献报道中的其它合成方法得到的材料的比容量要低,但是它的充放电可逆性非常好,其库仑效率几乎是100%,而且具有很好的循环性能,在前十次的循环过程中,容量不衰减。对LiV_3O_8在水溶液中的循环伏安实验表明,锂离子在LiV_3O_8中的嵌脱行为与在有机电解液中类似,锂离子在其中的嵌脱电位处于水的电化学窗口范围内,很适合做水溶液可充锂电池的负极材料。采用交流阻抗法研究了锂离子嵌入LiV_3O_8过程中的电极过程动力学,并计算了动力学参数。
     第五章在前两章研究的基础上,选择不同的材料进行组装成实验电池,不同材料间的组合可以得到电压不同的电池。本章研究了LiV_3O_8//LiCoO_2、LiV_3O_8//LiMn_2O_4、LiV_3O_8//LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2、LiV_3O_8//LiFePO_4等水锂电池的充放电行为,发现采用LiV_3O_8做为负极材料,可以得到循环性能良好的水溶液可充锂电池。其循环性能远比文献中报道的以VO_2做为负极的电池的循环性能好,目前此类电池的充放电循环次数可以达到450次以上。然而,这类电池的容量在循环过程中依然不断衰减,对其原因做了初步的分析。
     第六章在前面的基础上,进一步探索合适的负极材料,经过研究发现,导电聚合物中的聚苯胺、聚吡咯不仅能够用做电池的正极材料,还可以用做电池的负极材料。根据嵌入理论和导电聚合物的掺杂/去掺杂机理,提出一种具有新型工作机理的水系可充锂电池,在概念上具有很大的创新,丰富了电化学理论知识,为化学电源家族增添了新的成员。
Although people knew about chemical power sources long time ago, they did not understand the principles of batteries. Batteries were not application until 1800 when Volt Batteries were invented by an Italian Volt. Batteries, varing from lead-acid battery, Ni-Cd battery, nickel-metal hydride battery to lithium ion battery which was born in 1991, have been applied to broad fields in people's lives and are quite significant to the development of society. Meanwhile, in response to the needs of modern society and emerging ecological concerns, it is essential to find new chemical power sources and energy storage systems. This paper aims to explore innovative chemical power sources.
     Rapid development has been achieved for LIBs since its birth in 1991, due to their advantages of high energy density, high output voltage, little self-discharge and no memory effect. It has been widely used not only in electronic devices, such as mobile phone, lap-top, portable camera, but also in some important fields for the contries' development, such as transportation, military weapons, aerospace and so on. What is more, it is significant to develop electronic vehicles (EVs) to deal with problems caused by energy shortage and pollution. Lithium ion batteries are one of the most promising power sources for EVs. However, the further application of LIBs in EVs has been hindered by its safety and high price. For the commercial LIBs at present, carbon is used for anode and LiCoO_2 for cathode, with great amount of organic electrolyte. The organic electrolyte could cause combustion or even explosion due to improper usage. Such cases happened in Dell and Nokia products, gave rise to - large loss to the companies. And the safety problem would be more serious when adopting LIBs for EVs. Besides, high price of electrolyte and seperating membrane, complex process of organic electrolyte preparation and strict control of moisture, give rise to high price of LIBs.
     Various kinds of batteries with aqueous electrolyte have been researched since long time ago, such as alkaline manganese batteries, nickel-hydrogen batteries, nickel-cadmium batteries, lead-acid batteries, air batteries, and so on. Although there are still some limits for batteries with aqueous electrolyte, such as narrow electrochemical window, low voltage, they present a lot of advantages compared with organic electrolytes, such as low cost, easy preparation, high conductivity, safety, no restrict of moisture or oxgen, environmental evrionmental friendliness and so on. Efforts were made to develop aqueous reversible lithium ion batteries (ARLB) in previous work. However, there is no systematic and further deep investigation, in terms of electrochemical activities of Li-acitive materials in aqueous electrolyte, differences of their performance between in organic and aqueous electrolytes. Moreover, electrochemical performance of ARLB reported in the previous literatures needs further improvement, especially for its cycle performance.
     In chapterⅢ, Several electrode materials were synthesized by solid-state method, such as LiCoO_2, LiMn_2O_4, LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2, LiFePO_4, LiV_3O_8, and so on. XRD and SEM were used for the characteristic analysis of these materials mentioned above. XRD results reveal that the diffraction peaks are consistent to the previous reports. Cyclic Voltammogram(CV), charge and discharge test system, and EIS were adopted to investigate their electrochemical performance. CVs present that all the materials mentioned can accommodate lithium in aqenous electrolyte. Because of the over-potential effect of the electrode, electrochemical window is wider compared with that of calculated theoretically. The oxygen and hydrogen do not affect insertion and extraction reaction into the electrode materials. By adjusting pH value, the electrochemical window could be adjusted, and more materials could be used in ARLB. Besides, results from ARLB indicate that there is no SEI film formed on the surface of the electrode materials, which is quite different from the phenomenon in organic electrolyte. We suppose that it is the explanation to that the poor cycle performance of ARLB.
     In chapterⅣ, LiV_3O_8 electrode material was synthesized by the traditional solid-state method. The result of slow scan cyclic voltammetry of LiV_3O_8 in organic electrolyte reveals that there are three redox peaks on the curve, i.e. 2.25 V, 2.21V and 1.72V ( vs. Li), respectively, suggesting that there are three phase transition when lithium ions insert into LiV_3O_8, and only two oxidation peak, 2.36 V and 2.99 V (vs. Li) when lithium ions extract from LiV_3O_8. The results of constant current charge-discharge experiments show that the capacity of LiV_3O_8 is 150 mAh /g. The capacity is lower than that of LiV_3O_8 prepared by other methods reported in literature. However, its charge-discharge reversibility is very good and the coulombic efficiency is almost 100 percent. The as-prepared material has good cycling performance. The capacity did not decay during the first 10 cycles. The cyclic voltammetry experiments of LiV_3O_8 in aqueous solution showed that the behavior of lithium ion insertion/extraction in the LiV_3O_8 is similar with that in organic electrolyte. LiV_3O_8 is suitable for aqueous lithium rechargeable battery anode material because of the redox peaks potential of lithium-ion intercalated/deintercalated into and from LiV_3O_8 in aqueous solution within the electrochemical window of water. AC impedance method was employed to investigated the kinetics of lithium ion insertion in LiV_3O_8 and the kinetic parameters were calculated.
     In chapterⅤ, on the basis of the research above, we chose various materials to fabricate batteries with different voltages. The systems we investigated in this chapter are listed as following: LiV_3O_8//LiCoO_2, LiV_3O_8//LiMn_2O_4, LiV_3O_8// LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2, LiV_3O_8// LiFePO_4. We find that the batteries with LiV_3O_8 as anode materials present excellent cycle performance, which could cycle for 450 times without serious capacity fading. However, the capacities of above cells still decay with long charge/discharge cycle. The reasons were analyzed in this chapter.
     In chapterⅥ, We further investigated proper anode materials, and found that some conductive polymer such as polyaniline and polypyrrole, could used not only as cathode materials, but also as anode. For the first time, we proposed a new mechanism of ARLB based on intercalation theory and doping mechanism. The mechanism we proposed is a great innovation in electrochemisty.
引文
[1]张华民,高效大规模化学储能技术研究开发现状及展望.电源技术,2007,131(8):587-591.
    
    [2]R.J.Remick, P.G.P.Ang. Electrically rechargeable anionically activereduction-oxidation electrical storage-supply system: US, 4485154 [P]. 1984.
    
    [3]A. Price, S. Bartley, S. Male. A novel approach to utility scale energy storage[J].Power Eng. J , 1999,13(3): 122-129.
    
    [4]A. Shibata, K.Sato. Development of vanadium redox flow battery for electricitystorage[J]. Power Eng. J, 1999, 13(4): 130-135.
    
    [5]G. Oriji, Y. Katayama, T.Miura. Investigation on V(IV)/V(V) species in avanadium redox flow battery[J]. Electrochim. Acta, 2004, 49(19): 3091-3095.
    
    [6]D. Linden, T. B. Reddy, Handbook of Batteries [M]. 3rd edition. New York:McGraw-Hill, 2001:3713.
    
    [7]N. Atsushi. Capacitor: operating principles, current market and technical trends[J].J. Power Sources, 1996, 60: 137-147.
    
    [8]张娜,张宝宏,电化学超级电容器研究进展[J].电池,2003,33(5):330-332.
    
    [9]管从胜,杜爱玲,杨玉园.高能化学电源[M].北京:化学工业山版社,2005:3.
    
    [10]夏熙.迈向21世纪的化学电源[J].电池,2000,30(3):95-97.
    
    [11]陈军,陶占良,苟兴龙.化学电源—原理、技术与应用[M].北京:化学工业出版社,2006:46-53.
    
    [12]吴宇平,戴晓兵,马军旗,程预江.锂离子电池-应用与实践[M].北京:化学工业出版社,2004。
    
    [13]黄彦瑜.锂电池发展简史[J].物理,2007,36(8):643-651.
    
    [14] M. Broussely, P. Biensan, B. Simon. Electrochim. Acta, 1999, 45: 3
    
    [15]宋文顺,王力臻.无汞电池的研究[J].电池工业,1996,24(4):107.
    
    [16]徐保伯.干电池工业的热点—无汞电池[J].电池.1994,24(6):273
    
    [17]王敬忠.第一批“绿色、优质”无汞碱性锌锰电池新闻发布会新闻发布稿[J].电池工业,2001,6(5):3
    
    [18]吉野彰.日本锂离子蓄电池技术的开发过程和最新趋势[J].电源技术,2001,25(6):416-421
    
    [19] M. B. Armand. Materials for advance batteries[M]. (Eds: D. W. Murphy, J. Broadhead, B. C. H. Steele), New York: Plenum,1980:145.
    
    [20]O. Kazunori. Lithium-ion rechargeable batteries with LiCoO_2 and carbon electrodes the LiCoO_2/C system[J]. Solid State Ionics, 1994, 69 (3-4): 212-221.
    
    [21] K. Miure, A. Yamada,. Electric states of spinel LixMn_2O_4 as a cathode of the rechargeable battery[J], Electrochim. Acta, 1996, 41: 249-256.
    
    [22] J.R. Dahn. U.von Sacken, M. W. Juzkow, H. Al-Janaby. Rechargeable LiNiO_2/Carbon Cells[J] J.Electrochem. Soc, 1991,138: 2207-2211.
    
    [23]李新生.锂离子电池用高性能锂锰氧化物的制各及性能研究[D].广州:华南理工大学,2001:2-3.
    
    [24] J. P. Fellner, G. J. Loeber, S. S. Sandhu. Testing of lithium-ion 18650 cells andcharacterizing/predicting cell performance [J]. J. Power Sources, 1999,81/82:867-871.
    
    [25] L. Wu, J R. Dahn, Wainwright D S. Rechargeable lithium bateries with aqueouselectrolytes [J]. Science, 1994, 264: 1115-1117.
    
    [26] L.Wu, W. R. Me Kinnon, J.R.Dahn. lithium intercalation from aqueoussolutions [J]. J.Electrochem. Soc, 1994,141(9): 2310-2315.
    
    [27] L.Wu, J.R.Dahn. Lithium-ion cells with aqueous electrolytes [J]. J. Electrochem.Sec, 1995,142(6):1742-1745.
    
    [28]任学佑.锂离子电池的新进展[J].电池,1997,27(4):188-191.
    
    [29] J.Glanz. Lithium battery takes to water-and maybe the road[J]. Science, 1994, 264: 1084.
    
    [30]陈昌国,龙英,余丹梅.水溶液锂离子电池锰系电极材料的发展概况[J],电池,2004,34(1):67-69.
    
    [31]龙英,尖晶石锰系电极材料在水溶液中的电化学行为研究[M],重庆大学硕士论文,2003.
    
    [32] Joachim Kohler, Hiroshi Makihara, Hisakazu Uegaito, Hitoshi Inoue, Motoyuki Toki. LiV_3O_8: characterization as anode material for an aqueous rechargeable Li-ion battery system[J]. Electrochim. Acta, 2000, 46: 59-65.
    
    [33] P. Wang, H.Yang, H.Q.Yang. Electrochemical behavior of Li-Mn spinel electrode material in aqueous solution[J]. J. Power Sourcer, 1996, 63: 275-278.
    
    [34] G.X. Wang, S. Zhong, D.H. Bradhurst, S.X. Dou, H.K. Liu. Secondary aqueous lithium-ion batteries with spinel anodes and cathodes[J]. J. Power Sources, 1998, 74: 198-201.
    
    [35]杜岩, 李明, 杨华铨.Li-Fe复合氧化物为阳极材料的水溶液电池[J].电池,2000,30(4):153-155.
    
    [36]刘国强,徐宁,曾潮流,杨柯.锂离子蓄电池钒系正极材料的研究进展[J].电源技术,2002,26(2):114-118.
    
    [37] E. Ali. Electrochemical behavior of thin-film LiMn_2O_4 electrode in aqueous media[J]. Electrochim. Acta, 2001,47 : 495-499.
    
    [38] J. W. Lee, S.I. Pyun. Investigation of lithium transport through LiMn_2O_4 film electrode in aqueous LiNO_3 solution[J]. Electrochim. Acta, 2004, 49 : 753-761.
    
    [39] M.J.Zhang, R.Dahn. Electrochemical lithium intercalation in VO_2(B) in aqueous electrolytes[J]. J. Electrochem. Soc, 1996, 143(9): 2730-2735.
    
    [40]李明,杨华铨.a-Fe_2O_3在LiOH水溶液中的锂化行为[J],物理化学学报,2000,16(8):735-740.
    
    [41] Y.G. Wang, Y.Y. Xia. Hybrid aqueous energy storage cells using activatedcarbon and lithium-intercalated compounds[J]. J.Electrochem. Soc, 2006,153 (2):A450-A454.
    
    [42] Y.G Wang, J.Y. Luo, C.X. Wang, Y.Y. Xia. Hybrid aqueous energy storage cellsusing activated carbon and lithium-ion intercalated compounds[J]. J.Electrochem.Soc, 2006,153 (8) :A1425-A1431.
    
    [43] C.H. Mi, X.G. Zhang, H.L. Li, Electrochemical behaviors of solid LiFePO_4 andLi_(0.99)Nb_(0.01)FePO_4 in Li_2SO_4 aqueous electrolyte[J]. J.Electroanal.Chem. 2007, 602:245-254.
    
    [44]M. Manickam, P. Singh, S. Thurgate, K. Prince, Redox behavior and surfacecharacterization of LiFePO4 in lithium hydroxide electrolyte [J]. J.Power Sources2006,158: 646-649.
    
    [45]黄可龙,杨赛,刘素琴,王海波.磷酸铁锂在饱和硝酸锂溶液中的电极过程动力学[J].物理化学学报,2007,23(1):129-133.
    
    [46]杨赛,黄可龙,刘素琴,王海波.LiFePO_4在饱和LiNO_3溶液中的锂化行为[J].无机化学学报,2007,23(1):141-144.
    
    [1]丘利,胡玉和.X-射线衍射技术及设备[M].北京:冶金工业出版社,1998.
    
    [2]黄慧忠.纳米材料分析技术[M].北京:化学工业出版社,2003.
    
    [3]马礼敦.高等结构分析[M].上海:复旦大学出版社,2001.
    
    [4]王兆民,王奎雄,吴宗儿.红外光谱学——理论与实践[M].北京:兵器工 业出版社,1995.
    
    [5] R.S. Nicholson. Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics [J]. Anal. Chem., 1965, 37: 1351-1355.
    
    [6] A.J. Bard, L.R. Faulkner. Electrochemical Methods: fundamentals and applications, 2nd Ed [M]. Wiley J., 2001.
    
    [7]田昭武.电化学研究方法[M].北京:科学出版社,1984.
    
    [8]柳厚用,徐品弟等译.电化学中的仪器方法[M].上海:复旦大学出版社, 1992.
    
    [9]查全性.电极过程动力学导论(第三版)[M].北京:科学出版社,2002.
    
    [10]周伟舫.电化学测量[M].上海:上海科技出版社,1985.
    
    [1]杜柯.柠檬酸络合法无焰燃烧法制备尖晶石型LiMn_2_4[学位论文].上海.中国科学院上海冶金研究所.2001:4-5.
    
    [2]K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough. Li_XCoO_2 (Oless-Thanxless-Than-or-Equal-Tol) - A new cathode material for batteries of high-energy density[J]. Mater. Res. Bull. 1980,15: 783-789.
    
    [3]吴宇平,方世壁,刘昌炎,周恒辉,江英彦.锂离子电池正极材料氧化钴锂的进展[J].电源技术,1997,20(5):208,209,226.
    
    [4] M.Mohan Rao, M. Jayalakshmi, O. Schaf, H.Wulff, U. Guth, F. Scholz.Electrochemical behaviour of solid lithium cobaltate (LiCoO_2) and lithiummanganate (LiMn_2O_4) in an aqueous electrolyte system [J]. J. Solid StateElectrochem. 2001, 5: 50-56.
    
    [5] Y.G. Wang, J.Y. Luo, C.X. Wang, Y.Y. Xia. Hybrid aqueous energy storage cellsusing activated carbon and lithium-ion intercalated compounds[J]. J.Electrochem.Soc, 2006,153 (8) :A1425-A1431.
    
    [6] J.M. Fernandez, L. Hernan, J. Morales, J.L. Tirado. Low-temperaturehydrothermal transformations of LiCoO_2 and HCoO_2 [J]. Mater Res. Bull., 1988, 23:899-904.
    
    [7] E. Zhecheva, R. Stoyanova. Li_(1-x-y)H_yCoO_2: Metastable layered phases obtainedby acid digestion of LiCoO_2(O_3)[J]. J. Solid State Chem., 1994, 109:47-52.
    
    [8] G. G. Amatucci, J. M. Tarascon, L. C. Klein. CoO_2, The End Member of theLiCoO_2 Solid Solution[J]. J Electrochem. Soc, 1996,143(3): 1114-1123.
    
    [9] Jan.N. Reimers and J. R. Dahn. Electrochemical and In Situ X-Ray DiffractionStudies of Lithium Intercalation in Li_xCoO_2[J]. J. Electrochem. Soc, 1992,139(8):2091.
    
    [10] J. Barker, R. Pynenburg, R. Koksbanc, M. Y. Saidi, An electrochemicalinvestigation into the lithium insertion properties of Li_xCoO_2[J]. Electrochim. Acta.1996, 41(15): 2481-2488.
    
    [11]查全性等著.电极过程动力学导论[M].北京:科学出版社,1987:152.
    
    [12] R. Kanno, A. Kondo, M. Yonemura, R. Gover, Y. Kawamoto, M. Tabuchi, T.Kamiyama, F. Izumi, C. Masquelier, G. Rousse, The relationships between phasesand structures of lithium manganese spinels[J]. J. Power Sources, 1999, 81-82:542-546.
    
    [13] T. Ohzuku, M. Kitagawa, T. Hirai, Electrochemistry of manganese dioxide inlithium nonaqueous Cell[J].J. Electrochem. Soc, 1990, 137: 769-775.
    
    [14] M. M. Thackeray, W. I. F. David, P. G. Bruce, J. B. Goodenough, Lithiuminsertion into Manganese Spinels [J]. Mater. Res. Bull., 1983,18:461-472.
    
    [15] M. M. Thackeray, M. H. Rossouw. Thackeray. Synthesis oflithium-manganese-oxide spinels: a study by thermal analysis[J]. J. Solid StateChem., 1994,113(2):441-443.
    
    [16] P. Endres, B. Fuchs, S. Kemmler-Sack, K. Brandt, G. Faust-Becker, H. -W.Praas, Influence of processing on the Li:Mn ratio in spinel phases of the systemLi_(1+x)Mn_(2-x)O_(4-d)[J]. J. Solid State Ionics, 1996, 89(3-4) :221-231.
    
    [17] J. M. Tarascen, E. Wang, F. K. Shokoohi, W. R. Mckinnon, S. Colson. Thespinel phase of LiMn_2O_4 as a cathode in secondary lithium Cells[J]. J. Electrochem.Soc, 1991,138: 2859-2864.
    
    [18] Y. Xia, M. Yoshio. Studies on Li-Mn-O spinel system (obtained frommelt-impregnation method) as a cathode for 4 V lithium batteries Part IV. High andlow temperature performance of LiMn_2O_4 [J]. J. Power Sources, 1997, (66): 129-133.
    
    [19]何涛,吴浩青.四元尖晶石相Li-M-Mn-O(M=Ni,Cr,Mo,V)嵌入电极的研究[J].化学学报,1999,57:653.
    
    [20] D. Zhang, B. N. Popov, R. E. White. Electrochemical investigation of CrO_(2.65)??doped LiMn_2O_4 as a cathode material for lithium-ion batteries[J]. J. Power Sources,1998, 76: 81-90.
    
    [21] Y. K. Sum, D. W. Kim, Y. -M. Choi, Synthesis and characterization of spinelLiMn_(2-x)Ni_xO_4 for lithium/polymer battery applications[J]. J. Power Sources, 1999,79:231-237.
    
    [22] D. Song, H. Ikuta, T. Uchida, M. Wakihara. The spinel phases LiAl_yMn_(2-y)O_4(y=0, 1/12, 1/9, 1/6, 1/3) and Li(Al,M)_(1/6)Mn_(11/6)O_4 (M=Cr, Co) as the cathode forrechargeable lithium batteries[J]. Solid State Ionics, 1999, 117(1-2): 151-156.
    
    [23]万传云,努丽燕娜,江志裕.掺稀土的LiM_(0.02)Mn_(1.08)O_4锂离子电池正极材 料[J].高等学校化学学报,2002,23:126.
    
    [24]杨书廷,张焰峰,吕庆章,贾俊华,丁立,张明春.微波合成掺杂 LiM_xMn_2O_4(M=La,Nd,Y)的电化学性能[J].应用化学,2000,17(5):503.
    
    [25] M. R. Palacin, F. L. Cras, L. Soguin, M. Anne, Y. chabre, J. M. Tarascon, G.Amatucci, G. Vaughan, P. Strobel. In SituStructural Study of 4V-Range LithiumExtraction/Insertion in Fluorine-Substituted LiMn_2O_4[J]. J. Solid State Chem. 1999,144(2) :361-371.
    
    [26] P. Wang, H. Yang, H.Q.Yang, Electrochemical behavior of Li-Mn spinelelectrode material in aqueous solution[J]. J.Power Sourcers, 1996, 63:275-278.
    
    [27] M. Jayalakshmi, M. Mohan Rao, F. Scholz. Electrochemical behavior of solidlithium manganate (LiMn_2O_4) in aqueous neutral electrolyte solutions[J]. Langmuir,2003,19:8403-8408.
    
    [28]Ali Eftekhari. Electrochemical behavior of thin-film LiMn_2O_4 electrode inaqueous media[J]. Electrochim. Acta, 2001, 47 :495-499.
    
    [29]龙英,尖晶石锰系电极材料在水溶液中的电化学行为研究,重庆大学硕士 论文,2003.
    
    [30]J. W. Lee, S.I. Pyun. Investigation of lithium transport through LiMn_2O_4 film electrode in aqueous LiNO_3 solution[J]. Electrochim. Acta. 2004, 49:753-761.
    
    [31] L. Wu, W.R.Me Kinnon, J.R.Dahn, lithium intercalation from aqueous solutions [J]. J.Electrochem. Soc, 1994, 141(9): 2310-2315.
    
    [32]陈前火,章庆松,连锦明,水溶液中锂离子电池正极材料的电化学性能研究 [J].福建师范大学学报(自然科学版)2005,21(4):58-62。
    
    [33]Y.G Wang, Y.Y. Xia, Hybrid aqueous energy storage cells using activated carbon and lithium-intercalated compounds [J]. J. Electrochem. Soc, 2006, 153 (2): A450-A454.
    
    [34] G. J. Wang, H. P. Zhang, L. J. Fu, B. Wang, Y. P. Wu, Aqueous rechargeablelithium battery (ARLB) based on LiV_3O_8 and LiMn_2O_4 with good cyclingperformance[J]. Electrochem. Commun., 2007, 9:1873-1876.
    
    [35] D.S. Ahn, M.Y. Song. Variations of the Electrochemical Properties of LiMn_2O_4with Synthesis Conditions[J]. J. Electrochem. Soc. 2000,147 (3) :874-879.
    
    [36] W.Liu, K.Kowal, GCFarrington. Mechanism of the electrochemical insertionof lithium into LiMn_2O_4 spinels[J]. J. Electrochem. Soc, 1998, 2: 145-459.
    
    [37] K. Miura, A. Yamada, M. Tanaka. Electric states of spinel LixMn_2O_4 as acathode of the rechargeable battery[J]. Electrochim. Acta, 1996,41(2):249-256.
    
    [38]吴浩青,李永舫.电化学动力学[M].北京:高等教育出版社,1998:166.
    
    [39]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002。
    
    [40]阿伦.J.巴德,拉里.R.福克纳.电化学方法、原理和应用[M].北京:化学工业出版社,2005.
    
    [41] T. Ohzuku., Y. Makiura.. Layered lithium insertion material of LiNi_(1/2)Mn_(1/2)O_2: a possiblealternative to LiCoO_2 for advanced lithium-ion batteries[J].Chem.Lett., 2001,30(8):744-745.
    
    [42] H..Yoshizawa, T. Ohzuku. Prismatic lithium-ion batteries of Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_2 withGraphite [J].Electrochemistry, 2003,71(12):1177-1181.
    
    [43] T. Ohzuku, Y. Makimura. Layered lithium insertion material of Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_2 forlithium-ion batteries [J].Chem. Lett., 2001(7):642-643.
    
    [44] G. Henriksen., K Amine, J.Liu, P. Nelson. Battery-level material cost model facilitateshigh-power li-ion battery cost reduction [C].204~(th) Meeting of The Electrochemical Society,Orlando, 2003:161-167.
    
    [45] Y. Koyama, L.Tanaka., H. Adachi, Y. Makimura., T. Ohzuku. Crystal and electronicstructures of superstructural Li_(1-x)[Co_(1/3)Ni_(1/3)Mn_(1/3)]O_2 (0=x=1) [J]. J.Power Sources, 2003,119-121:644-648.
    
    [46] B. J. Hwang, Y .W. Tsai, D. Carlier, et al. A combined computational experimental studyon LiNI_(1/3)Co_(1/3)Mn_(1/3)O_2 [J].Chem Mater, 2003,15(15):3676-3682.
    
    [47] Y. Koyama., N. Yabuuchi., I. Tanaka., H. Adachi., T. Ohzuku. Solid-state chemistry andelectrochemistry of LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2 for advanced lithium-ion batteries: I. First-PrinciplesCalculation on the crystal and electronic structures [J]. J.Electrochem. Soc.2004,151(10):A1545-A1551.
    
    [48] Y. Koyama, N.Yabuuchi, I. Tanaka., H. Adachi., T. Ohzuku. Solid-state chemistry andelectrochemistry of LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2 for advanced lithium-ion batteries: I. First-PrinciplesCalculation on the crystal and electronic structures [J]. J.Electrochem. Soc.??2004,151(10):A1545-A1551.
    
    [49] P. S. Whitfield, I. J. Davidson, L M. D. Cranswick, I. P. Swainson, P. W. StephensInvestigation of possible superstructure and cation disorder in the lithium battery cathodematerials LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2 using neutron and anomalous dispersion powder diffraction [J].Solid State Ionics, 2005,176(5-6):463-471.
    
    [50]Yong-gang Wang, Jia-yan Lou, Wen Wu, Cong-xiao Wang, and Yong-yao Xia,Hybrid Aqueous Energy Storage Cells Using Activated Carbon and Lithium-IonIntercalated Compounds[J]. J. Electrochem.Soc, 2007,154(3): A228-A234.
    
    [51]Min Gyu Kim, Hyun Joon Shin, Jung-Hyun Kim, Sang-Ho Park, Yang-KookSun, J. Electrochem. Soc. 2005, 152: A1320-1328.
    
    [52]H.B.Wang, K.L.Huang, Y.Q. Zeng, F.G. Zhao, L.Q. Chen, Stabilizing Cyclabilityof an Aqueous Lithium-Ion Battery LiNi_(1/3)Mn_(1/3)Co_(1/3)O_2/LixV_2O_5 by PolyanilineCoating on the Anode[J]. Electrochemical and Solid-State Letters, 2007, 10 (9) :A199-A203.
    
    [53] G. J. Wang, L. J. Fu, B. Wang, N. H. Zhao, Y. P. Wu and R. Holze An aqueousrechargeable lithium battery based on LiV_3O_8 and Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_2[J]. J Appl.Electrochem. 2008, 38:579-581.
    
    [54] A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough. Phospho-olivines aspositive-electrode materials for rechargeable lithium batteries[J]. J.Electrochem. Soc,1997,144(4):1188-1194.
    
    [55]A.S.Andersson, K. Beata, H.Lennart et al, Lithium extraction/insertion inLiFePO4: an X-ray diffraction and Mossbauer spectroscopy study[J]. Solid StateIonics, 2000. 130(1-2): 41.
    
    [56]A.Yamada, S.C.Chuan, K.Hinokuma. Optimized LiFePO_4 for Lithium BatteryCathodes[J]. J. Electrochem. Soc.2001,148(3):A224-A229.
    
    [57]杨赛,黄可龙,刘素琴,王海波.LiFePO_4在饱和LiNO_3溶液中的锂化行为[J].无机化学学报,2007,23(1):141-144。
    
    [58]黄可龙, 杨赛,刘素琴,王海波.磷酸铁锂在饱和硝酸锂溶液中的电极过程动力学[J].物理化学学报,2007,23(1):129-133.
    
    [1] A. D.Wadsley. Crystal chemistry of nonstoichiometric quinquevalent vanadium oxides: crystal structure of Li_(1+x)V_3O_8 [J]. Acta. Crystallogr, 1957,10:261-267.
    
    [2] J.O. Besenhard, Schollhornr. The discharge reaction mechanism of the MoO_3electrode in organic electrolytes [J]. J Power Sources, 1977, 1: 267-276.
    
    [3] A. Picciottoll, M.M.Thackeray, G. Pictoia. An electrochemical study of thelithium vanadate system Li_(1+x)V_2O_4 and Li_(1-x)VO_2 [J]. Solid State Ionics,1988,30:1364-1370.
    
    [4] S.Panero, M.Pasquali, G. Pistoia. Rechargeable Li/Li V_3O_8 cells [J]. JElectrochem Soc, 1983,130:1225-1230.
    
    [5] G. Pistoia, M. Pasquali, G. Wang, et al. Li/LiV_3O_8 secondary batteries. synthesisand characterization of an amorphous form of the cathode [J]. J Electrochem Soc,1990,137(8): 2365-2370.
    
    [6] J. Dai, F. Li, Z. Gao, et al. Low-Temperature Synthesized LiV_3O_8 as a CathodeMaterial for Rechargeable Lithium Batteries [J]. J Electrochem Soc, 1998, 145(9):??3057-3062.
    
    [7] J. Kawakita, T, Miura, T. Kishi. Charging characteristics of Li_(1+x)V_3O_8[J]. J. SolidState Ionic,1999,7:689-694
    
    [8] M.Winter, J.O.Besenhard, M.E.Spahr, P. Novak. Insertion electrode materials forrechargeable lithium batteries [J]. Adv. Mater., 1998,10(10):725-763.
    
    [9] J.Kawakita, H.Katagiri, T.Miura,et al. Lithium insertion behaviour of manganeseor molybdenum substituted Li_(1+x)V_3O_8[J]. J Power Sources, 1997, 68: 680-685.
    
    [10]R. Benedek, M. M. Thackeray, L. H.Yang. First-principles calculation of atomicstructure and electrochemical potential of Li_(1+x)V_3O_8[J]. J. Power Sources,1999(81-82):487-490.
    
    [11] Joachim Kohler, Hiroshi Makihara, Hisakazu Uegaito, Hitoshi Inoue,Motoyuki Toki, LiV_3O_8: characterization as anode material for an aqueousrechargeable Li-ion battery system[J]. Electrochim. Acta, 2000, 46: 59-65.
    
    [12]G. J. Wang, L.J. Fu, N.H. Zhao, L.C. Yang, Y.P. Wu, H.Q. Wu. An AqueousRechargeable Lithium Battery with Good Cycling Performance[J]. Angew. Chem.Int. Ed. 2007,46: 295-297.
    
    [13] G. J. Wang, H. P. Zhang, L. J. Fu, B. Wang, Y. P. Wu. Aqueous rechargeablelithium battery (ARLB) based on LiV_3O_8 and LiMn_2O_4 with good cyclingperformance[J]. Electrochem. Commun. 2007, 9:1873-1876.
    
    [14].G. J. Wang, N.H. Zhao, L.C. Yang, Y.P. Wu, H.Q. Wu , R. Holze. Characteristicsof an aqueous rechargeable lithium battery (ARLB) [J]. Electrochim. Acta, 2007,52(15): 4911-4915.
    
    [15] G. J. Wang, L. J. Fu, B. Wang, N. H. Zhao, Y. P. Wu and R. Holze. An aqueousrechargeable lithium battery based on LiV_3O_8 and Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_2[J]. J. AppliedElectrochem., 2008, 38: 579-581.
    
    [16]王高军,张汉平,赵娜红,吴宇平.一种水溶液可充锂电池,中国发明专 利.申请号:200710037906.0.
    
    [17]王高军,张汉平,赵娜红,吴宇平.一种新型的水溶液可充锂电池,中国发 明专利.申请号:200710037908.X.
    
    [18] J. Kawakita, K. Makino, Y. Katayama, T. Miura, T. Kishi. Preparation and lithium insertion behaviour of Li_yNa_(1.2-y)V_3O_8 [J]. Solid State Ionics 1997(99):165-171.
    
    [19]周仲柏, 陈永言.电极过程动力学基础教程[M].武汉:武汉大学出版社, 1989: 294-295.
    
    [1] L. Wu, J. R. Dahn, Wainwright D S. Rechargeable lithium bateries with aqueouselectrolytes [J]. Science, 1994, 264:1115-1117.
    
    [2]M.J. Zhang, J. R. Dahn, Electrochemical Lithium Intercalation in VO_2(B) inAqueous Electrolytes [J]. J. Electrochem. Soc, 1996,143(9): 2730-2735.
    
    [3] L. Wu, J.R Dahn. Lithium-ion cells with aqueous electrolytes [J]. J. Electrochem.Soc, 1995,142(6):1742-1745.
    
    [4] G.X. Wang , S. Zhong, D.H. Bradhurst, S.X. Dou, H.K. Liu, Secondary aqueous??lithium-ion batteries with spinel anodes and cathodes[J]. J. Power Sources, 1998, 74:198-201.
    
    5]杜岩,李 明,杨华铨.Li-Fe复合氧化物为阳极材料的水溶液电池[J].电池,2000,30(4):153-155.
    
    [6]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002.
    
    [7]郑洪河,锂离子电池电解质[M].北京:化学工业出版社,2007.
    
    [8] Ali Eftekhari, Electrochemical behavior of thin-film LiMn_2O_4 electrode in aqueous media[J]. Electrochim. Acta. 2001,47: 495-499.
    
    [9]Q.C.Zhuang, J.M. Xu, X.Y.Fan, Q.F.Dong, Y.X. Jiang, L.Huang, S.G. Sun. An electrochemical impedance spectroscopic study of the electronic and ionic transport properties of LiCoO_2 cathode[J]. Chinese Science Bulletin, 2007, 52 (9): 1187-1195.
    
    [10Joachim Kohler, Hiroshi Makihara, Hisakazu Uegaito, Hitoshi Inoue, Motoyuki Toki, LiV_3O_8: characterization as anode material for an aqueous rechargeable Li-ion battery system[J]. Electrochim. Acta, 2000, 46:59-65.
    
    [1] H. Shirakaw, E J.Louis, A.G. MacDiarmid. Synthesis of electrically conducting organic polymers: halogen derivativea of polyacetylene,(CH)x[J]. J. Chem. Soc, Chem.Commun.,1977,16 :578-580.
    
    [2] K.K. Kanazawa, A. F. Diaz, R.H.Geiss. Organic metals: Polypyrrole, a stable synthetic 'matallic' polymer[J]. J Chem. Soc, Chem. Commun ., 1979,19: 854-855.
    
    [3]A.F.Diaz, J.A.Logan. Electroactive polyaniline films[J]. J.Electroanal Chem .1980, 111(1):111-114.
    
    [4]吴宇平,万春荣,姜长印.锂离子二次电池[M].化学工业出版社,2002:274.
    
    [5]徐国祥.大容量聚合物电极材料在二次锂电池中的应用研究[D].天津大学博士学位论文,2004.
    
    [6]徐国祥,其鲁,闻雷,刘国强,慈云祥.聚1,5-二氨基蒽醌二次锂电池正极材料研究[J].高分子学报,2006,6:795-799.
    
    [7]张玲,唐冬汉,熊奇.超级电容器极化电极材料的研究进展[J].重庆大学学报,2002,25(5):152-156.
    
    [8]遇桂春,徐继芬.电化学双电层电容器研制.电子元件与材料[J].2002,21(8):19-21.
    
    [9]朱修锋,王君,景晓燕.超级电容器电极材料[J].化工新型材料,2002,30(4):5-8.
    
    [10]杨红生,周啸,姜翠玲.电化学电容器最新研究进展Ⅱ.氧化还原电容器[J].电子元件与材料,2003,22(3):38-42.
    
    [11]C.C.Hu,C.H.Chu.Electrochemical impedence characterization ofpolyaniline-coated graphite electrodes for electroche mical eapacitors-efects of filmcoverage/thickness and anions[J]. J. Electroanal. Chem., 2001,503:105-116.
    
    [12]C. C. Hu, J. Y. Lin. Effects of the loading and polymerzation temperature on thecapacitive performance of polyaniline in NaNO_3. Electrochim. Acta,2002,47:4055-4067.
    
    [13] L. Alexis, S. Patrice, S. Christian. Polythiophene-based supercapacitors[J].J.Power Sources, 1999, 80(1-2):142-148.
    
    [14]工晓峰,孔祥华,谢晶莹等.高分子聚合物超级电容器研究[J].电子元件与材料,2001,20(5):24-27.
    
    [15] S.Yata, E. Okamoto, H. Satake, H. Kubota, M. Fujii, T. Taguchi, H. Kinoshita. Polyacene capacitors [J]. Journal of Power Sources, 1996, 60(2): 207-212.
    
    [16]T.B.Hunter, P.S.Tyler, W.H. Smyrl. Impedance analysis of poly(vinvlferrocene)films the dependence of diffusional charge transport and exchange current density on polymer oxidation state [J]. J Electrochem Soc, 1987 ,134(9):2198.
    
    [17]张玲,唐冬汉,熊奇.超级电容器极化电极材料的研究进展[J].重庆大学学报(自然科学版),2002,25(5):152-156.
    
    [18] F. T. A. Vork, B. C. A. M. Schuermans, E. Barendrecht. Influence of inserted anions on the properties of polypyrrole [J]. Electrochim. Acta, 1990, 35: 567-575.
    
    [19] A.A. Deronzier, J.C. Moutet, Functionalized polypyrroles. New molecular materials for electrocatalysis and related applications[J]. Acc. Chem. Res., 1989,??22(7): 249-255.
    
    [20] T.V. Vernitskaya, O.N. Efimov, Polypyrrole: A conducting polymer (synthesis,properties, and applications) [J]. Russ. Chem. Rev. 1997, 66(5): 489-505.
    
    [21] S. Yucel, E. Betul, S. Mutlu. In situ electrochemical solid-phase extraction ofanions and cations using polypyrrole and overoxidized sulfonated polypyrrole[J].Talanta, 2008, 75(2): 369-375.
    
    [22] P. Novak, Limitations of polypyrrole synthesis in water and their causes [J].Electrochim. Acta, 1992, 2 :1227-1230.
    
    [23] A.F. Diaz, K.K. Kanazawa, G.p. Gardini, Electrochemical polymerization ofpyrrole[J]. J. Chem. Soc. Chem. Commun., 1979, 635-636.
    
    [24]赵崇军,导电聚吡咯的制备及电化学性质研究[D].复旦大学博士论文,2002.
    
    [25] K.K. Kanzawa, A.F. Diaz, R.H. Geiss etc., Organic metals-polypyrrole, a stablesynthetic metallic polymer[J]. J. Chem. Soc. Chem. Commun., 1979 : 854-855.
    
    [26] A.F. Diaz, J.I. Castillo, J.A. Logan, W. Lee, Electrochemistry of conductingpolypyrrole films[J]. J. Electroanal. Chem., 1981,129(1-2): 115-132.
    
    [27] C. Lee, J.Y. Lee, H. Lee, Solutions and solution-cast films of conductingpolymers[J]. Synth. Met. 1997,84(1-3): 149-150.
    
    [28] T. Shimidzu, A. Ohtani, T. Iyoda, K. Honda, Charge-controllablepolypyrrole/polyelectrolyte composite membranes Part II. Effect of incorporatedanion size on the electrochemical oxidation-reduction process[J]. J. Electroanal.Chem., 1987, 224(1-2): 123-135.
    
    [29] S. Panero, P. Prosperi, F. Bonino, B. Scrosati, Characteristics ofelectrochemically synthesized polymer electrodes in lithium- cells-III[J].Polypyrrole [J]. Electrochim. Acta, 1987,7:1007-1011.
    
    [30] T. F. Otero, E. Angulo, Impedance studies of electrogenerated polypyrrolefilms[J]. Synth. Met., 1992, 51:87-94.
    
    [31] P. A. Christensen, A. Hamnet, In situ spectroscopic investigations of the growth,electrochemical cycling and overoxidation of polypyrrole in aqueous solution [J].Electrochim. Acta, 1991, 8:1263-1286.
    
    [32]P. Novak, B.Rasch, W. Vielstich, Overoxidation of Polypyrrole in PropyleneCarbonate[J]. J. Electrochem.Soc, 1991, 138(11):3300-3304.
    
    [33]S. Skaarup, K. West, B. Zachau-Christiansen, T. Jacobsen, In situ opticalspectroscopy of electrochemical doping of polypyrrole[J]. Synth. Met., 1992, 51(1-3):267-275.
    
    [34] Y. Furukawa, S. Tazawa, Y. Fujii, I. Harada, Raman spectra of polypyrrole and its 2,5-13C-substituted and C-deuterated analogues in doped and undoped states[J]. Synth. Met., 1988, 24(4): 329-341.
    
    [35] J. Bukowska, K. Jackowsk, In situ raman studies of polypyrrole formation on a silver electrode[J]. Electrochim. Acta, 1990, 35:315-317.
    
    [36] A.F. Diaz, J.I. Castillo, J.A. Logan, W. Lee, Electrochemistry of conducting polypyrrole films[J]. J. Electroanal. Chem., 1981, 129(1-2): 115-132.
    
    [37] P. Pfluger, M. Krounbi, G.B. Street, G. Weiser, The chemical and physical properties of pyrrole-based conducting polymers: The oxidation of neutral polypyrrole[J]. J. Chem. Phys., 1983, 78(6):3212-3218.
    
    [38] T. F. Otero, C. Santamarfa, Kinetics of the polypyrrole electrogeneration from aqueous solution. An ex situ microgravimetric study[J]. Electrochim. Acta, 1992, 2: 297-307.
    
    [39]K. Takeshita, W. Wernet. Electrochemical Quartz Crystal Microbalance Investigation of a Poly(pyrrole)/Sulfated Poly(13-hydroxyether) Composite Film[J]. J. Electrochem. Soc, 1994,141 (8): 2004-2009.
    
    [40] S. Panero, P. Prosperi, B. Scrosati, Properties of electrochemically synthesized polymer electrodes-IX. The effects of surfactants on polypyrrole films[J]. Electrochim. Acta, 1992, 37(3): 419-423.
    
    [41] S. Kuwabata, J. Nakamura, H. Yoneyama. Dependence of conductivity of polypyrrole film doped with para-phenolsulfonate on solution pH[J]. J. Electrochem. Soc, 1990, 137(7): 2147-2150.
    
    [42] D. Park, Y. Shim, Degradation of Electrochemically Prepared Palypyrrole in Aqueous Sulfuric Acid [J]. J. Electrochem. Soc, 1993,140(3): 609-614.
    
    [43] J.C. Vidal, E. Garcia, J.R. Castillo, In situ preparation of a cholesterol biosensor: entrapment of cholesterol oxidase in an overoxidized polypyrrole film electrodeposited in a flow system - Determination of total cholesterol in serum[J]. Anal. Chim. Acta. 1999,385(1-3): 213-222.
    
    [44] T.E. Campbell, A.J. Hodgson, G.G. Wallace, Incorporation of erythrocytes into polypyrrole to form the basis of a biosensor to screen for Rhesus (D) blood groups and rhesus (D) antibodies [J]. Electroanalysis, 1999,11(4):215-222.
    
    [45] N.T. Kemp, G.U. Flanagan, A.B. Kaiser, H.J. Trodahl, B. Chapman, A.C. Partridge, R.G. Buckley. Temperature-dependent conductivity of conducting polymers exposed to gases[J]. Synth. Met. 1999,101(1-3):434-435.
    [46] N.C. Foulds, C.R. Lowe. Immobilization of glucose oxidase in ferrocene-modified pyrrole polymers[J]. Anal. Chem., 1988, 60(22): 2473-2478.
    [47] S. Fukuhara, R. Kim, Y. Aoki. Effect of methotrexate-citrovorum factor (MTX-CF) rescue therapy in a case of malignant histiocytosis with disseminated intravascular coagulation (author's transl)][J]. Rinsho Ketsueki, 1981, 22(7) :1145.
    [48] C. Jerome, D. Labaye, I. Bodart, R. Jerome, Electrosynthesis of polyacrylic polypyrrole composites: formation of polypyrrole wires[J]. Synth. Met., 1999, 101(1-3):3-4.
    
    [49] J.O. Iroh, C. Williams, Formation of thermally stable polypyrrole-naphthalene benzene sulfonate carbon fiber composites by an electrochemical process[J]. Synth. Met. 1999,99(1): 1-8.
    
    [50] Baruch Zinger, Larry L. Miller. Timed release of chemicals from polypyrrole films[J]. J. Am. Chem. Soc., 1984,106 (22):6861-6863.
    
    [51] W.K. Lu, R.L. Elsenbaumer, The corrosion protection of metals by conductive polymers II. Pitting corrosion. Conference proceedings at antec 98: plastics on mymind[J]. 1998,44 (2): 1276-1279.
    
    [52] P.J. Nigrey, D. Macinnes, A.G. Macdiarmiel, A.J. Heeger, Lightweight rechargeable storage batteries using polyacetylene, (CH)x as the cathode-active material[J]. J. Electrochem. Soc, 1981,128(8) :1651-1654.
    
    [53] T. Osaka, K. Naoi, H. Sakai, S. Ogano, Effect of PF_6~-anion on the properties of lithium-polypyrrole battery during polyprrole film formation[J]. J. Electrochem. Soc, 1987, 134(2): 285-289.
    
    [54] T. Momma, K. Nishimura, T. Osaka, N. Kondo, S. Nakamura, Electrochemical Properties of a Polypyrrole/Polystyrenesulfonate Composite Film and Its Application to Rechargeable Lithium Battery Cathodes[J]. J. Electrochem. Soc, 1994, 141(9):2326-2331.
    
    [55] K. Huang, M.X. Wan, Y.Z. Long, Z.J. Chen, Y. Wei. Multi-functional polypyrrole nanofibers via a functional dopant-introduced process[J]. Synth. Met, 2005 ,155 (3): 495 - 500.
    
    [56] G.W. Lu, C. Li, G.Q. Shi. Polypyrrole micro- and nanowires synthesized by electrochemical polymerization of pyrrole in the aqueous solutions of pyrenesulfonic acid[J]. Polymer , 2006 , 47(6) : 1778-1784.
    
    [57]J.Kenneth, Wynne, G. Bryan Street, Poly(pyrrol-2-ylium tosylate),
    ??electrochemical synthesis and physical and mechanical properties[J].Macromolecules, 1985,18(12): 2361-2368.
    
    [58] E. M. Genies, A. Boyle, M. Lapkowski and C. Tsintavis, Polyaniline: Ahistorical survey[J]. Synth. Met, 1990, 36 (2): 39-182.
    
    [59] A. G. Macdiarmid, J. C. Chiang and A. F. Richter, Polyaniline: a new concept inconducting polymers[J]. Synth. Met, 1987,18 (1-3): 285-290.
    
    [60] K, Gurunathan, D. P. Amalnerkar, D.C.Trivedi. Synthesis and characterizationof conducting polymer composite (PAn/TiO_2) for cathode material in rechargeablebatery[J]. Materials Leters, 2003, 57(9-10): 1642-1648.
    
    [61] E, Dalas, E. Vitoratos, S. Sakkopoulos. Polyaniline/zeolite as the cathode in anovel gel electrolyte primary dry cell[J]. J. Power Sources, 2004,128(2): 319-325.
    
    [62]M. Malta, G. Louam, N. Errien. Nanofibers composite vanadiumoxide/polyaniline: synthesis and characterization of an electroactive anisotropicstructure[J]. Electrochem. Commun., 2003, 5(12):1011-1015.
    
    [63] H. Karami, M. F. Mousavi, M. Shamsipur. A novel dry bipolar rechargeablebatery based on polyaniline[J].J. Power Sources, 2003,124(1): 303-308.
    
    [64] K. Sun, R. Kwang, M. Kim, S.G. Kangl. Comparison oflithium//polyaniline secondary batteries with different dopants of HCland lithium ionics salts[J]. J. Power Sources, 2000 88:197-201.
    
    [65] S.A. Chen, L.C. Lin. Method for preparing and using electroconductivepolymer composites as positive electrode active materials to prepare secondarybatteries, US Patent, 5849045, 1998,12-15.
    
    [66] S.A. Chen, L.C. Lin. Electroconductive polymer composites for use insecondary batteries as positive electrode active materials, US Patent, 5863454,1999,1-26.
    
    [67]M. L.Cantu, P.GRomero, The Organic-Inorganic Polyaniline/V_2O_5 SystemApplication as High-Capacity Hybrid Cathode for Rechargeable Lithium Batteries[J].J. Electrochem. Soc, 1999, 146(6): 2029-2033.
    
    [68] H.K. Chaudhari, D.S. Kelkar. Investigation of structure and electricalconductivity in doped polyaniline[J]. Polymer international, 1997, 42(4):380-384.
    
    [69]董岸英.聚苯胺溶液性质及凝胶化的研究[D].中国科学院长春应用化学研究所博士学位论文,1996:29-30.
    
    [1]H.B.Wang, K.L.Huang, Y.Q. Zeng, S. Yang. Li.Q Chen. Electrochemicalproperties of TiP_2O_7 and LiTi_2(PO_4)_3 as anode material for lithium ion battery withaqueous solution electrolyte[J]. Electrochim. Acta, 2007, 52(9): 3280-3285.
    
    [2] H.B.Wang, K.L. Huang, Y.Q. Zeng, F.G.. Zhao, L.Q. Chen. StabilizingCyclability of an Aqueous Lithium-Ion Battery LiNi_(1/3)Mn_(1/3)Co_(1/3)O_2/LixV_2O_5 byPolyaniline Coating on the Anode[J]. Electrochem. Solid-State Lett., 2007, 10(9):A199-A203.
    
    [3] H.B. Wang, Y.Q. Zeng, K.L. Huang, S.Q. Liu, L.Q. Chen. Improvement of cycleperformance of lithium ion cell LiMn_2O_4/LixV_2O_5 with aqueous solution electrolyteby polypyrrole coating on anode[J]. Electrochim. Acta, 2007, 52 : 5102-5107.
    
    [4] J.Y. Luo, Y.Y. Xia. Aqueous Lithium-ion Battery LiTi_2(PO_4)_3/LiMn_2O_4 with HighPower and Energy Densities as well as Superior Cycling Stability[J]. Adv. Funct.Mater. 2007,17: 3877-3884.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700