热塑性聚合物立体结构微流控器件制作方法及相关理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文将具有“立体通道结构”或“多层结构”的微流控器件称为立体结构微流控器件。立体通道结构是指微通道内部具有立体微结构,多层结构是指在一般双层结构的基础上增加器件层数。
     立体结构微流控器件将多种功能单元集成到一起,可以实现分层、分区域的样品操控。对立体结构微流控器件的研究为实现μ-TAS系统集成化、微型化提供了基础。例如,在进行细胞分析时,可以在第一层上利用通道内立体微坝和微柱阵列进行细胞筛选,筛选出的细胞在第二层上利用通道内微陷阱阵列进行单细胞捕捉,然后在第三层上进行细胞裂解,在第四层上进行PCR扩增,使全部细胞分析过程可以在同一器件上快速完成。
     热塑性聚合物是制作立体结构微流控器件的重要材料之一,热塑性聚合物立体结构微流控器件可以实现批量化制造,对于μ-TAS系统的的未来发展具有重要意义。然而,目前对于热塑性聚合物立体结构微流控器件的研究还存在较多问题:(1)立体结构微通道热压中聚合物形变填充机理研究不足;(2)热键合过程中微通道变形严重,没有理论模型可以对通道变形机理进行分析;(3)热键合中片上集成电极容易产生断裂,目前没有可以揭示断裂机理的理论模型;(4)多层芯片封合方法欠缺。
     本文依托“973”国家重点基础研究发展计划“高性能微流控芯片/器件的制备方法及相关理论”(NO.2007CB714502)和国家自然科学基金重大项目“仿生—微纳流控芯片系统的研究”(NO.20890024),针对上述问题进行了如下研究:
     (1)对玻璃态/高弹态聚合物在热压中的粘塑性和高弹性力学行为进行了研究,为立体微结构热压奠定了基础。
     通过理论分析、数值模拟、热压过程实验拍摄和微结构成形分阶段热压实验,研究了热压中热塑性聚合物的形变填充机理。提出了“欠填充区域”的概念,并研究了“欠填充”的产生和消除机理,建立了热压过程中的加温速率、加载速率和保温保压时间等工艺参数与“欠填充”区域面积的关系。
     在本部分内容中,对于“玻璃态或高弹态热塑性聚合物”在凸模热压中形变填充行为的研究具有新颖性,特别是对“欠填充”机理进行的研究具有创新性,之前未见报道。
     (2)建立了热塑性聚合物毛细管电泳芯片集成电极在热键合中的受力模型,提出了新型低结晶度PET毛细管电泳芯片的微通道热压工艺、电极对准工艺和低温低压键合工艺。
     基于粘弹性理论和断裂理论,建立了热键合中电极的受力模型,对电极应力与键合工艺参数、热应力以及电极跨距之间的关系进行了分析,并通过有限元模拟和热键合实验对分析结果进行了验证。研究了新型低结晶度PET毛细管电泳芯片的制作方法,对其中的储液池激光加工、微通道热压、片上集成电极对准、材料表面改性和芯片键合等问题进行了研究。
     本部分内容中,对于“片上集成电极受力模型”和“PET毛细管电泳芯片微通道热压工艺、电极对准工艺和低温低压键合工艺”的研究具有创新性,相关研究之前未见报道。
     (3)研究了热键合中微通道的变形机理,使用“预补偿法”减小微通道变形对通道内立体微结构的影响,制作了带有通道内立体微堰的PMMA血细胞筛选微流控器件。
     基于热粘弹性理论,对热键合中微通道的变形进行了理论分析、有限元仿真和实验研究。针对变形会导致通道内微结构失效的问题,提出了“预补偿法”。制作了带有通道内微堰结构的血细胞筛选立体微流控器件,对其中的预补偿量的确定、通道网络结构设计、硅模具的制作、立体微通道热压和芯片键合等问题进行了研究。
     本部分内容中,对于“热键合中微通道变形机理和变形量模型”、“微通道变形预补偿”以及“带有通道内微堰结构的PMMA细胞筛选微流控器件制作方法”的研究具有创新性,相关研究之前未见报道。
     (4)提出了热塑性聚合物多层立体结构微流控器件的制作方法。
     通过数值模拟和多层器件键合实验,研究了储液池直径、通道宽度和基片厚度等因素对多层键合的影响。提出了热塑性聚合物多层器件键合法——MTBP法。对MTBP法所包含的多层异厚键合工艺(DTSLB)、传力镶块辅助键合工艺(EBAB)、多层器件分步键合工艺(MSB)、热塑性聚合物基片表面改性工艺(TP-SM)和器件激光切边(LEW)等进行了研究。使用MTBP法,本文制作了三种具有立体通道网络结构的PMMA多层微流控器件,并成功用于试剂混合。
     在本部分内容中,MTBP法及其所包含的EBAB、MSB、DTSLB、LEW均为首次提出,而TP-SM是对已有技术改进得到的工艺。
In this study, we call microfluidic devices which have three-dimensional channels or multilayer structures as "three-dimensional microfluidic devices". Among which, three-dimensional channels mean certain inner microstructures exist in the channels, and multilayer structures mean the device composes by more than two layers.
     In planar microchip, when the chip is used for cells filtration and trapping, especial electric or magnetic fields are required. However, three-dimensional devices can do these only by using the microstructures fabricated in microchannels, which is simple and quick. The development of three-dimensional microfluidic devices have become a hot topic.
     Sample operation is achieved only in a planar channel for double layer microfluidic chip, which is one of the bottlenecks slowing the realization of trueμTAS platforms. An approach to overcome this problem is the fabrication of multilayer microfluidic systems, in which each layer can achieve a function. The development of multilayer microfluidic devices have become a forefront topic.
     Hot embossing and thermal bonding, which are significant approaches to fabricate thermoplastic planar microfluidic device, have difficulties in the fabrication of multilayer microfluidic devices:(1) the replication precision is not acceptable, and the replication defects can easily generate; (2) channel deformation can destroy the in-channel structures; (3) multilayer bonding is affected by reservoir diameter, channel width and substrate thickness.
     The work is supported by National Basic Research Program of China (2007CB714502) and Major Program of National Natural Science Foundation of China (20890024). It emphasizes on the theory and fabrication of three-dimensional microfluidic devices with hot embossing and thermal bonding, the research works can be summarized as follows:
     (1) The filling and deformation behavior of glassy or hyperelastic thermoplastics is studied. This work lays a foundation for the embossing of three-dimensional microstructures.
     The filling and deformation behavior during hot embossing is studied based on theoretical analysis, finite element simulation, synchronous recording and asynchronous analysis. We present the conception of "lack-filling region", and study its formation and elimination. The relationship between lack-filling area and heating rate, applying pressure rate and remaining temperature and pressure time has been established.
     The study of filling and deformation behavior of glassy or hyperelastic thermoplastics during hot embossing with male die have not been reported.
     (2) The fracture mechanism of metal electrodes integrated on thermoplastic electrophoresis microchips is studied. Fabrication approach for a new kind of PET electrophoresis microchip is developed.
     The relationship between electrode stress and bonding parameters, thermal stress and the length of electrode in reservoir is studied base on fracture theory and visco-elastic theory. Bonding experiments and finite element analysis are conducted to verify the theoretical results. Fabrication approach of PET microchips is developed, and the fabrication of reservoir, the hot embossing of microchannels, the alignment of electrode, surface modification and thermal bonding process are studied.
     In this section, the studies of electrode fracture mechanism and fabrication approach for PET electrophoresis microchips are innovative.
     (3) The deformation mechanism of microchannel during thermal bonding is studied. An approach, named pre-compensation, is presented to minimize the effects of channel deformation on in-channel microstructures. Fabrication approach of PMMA blood cells filtration device with in-channel microweirs is developed.
     Based on thermal visco-elastic theory, the channel deformation during thermal bonding is studied by theory and simulation. The theoretical results are verified by experiments. Pre-compensation approach is presented to minimize the effects of channel deformation. Fabrication approach of blood cells filtration device with in-channel microweirs is developed. The compensation value, channel network design, silicon mold fabrication, three-dimensional channel embossing and chip bonding are investigated.
     In this section, the studies of channel deformation model, channel pre-compensation and fabrication approach for PMMA blood cells filtration are innovative.
     (4) An approach for the fabrication of multilayer three-dimensional thermoplastic microfluidic device is presented.
     Relationship between reservoir diameter, channel width, substrate thickness and multilayer bonding is established through finite element simulation and multilayer bonding experiments. A new approach for multilayer thermoplastic microdevices bonding is presented. The processes included in MTBP, such as DTSLB, EBAB, MSB, TP-SM and LEW are studied. Three multilayer PMMA microfluidic devices are fabricated using MTBP.
     In this section, EBAB, MSB, DTSLB and LEW approaches are all presented for the first time. TP-SM is an improved approach.
引文
[1]Manz A, Graber N, et al. Miniaturized total chemical analysis systems:A novel concept for chemical sensing [J]. Sens. Actuators. B,1990,1:249-255.
    [2]方肇伦.微流控分析芯片[M].北京:科学出版社,2003.
    [3]方肇伦.微流控分析芯片发展与展望[J].大学化学,2001,16(2):1.
    [4]林炳承,秦建华著.微流控芯片实验室[M].北京:科学出版社,2006.
    [5]Andreas E. Guber, Mathias Heckele, et al. Microfluidic lab-on-a-chip systems based on polymers—fabrication and application [J]. Chemical Engineering Journal,2004,101: 447-453.
    [6]Ji-Yen Cheng, Meng-Hua Yen, et al. Crack-free direct-writing on glass using a low-power UV laser in the manufacture of a microfluidic chip [J]. J. Micromech. Microeng.,2005, 15:1147-1156.
    [7]Hyun-Kee Chang, and Yong-Kweon Kim. UV-LIGA process for high aspect ratio structure using stress barrier and C-shaped etch hole [J]. Sensors and Actuators A:Physical, 2000,84:342-350.
    [8]张立国,陈迪等.SU-8胶光刻工艺研究[J].光学精密工程,2002,10(3):266-269.
    [9]黄庆安.硅微机械加工技术[M].北京:科学出版社,1996.
    [10]赵兹君,方洁等.湿法和干法刻蚀相结合提高微细线条的刻蚀精度[J].混合微电子技术,2007,18(4):25-31.
    [11]Che-Hsin Lin, Gwo-Bin Lee, et al. A fast prototyping process for fabrication of microfluidic systems on soda-lime glass [J]. J. Micromech. Microeng.,2001,11:726-732.
    [12]孙会宁,张建等.玻璃用UV固化胶粘剂的研究与应用[J].粘接,2009,3:67-70.
    [13]许东华,张兆华等.硅玻璃阳极键合绝压压阻式压力传感器中的残余应力[J].功能材料与器件学报,2008,14(2):452-456.
    [14]王晓东,罗怡等.塑料(PMMA)微流控芯片微通道热压成形工艺参数的确定[J].中国机械工程,2005,16(22):2061-2063.
    [15]McCormick R, Nelson R, et al. Microchannel electrophoretic separations of DNA in injection-molded plastic substrates [J]. Anal. Chem.,1997,69:2626-2630.
    [16]祁恒,姚李英等.PMMA基PCR微流控生物芯片准分子激光加工[J].微细加工技术,2006,1:16-19.
    [17]David C. Duffy, J. Cooper McDonald, et al. Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane) [J]. Anal. Chem.1998,70:4974-4984.
    [18]卢振,张凯峰.微注射成形聚丙烯微阵列填充与形态结构[J].纳米技术与精密工程,2007,5(4):339-342.
    [19]周小棉,戴忠鹏等.注塑型聚甲基丙烯酸甲酯多通道微流控芯片的研制及其性能考察[J].高等 学校化学学报,26(1):52-54.
    [20]朱学林,刘刚等.一种PMMA表面改性的热压键合方法研究[J].微细加工技术,2005,4:52-55.
    [21]Patrick Abgrall, Christine Lattes, et al. A novel fabrication method of flexible and monolithic 3D microf luidic structures using lamination of SU-8 films [J]. J. Micromech. Microeng.,2006,16:113-121.
    [22]McCreedy T. Fabrication techniques and materials commonly used for the production of microreactors and micro total analytical systems [J]. Trends Anal. Chem.,2000,19: 396-401.
    [23]Che-Hsin Lin, Chien-Hsiang Chao, et al. Low azeotropic solvent for bonding of PMMA microfluidic devices [J]. Sensors and Actuators B,2007,121:698-705.
    [24]Hsueh-An Yang, Ming ching Wu, et al. Localized induction heating solder bonding for wafer level MEMS packaging [J]. J. Micromech. Microeng.,2005,15:394-399.
    [25]J.J.阿克洛尼斯等著.吴立衡等译.聚合物粘弹性引论[M].北京:科学出版社,1986.
    [26]M. Heckele, W. Bacher, et al. Hot embossing-The molding technique for plastic microstructures [J]. Microsystem Technologies,1998,4:122-124.
    [27]H Becker, U Heim, et al. Hot embossing as a method for the fabrication of polymer high aspect ratio structures [J]. Sensors and Actuators A:Physical,2000,83:130-135.
    [28]Rean Der Chien. Hot embossing of microfluidic platform [J]. International Communications in Heat and Mass Transfer,2006,33:645-653.
    [29]L. J. Heyderman, H. Schif, et al. Flow behaviour of thin polymer films used for hot embossing lithography [J]. Microelectronic Engineering,2000,54:229-245.
    [30]H. C. Scheer, H. Schulz, et al. A contribution to the flow behaviour of thin polymer films during hot embossing lithography [J]. Microelectronic Engineering,2001,56: 311-332.
    [31]Juang, Yi-Je, Lee. L. James, et al. Hot embossing in microfabrication. Part Ⅰ Experimental [J]. Polymer Engineering and Science,2002,42:539-550.
    [32]Juang, Yi-Je, Lee. L. James et al. Hot embossing in microfabrication. Part Ⅱ: Rheological Charaterizition and Process Analysis [J]. Polymer Engineering and Science, 2002,42:539-550.
    [33]X. J. Shen, Li-Wei Pan, et al. Microplastic embossing process:experimental and theoretical characterizations [J]. Sensor and Actuator A,2002,97-98:428-433.
    [34]Harry D Rowland and William P King. Polymer deformation and filling modes during microembossing [J]. J. Micromech. Microeng.,2004,14:1625-1632.
    [35]Harry D Rowland, Amy C Sun, et al. Impact of polymer film thickness and cavity size on polymer flow duringembossing:toward process design rulesfor nanoimprint lithography [J]. J. Micromech. Microeng.,2005,15:2414-2425.
    [36]Harsono, H. J. Lu, et al. Experimental Studies on Polymer Deformation and Flow in Micro Hot Embossing [C]. Electronics Packaging Technology Conference,2006, IEEE,688-693.
    [37]Xuechuan Shan, Y. C. Liu, et al. Studies of polymer deformation and recovery in micro hot embossing [J]. Microsyst Techno1.,2008,14:1055-1060.
    [38]Dong gangyao, Vinayshankar L. Virupaksha, et al. Study on Squeezing Flow During Nonisothermal Embossing of Polymer Microstructures [J]. Polymer Engineering and Science,2005,45:652-660.
    [39]J M Li, C Liu, et al. PMMA microfluidic devices with three-dimensional features for blood cell filtration [J]. J. Micromech. Microeng.,2008,18:095021.
    [40]J M Li, C Liu, et al. Effect of hot embossing process parameters on polymer flow and micro channel accuracy produced without vacuum [J]. Journal of materials processing technology,2008,207:163-171.
    [41]Nicholas J. Panaro, Xing Jian Lou, et al. Micropillar array chip for integrated white blood cell isolation and PCR [J]. Biomolecular Engineering,2005,21:157-162.
    [42]Yue Sun, Xue-Feng Yin, et al. Novel multi-depth microfluidic chip for single cell analysis [J]. Journal of Chromatography A,2006,1117:228-233.
    [43]Shashi K. Murthy, Palaniappan Sethu, et al. Size-based microfluidic enrichment of neonatal rat cardiac cell Populations [J]. Biomed Microdevices,2006,8:231-237.
    [44]Youlan Li, Colin Dalton, et al. Continuous dielectrophoretic cell separation microfluidic device [J]. Lab Chip,2007,7:239-248.
    [45]Li sen Wang, Lisa A. Flanagan, et al. Dielectrophoresis switching with vertical sidewall electrodes for microfluidic flow cytometry [J]. Lab Chip,2007,7:1114-1120.
    [46]E P Furlani. Magnetophoretic separation of blood cells at the microscale [J]. J. Phys. D:Appl. Phys.,2007,40:1313-1319.
    [47]Cristian Ionescu-Zanetti, Robin M. Shaw, et al. Mammalian electrophysiology on a microfluidic platform [C]. Proc. Natl. Acad. Sci. U.S.A.,2005,102:9112.
    [48]Dino Di Carlo, Liz Y. Wu, et al. Dynamic single cell culture array [J]. Lab Chip,2006, 6:1445-1449.
    [49]Jacqueline R. Rettig and Albert Folch. Large-scale single-cell trapping and imaging using microwell arrays [J]. Anal. Chem.,2005,77:5628-5634.
    [50]Qasem Ramadan,Victor Samper, et al. Magnetic-based microfluidic platform for biomolecular separation [J]. Biomed Microdevices,2006,8:151-158.
    [51]Chen-Ta Ho, Ruei-Zeng Lin, et al. Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap [J]. Lab Chip,2006,6:724-734.
    [52]Paul J. Hung, Philip J. Lee, et al. A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in a high throughput mammalian cell culture array [J]. Lab Chip,2005,5:44-48.
    [53]Philip J. Lee, Paul J. Hung, et al. An Artificial Liver Sinusoid With a Microfluidic Endothelial-Like Barrier for Primary Hepatocyte Culture [J]. Biotechnology and Bioengineering,2007,97:1340-1346.
    [54]Yi-Chin Toh, Chi Zhang, et al. A novel 3D mammalian cell perfusion-culture system in microfluidic Channels [J]. Lab Chip,2007,7:302-309.
    [55]Wei Tan and Tejal A. Desai. Layer-by-layer microfluidics for biomimetic three-dimensional structures [J]. Biomaterials,2004,25:1355-1364.
    [56]Abraham D. Stroock, Stephan K. W. Dertinger, et al. Chaotic Mixer for Microchannels [J]. Science,2002,295:647-650.
    [57]Ren Yang, John D. Williams, et al. A rapid micro-mixer/reactor based on arrays of spatially impinging micro-jets [J]. J. Micromech. Microeng.,2004,14:1345-1351.
    [58]Dong Sung Kim, Seok Woo Lee, et al. A barrier embedded chaotic micromixer [J]. J. Micromech. Microeng.,2004,14:798-805.
    [59]Dong Sung Kim, Se Hwan Lee, et al. Ahn. Disposable integrated microfluidic biochip for blood typing by plastic icroinjection moulding [J]. Lab Chip,2006,6:794-802.
    [60]Jing-Tang Yang, Ker-Jer Huang, et al. A chaotic micromixer modulated by constructive vortex agitation [J]. J. Micromech. Microeng.,2007,17:2084-2092.
    [61]Tae Gon Kang, Mrityunjay K. Singh, et al. Chaotic mixing using periodic and aperiodic sequences of mixing protocols in a micromixer [J]. Microfluid Nanofluid,2008,4: 589-599.
    [62]Kai Sun, Akira Yamaguchi, et al. A heater-integrated transparent microchannel chip for continuous-flow PCR [J]. Sensors and Actuators B,2002,84:283-289.
    [63]Ying Huang, Karla L. Ewalt, et al. Electric Manipulation of Bioparticles and Macromolecules on Microfabricated Electrodes [J]. Anal. Chem.,2001,73:1549-1559.
    [64]Maxine A. McClain, Christopher T. Culbertson, et al. Microfluidic Devices for the High-Throughput Chemical Analysis of Cells [J]. Anal. Chem.,2003,75:5646-5655.
    [65]W. Mike Arnold, Nick R. Franich, et al. Cell isolation and growth in electric-field defined micro-wells [J]. Current Applied Physics,2006,6:371-374.
    [66]Nicole E. Hebert, Sara A. Brazill, et al. Microchip capillary gel electrophoresis with electrochemical detection for the analysis of known SNPs [J]. Lab Chip,2003,3:241-247.
    [67]M. J. Schoning, M. Jacobs, et al. Amperometric PDMS/glass capillary electrophoresis-based biosensor microchip for catechol and dopamine detection [J]. Sensors and Actuators B: Chemical,2005,108:688-694.
    [68]A. A. Dawoud, T. Kawaguchi, et al. Separation of catecholamines and dopamine-derived DNA adduct using a microfluidic device with electrochemical detection [J]. Sensors and Actuators B:Chemical,2006,120:42-50.
    [69]Guoxi Xu, Joseph Wang, et al. Fabrication of poly(methyl methacrylate) capillary electrophoresis microchips by in situ surface polymerization [J]. Lab Chip,2006,6: 145-148.
    [70]Ray-Hua Horng, Pin Han, et al. PMMA-based capillary electrophoresis electrochemical detection microchip fabrication [J]. J. Micromech. Microeng.,2005,15:6-10.
    [71]Ueno K, Kitagawa F, et al. Fabrication and Characteristic Responses of Integrated Microelectrodes in Polymer Channel Chip [J]. Chemistry Letters,2000,29:858.
    [72]罗怡,王晓东等.沉陷铜电极电化学微流控芯片的制备方法:中国,CN1641346A[P],2005.
    [73]Yi Xu, Fiona G. Bessoth, et al. On-line monitoring of chromium(Ⅲ) using a fast micromachined mixer/reactor and chemiluminescence detection [J]. Analyst,2000,125: 677-683.
    [74]Antoine Daridon, Valia Fascio, et al. Multi-layer microfluidic glass chips for microanalytical applications [J]. Fresenius J. Anal. Chem.,2001,371:261-269.
    [75]Tzu-Chi Kuo, Donald M. Cannon Jr, et al. Hybrid three-dimensional nanof luidic/microfluidic devices using molecular gates [J]. Sensors and Actuators A,2003,102:223-233.
    [76]Bruce R. Flachsbart, Kachuen Wong, et al. Iannacone. Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing [J]. Lab Chip,2006,6:667-674.
    [77]Xize Niu, Liyu Liu, et al. Active microfluidic mixer chip [J]. Applied Physics Letters, 2006,88:153508.
    [78]Hernan V. Fuentes, Adam T. Woolley, et al. Phase-Changing Sacrificial Layer Fabrication of Multilayer Polymer Microfluidic Devices [J]. Anal. Chem.,2008,80:333-339.
    [79]Marco Natali, Stefano Begolo, et al. Rapid prototyping of multilayer thiolene microfluidic chips by photopolymerization and transfer lamination [J]. Lab Chip,2008, 8:492-494.
    [80]R.M.克里斯坦森[美]著,郝松林等译.粘弹性力学引论[M].北京:科学出版社,1990.
    [81]梁伯润.高分子物理学[M].北京:中国纺织出版社,2000.
    [82]胡平,Y Tomita等.高分子材料平面应变拉伸变形局部化[J].力学学报,1996,28(5):564-574.
    [83]Treloar LRG. The elasticity of a network of long-chain molecules-Ⅲ [J]. Trans Faraday Soc.,1946 (42):83-94.
    [84]Wang M C, Guth EJ, et al. Statistical theo ry of netwo rk s of non-Gaussian prexible chains [J].J Chem. Phys.,1952,20 (7):1144-1157.
    [85]Boyce, M. C. Large inelastic deformation of glassy polymers [D]. Massachusetts:The Massachusetts Institute of Technology,1986.
    [86]Boyce M. C., Parks D. M., et al. Large inelastic deformation of glassy polymers. Part I:rate dependent constitutive model [J]. Mech. Mater.,1988,7:15-33.
    [87]Ellen M. Arruda, Mary C. Boyce, et al. Effects of strain rate, temperature and thermomechanical coupling on the finite strain deformation of glassy polymers [J]. Mechanics of Materials,1995,19:193-212.
    [88]Arruda E. M., Boyce M. C, et al. Evolution of plastic anisotropy in amorphous polymers during finite straining [J]. Int. J. Plasticity,1993,9:697-720.
    [89]Arruda E. M., Boyce M. C, et al. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials [J]. J. Mech. Phys. Solids,1993,41(2): 389-412.
    [90]张义同.热粘弹性理论[M].天津:天津大学出版社,2002
    [91]何平笙等.WLF方程-链段运动的特殊温度依赖关系[J].高分子通报,2004,2:75-78.
    [92]Ferry J D. Viscoelastics Properties of Polymers [M]. Whiley and sons Inc.,1970: 303-316.
    [93]金日光,刘薇等.应力-温度等效性及WLF方程参数的物理意义[J].北京化工学院学报,1994,2:18-25.
    [94]欧军飞,周金芳等.聚合物表面改性方法概述[J].塑料工业,2007,11:5-10.
    [95]M.O. H. Cioff ia and H. J. C. Voorwalda Surface energy increase of oxygen-plasma-treated PET [J]. Materials Characterization,2003,50:209-215.
    [96]沈静姝,叶卫君等.聚合物银纹化的分子机理[J].高分子通报,1994,3:129-135.
    [97]于杰,金志浩等.银纹萌生机制及判据[J].高分子材料科学与工程,1997,13:98-103.
    [98]李之达,张嵘峰等.PMMA银纹的温度依赖性实验研究[J].武汉理工大学学报,2005,9:478-490.
    [99]于杰,刘一春等.温度对聚合物材料冲击断裂的影响[J].高分子材料科学与工程,1997,13:109-114.
    [100]孙鹰,张平等.PMMA材料断裂应力与银纹损伤研究[J].材料科学与工程学报,2005,93:92-95.
    [101]熊芬,管蓉等.聚合物的银纹研究进展[J].高分子通报,2006,1:44-52.
    [102]黄宝美,莫金垣等.毛细管电泳安培法测定脂可平胶囊中的姜黄素[J].分析试验室,2006,25:1-4.
    [103]杨冰仪,莫金垣等.用高效毛细管电泳安培法检测扑热息痛及其水解物对氨基酚[J].分析测试学报,2000,19:13-15.
    [104]Zhenxia Hao, Hengwu Chena, et al. Modification of amorphous poly(ethylene terephthalate) surface by UV light and plasma for fabrication of an electrophoresis chip with an integrated gold microelectrode [J]. Journal of Chromatography A,2008,1209: 246-252.
    [105]D. Y. Kwok and A. W. Neumann. Contact angle measurement and contact angle interpretation [J]. Advances in Colloid and Interface Science, Volume 81:167-249.
    [106]D. Y. Kwok, T. Gietzelt, et al. Contact Angle Measurements and Contact Angle Interpretation [J]. Langmuir,1997,13:2880-2894.
    [107]Xing Chen, Dafu Cui, et al. Continuous flow microfluidic device for cell separation, cell lysis and DNA purification [J]. Analytica Chimica Acta,2007,584:237-243.
    [108]StuderV., Jameson R., et al. A microfluidic mammalian cell sorter based on fluorescence detection [J]. Microelectronic Engineering,2004,74:852-857.
    [109]Edwards T., Gale B. K., et al. Microscale Purification Systems for Biological Sample Preparation [J]. Biomedical Microdevices,2001,3:211-218.
    [110]Cheng J., Sheldon E. L., et al. Isolation of Cultured Cervical Carcinoma Cells Mixed with Peripheral Blood Cells on a Bioelectronic Chip [J]. Anal. Chem.,1998,70: 2321-2326.
    [111]Huang Y., Joo S., et al. Dielectrophoretic Cell Separation and Gene Expression Profiling on Microelectronic Chip Arrays [J]. Anal. Chem.,2002,74:3362-3371.
    [112]Wilding P., Kricka L. J., et al. Integrated Cell Isolation and Polymerase Chain Reaction Analysis Using Silicon Microfilter Chambers [J]. Analytical Biochemistry,1998, 257:95-100.
    [113]Virginia VanDelinder, Alex Groisman, et al. Separation of Plasma from Whole Human Blood in a Continuous Cross-Flow in a Molded Microfluidic Device [J]. Anal. Chem.,2006, 78:3765-3771.
    [114]Xing Chen, Da Fu Cui, et al. Microfluidic chip for blood cell separation and collection based on crossflow filtration [J]. Sensors and Actuators B,2008,130:216-221.
    [115]J. J Jukna, C. D. Nicholson, et al. The effect of denbufylline on the viscosity of rat whole blood and on the deformability (filterability) of rat blood cell suspensions [J]. Naunyn-Schmiedeberg's Arch Pharmacol,1987,335:445-448.
    [116]Ken D. McCarthy, Jean De Vells, et al. Preparation Of Separate Astroglial And Oligodendroglial Cell Cultures From Rat Cerebral Tissue [J]. J. Cell Biology,1980, 85:890-902.
    [117]Choong Kim, Kang Sun Lee, et al. The serial dilution chip for cytotoxicity and cell differentiation test. Micro Electro Mechanical Systems,2007[C]. MEMS. IEEE 20th International Conference on,2007,517-520.
    [118]王权岱,段玉岗等.基于湿法刻蚀的MEMS压印模版制作[J].微细加工技术,2006,1:36-40.
    [119]周健,闫桂珍等.Pyrex玻璃的湿法刻蚀研究[J].微细加工技术,2004,4:41-44.
    [120]尉伟,周红军等.干法刻蚀制作场发射阴极阵列[J].真空科学与技术学报,2007,27:218-221.
    [121]王旭迪,张永胜等.深高宽比微结构的干法刻蚀[J].真空,2004,4l:32-34.
    [122]姚仁南,陈复兴等.ACD保养液中树突状细胞的变化[J].徐州医学院学报,2009,29:236-238.
    [123]唐菲,周丽萍等.脾血与ACD液比例对脾血回收质量的影响[J].护理学杂志,2000,15:115-116.
    [124]Yi-Chu Hsu, Tang-Yuan Chen, et al. Applying Taguchi methods for solvent-assisted PMMA bonding technique for static and dynamic μ-TAS devices [J]. Biomed Microdevices,2007, 9:513-522.
    [125]Henning Klank, Jorg P. Kutter, et al. C02-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems [J]. Lab Chip,2002,2,242-246.
    [126]杨华勇,阮晓东等.交叉导流式微型混沌混合器[J].化工学报,2006,57:1120-1125.
    [127]宁正福,姚约东等.混沌理论及其在流体力学中的应用[J].新疆石油地质,2002,23:170-172.
    [128]Hassan Aref. The development of chaotic advection [J]. Physics of fluids,2002,14: 1315-1325.
    [129]刘素芬.交叉导流式微型混沌混合器的研究[D].杭州:浙江大学,2005.
    [130]Chun-Ping Jen, Chung-Yi Wu, et al. Design and simulation of the micromixer with chaotic advection in twisted microchannels [J].Lab on a chip,2003,3:77-81.
    [131]Nam-Trung Nguyen, Zhigang Wu, et al. Micromixers—a review [J]. J. Micromech. Microeng.,2005,15:R1-R16.
    [132]N. Schwesinger, T. Frank, et al. A modular microfluid system with an integrated micromixer [J]. J. Micromech. Microeng.,1996,6:99-102.
    [133]Dong Sung Kim, Se Hwan Lee, et al. A serpentine laminating micromixer combining splitting/recombination and advection [J]. Lab Chip,2005,5:739-747.
    [134]Glenn M. Walker, Nancy Monteiro-Rivieren, et al. A linear dilution microfluidic device for cytotoxicity assays [J]. Lab Chip,2007,7:226-232.
    [135]王智勇,陈铠等.辅助气体对激光打孔的影响[J].激光杂志,2000,21:44-46.
    [136]唐霞辉,周毅等.激光脉动与辅助气体对激光深熔焊的作用机理研究[J].焊接,2002,12:15-17.
    [137]傅建中,相恒富等.聚合物微流控芯片激光加工及建模研究[J].中国机械工程,2004,17:1505-1507.
    [138]Chung C K, Lin Y C, Huang G R, et al. Bulge formation and improvement of the polymer in C02 laser micromachining [J]. J. Micromech. Microeng,2005,15:1878-1884.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700