甲型H1N1流感病毒特异性抗原捕获ELISA方法的建立及通用型猪流感疫苗基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流感是人类面临的主要公共健康问题之一。流感病毒在进化过程中发生导致抗原性改变的突变(抗原漂移)或不同流感病毒之间发生基因重配而产生一种新的流感病毒(抗原转变)是其逃避宿主免疫系统、得以在感染群体之间传播的主要策略。2009年开始流行的猪源新型H1N1流感病毒(以下简称甲流病毒)导致了人类历史的第四次流感大流行,该病毒比普通季节流感病毒具备更强的传播能力,在流行过程中病毒又由人回传给了猪。虽然该病毒已不再呈大流行态势,但其与其他流感病毒发生基因重配可能会产生毒力更强的病毒,因此有必要建立准确、特异的病原学检测方法以及可以评价不同宿主群体感染状态的血清学诊断方法,以监测病毒的流行和传播规律,掌握其在不同宿主群体中的感染状况,继而帮助为下一次流感爆发做出预警。
     本研究从病原学和血清学两个方面分别建立了病毒及血清中和抗体的检测方法。首先利用构建的杆状病毒表面展示系统筛选到一株甲流病毒特异性的单抗,对单抗的表位进行鉴定后发现60KLRG63为表位的最小活性单元,同时该表位不能被全病毒感染的阳性血清识别,提示表位不是HA分子的优势表位,其所受的免疫压力要小于HA分子上的优势表位,故在病毒流行过程中不易发生变异,从而可保证单抗对病毒的有效识别;同时对抗原表位的保守性分析发现该表位是甲流病毒特有的,表明可以利用单抗特异地检测甲流病毒。结合兔抗HA蛋白多抗建立了抗原捕获ELISA方法,并对各个抗体的工作浓度进行了优化;敏感性试验表明所建立的方法比常规血凝试验至少敏感8倍;特异性试验表明用建立的方法检测不到人的季节性H1N1流感病毒及H1N1、H3N2猪流感病毒,对实验室感染样品的检测发现该方法与鸡胚病毒分离法具有较好的符合率,但不如病毒分离敏感。以上结果表明利用甲流病毒特异性的单抗建立的抗原捕获ELISA方法可以作为甲流病毒特异性的病原学检测的工具。
     将人工合成的甲流病毒A/Califorina/04/2009株HA基因连接至真核表达载体pcDNA3.1,该重组质粒与表达逆转录病毒相关元件的骨架质粒pHIT111及pHIT60共转染人胚胎肾细胞293T,构建了以鼠白血病病毒为核心、包装有HA蛋白的伪型病毒。通过对伪型病毒感染细胞中报告基因表达产物的检测,证明伪型病毒可成功感染MDCK及293T细胞;同时其感染过程可被重组甲流病毒免疫的小鼠的阳性血清所阻断,表明该伪型病毒可模拟野生型病毒完成对宿主细胞的感染过程,提示该伪型病毒系统可作为一个特异性检测甲流病毒中和抗体的应用平台,从而为准确的评价机体感染状态或抗病毒药物筛选、疫苗评价等提供辅助工具。同时,本研究在缺少野生型病毒的条件下,利用公共数据库所登载的目的序列构建了与天然病毒具有相似感染特性的伪型病毒。因此理论上,其他相似的病毒表面膜蛋白也可根据本研究报道的方法构建伪病毒系统,而不依赖于某种特定病原的分离、鉴定。该方法特别对于高度危险性病原研究具有一定的意义。
     猪在流感病毒生态中扮演着重要的角色。由于猪的呼吸道上皮细胞同时具有人流感病毒和禽流感病毒的受体,使其极有可能成为新流感病毒的产生源头。控制猪流感(Swine influenza, SI)的发生和发展有助于减少流感病毒对人类的健康威胁。疫苗免疫是预防SI的有效手段。当前商品化的SI疫苗为包括Hl和/或H3亚型病毒的灭活疫苗。与人流感疫苗不同,SI疫苗并不会按照当年流行的优势毒株更换疫苗种子毒,由于流行毒株的抗原性变异,经常导致现有商品化疫苗无法对其提供有效免疫保护的情况。鉴于此,本研究尝试利用保守的SIV抗原组分构建具有广谱交叉保护效力的DNA疫苗。第一组DNA疫苗将H3亚型SIV共有的M2e及HA蛋白序列的编码基因连接至表达载体(MHa);第二组在此基础上添加一个保守的T细胞表位(MNHa),以增强疫苗诱导T细胞免疫应答的能力。通过基因枪免疫小鼠后发现,两组DNA疫苗能有效刺激机体产生体液免疫应答,同时MNHa比MHa诱导了更高水平的T细胞免疫应答。攻毒保护实验表明两组疫苗都能够对同源H3亚型处在不同进化谱系的病毒攻击提供完全免疫保护,提示增强的T细胞免疫应答对于同亚型病毒的交叉保护来讲可能不是必需的;而与MHa相比,MNHa提供了更显著的对于异源H1亚型病毒攻击的保护效力,用H1亚型病毒攻击小鼠后,MNHa免疫组小鼠肺脏内病毒滴度及组织病理学损伤显著低于MHa免疫组,表明T细胞免疫应答在提供异源毒株的交叉保护方面起到重要作用。本研究在通用型SI疫苗研究方面进行了有益探索,并为未来SI疫苗的研制提供了可借鉴的思路。
Influenza is one of the major threats to global public health. Influenza viruses escape from host immune system and transmit among host species through the accumulation of changes on antigenic sites (antigenic drift) and genetic reassortment of different strains (antigenic shift). The2009swine-origin influenza A H1N1virus (hereafter referred to as pH1N1) resulted in the4th influenza global pandemic in human history. pH1N1transmit more efficiently in humans than that of seasonal influenza viruses, and transmission of pH1N1from human to pigs has also been reported. Although the pH1N1virus is now considered to be post-pandemic, there are still possibilities that the virus recombines with other influenza viruses in pigs then yielding a novel potential epidemic or pandemic strain. It is therefore necessary to establish accurate and specific virus detection and serological diagnostic methods to monitor the spread of virus and the infection state of different hosts, which may provide useful information in predicting the next influenza pandemic.
     In this study, we established virus-and neutralization antibody-detection methods from the perspective of etiology and serology, respectively. A pH IN1-specific monoclonal antibody (mAb) was first developed based on a baculoviurs surface disply system, the epitope of the mAb was then identified. Results indicated that60KLRG63motif on hemagglutinin (HA) protein is the minimal requirement for the reactivity of the epitope recognized by mAb. Whole virus-positive mouse serum did not reacted with this epitope, suggesting that the epitope is not the immunodominant epitope of HA protein, thus the immune pressure posed by the hosts against the epitope is much less than that against immunodominant epitope, and thereby the identified epitope do not tend to shift. Further, conservation analysis of epitope showed that this epitope was pH1N1-specific, suggesting that the mAb is suitable material for virus-detection. An antigen-capture ELISA (AC-ELISA) method was developed in combinnation with rabbit HA-specific polyclonal antibody. Working dilution of each antibody were optimiezed. Sensitivity assay showed that AC-ELISA was at least8times more sensitive than hemagglutination test. Besides, specificity assay demonstrated that human seasonal H1NI, swine influenza virus (SIV) H1N1and H3N2can not be detected by AC-ELISA. The AC-ELISA was then employed to test the experimental infection samples, it was found that the results of AC-ELISA showed high agreement rate with virus isolation (VI), but was less sensitive than VI. It is conclued that the pH IN1-specific AC-ELISA represents a valuable tool for virus-detection.
     A recombinant plasmid expressing HA gene of pH1N1A/Califorina/04/2009was co-transfected into human embryonic kidney293T cells with retroviral vector pHIT111and pHIT60to construct Murine leukemia virus (MuLV) pseudotyped virus. The pseudotyped virus infected Madin-Darby canine kidney (MDCK) and293T cells as indicated by the detection of the P-galactosidase as reporter gene. Furthermore, the infections were neutralized by the recombinant pHlN1virus-positive serum, suggesting that the HA-pseudotyped particles can mimic the surface of influenza virions. The pseudotyped virus reported here represents a powerful surrogate for pH1N1-specific neutralization antibody detection, which may be useful in assessing hosts'infection state, screening the antiviral regents, as well as developing vaccines. In addition, we constructed pseudotyped virus with similar infection property with wild type viruses by using the synthetized HA gene which is available in public database, thus, theoretically, other pseudotyped virus can also be constructed based on the method reported here, without the need of viral isolation and identification, especially for highly pathogenic and contagious ones.
     Pigs play important roles in the ecology of influenza viruses, and could be the source of new strains since pigs express sialic acid receptors for both mammalian and avian strains of influenza viruses on their tracheal epithelial cells. The control of swine influeza (SI) is helpful to reduce the significant health risk for the human population by reducing virus shed and thereby transmission. Vaccination is considered to be the most effective method to control SI. Currently, commercially available swine influenza vaccines are adjuvanted, whole-virus killed vaccines containing of both HI and H3subtypes. Unlike human influenza vaccine, strains used for SI vaccine preparation are not regularly replaced, making the vaccines do not provide consistent protection from infection, because the viruses continuously evolve by antigenic drift and shift. Cross-protective SI vaccine designed based on the conerved viral proteins would be of great help to solve this problem. To this end, we constructed two forms of DNA vaccines, one was made by fusing M2e to consensus H3HA (MHa), which represents the majority of the HA sequences of H3N2viruses, another was made by fusing M2e and a conserved CTL epitope (NP147-155) to consensus H3HA (MNHa). BALB/c mice were immunized twice with the two DNA vaccines via gene gun. It was shown that the two vaccines elicited substantial antibody responses, and MNHa induced more significant T cell-mediated immune response than MHa did. Then two H3N2strains representative of different evolutional clusters were used to challenge the vaccine-immunized mice. Results indicated that both of the two DNA vaccines prevented homosubtypic virus infections completely, suggesting the ehanced T cell-mediated immune response may be non-essential for homologous protection. The vaccines'heterologous protective efficacies were further tested by challenging with a H1N1SI strain and a reassortant pH1N1strain. It was found that MNHa, but not MHa, induces immune responses partially protect against heterologous influenza infection as indicted by the reduced lung viral titer and less lung histopathological damage, suggesting that CTL responses play important roles for heterologous protection. Reults of the current study indicate that strengthening CTL responses are promising ways for universal influenza vaccines development.
引文
[1]FAUCI AS, Emerging and re-emerging infectious diseases:influenza as a prototype of the host-pathogen balancing act [J]. Cell 2006,124:665-670.
    [2]JOHNSON NP, MUELLER J, Updating the accounts:global mortality of the 1918-1920 "Spanish" influenza pandemic[J]. Bull Hist Med 2002,76:105-115.
    [3]LAVER G, GARMAN E, Virology. The origin and control of pandemic influenza[J]. Science 2001,293:1776-1777.
    [4]ALEXANDER DJ, BROWN IH, Recent zoonoses caused by influenza A viruses[J]. Rev Sci Tech 2000,19:197-225.
    [5]RICHT JA, LAGER KM, JANKE BH, et al. Pathogenic and antigenic properties of phylogenetically distinct reassortant H3N2 swine influenza viruses cocirculating in the United States[J]. J Clin Microbiol 2003,41:3198-3205.
    [6]ELLIS J, CLARK E, HAINES D, et al. Porcine circovirus-2 and concurrent infections in the field[J]. Vet Microbiol 2004,98:159-163.
    [7]AMASS SF, CLARK LK, VAN ALSTINE WG, et al. Interaction of Mycoplasma hyopneumoniae and Pasteurella multocida infections in swine[J]. J Am Vet Med Assoc 1994, 204:102-107.
    [8]GARTEN RJ, DAVIS CT, RUSSELL CA, et al. Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans[J]. Science 2009, 325:197-201.
    [9]KAWAOKA Y, KRAUSS S, WEBSTER RG. Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics[J]. J Virol 1989,63:4603-4608.
    [10]SCHOLTISSEK C, ROHDE W, VON HOYNINGEN V, et al. On the origin of the human influenza virus subtypes H2N2 and H3N2[J]. Virology 1978,87:13-20.
    [11]WEBSTER RG, BEAN WJ, GORMAN OT, et al. Evolution and ecology of influenza A viruses[J]. Microbiol Rev 1992,56:152-179.
    [12]FOUCH1ER RA, MUNSTER V, WALLENSTEN A, et al. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls[J]. J Virol 2005,79:2814-2822.
    [13]WEBSTER RG. Are equine 1 influenza viruses still present in horses? [J] Equine Vet J 1993, 25:537-538.
    [14]WILSON WD. Equine influenza[J]. Vet Clin North Am Equine Pract 1993,9:257-282.
    [15]OLSEN CW. The emergence of novel swine influenza viruses in North America[J]. Virus Res 2002,85:199-210.
    [16]LANDOLT GA, OLSEN CW. Up to new tricks-a review of cross-species transmission of influenza A viruses[J]. Anim Health Res Rev 2007,8:1-21.
    [17]李海燕,于康震,辛晓光,等.部分省市猪群猪流感的血清学调查及猪流感病毒的分离与鉴定[J].2003,24(3):67-72.,24:67-72.
    [18]祁贤.我国部分地区猪流感病毒分子流行病学及致病性研究.南京农业大学博士论文2006.
    [19]QI X, PANG B, LU CP. Genetic characterization of H1N1 swine influenza A viruses isolated in eastern China[J]. Virus Genes 2009,39:193-199.
    [20]ZHAO G, PAN J, GU X, et al. Isolation and phylogenetic analysis of avian-origin European H1N1 swine influenza viruses in Jiangsu, China[J]. Virus Genes 2011.
    [21]YU H, ZHANG PC, ZHOU YJ, et al. Isolation and genetic characterization of avian-like H1N1 and novel ressortant H1N2 influenza viruses from pigs in China[J]. Biochem Biophys Res Commun 2009,386:278-283.
    [22]YU H, HUA RH, WEI TC, et al. Isolation and genetic characterization of avian origin H9N2 influenza viruses from pigs in China[J]. Vet Microbiol 2008,131:82-92.
    [23]LIU J, BI Y, QIN K, FU G, et al. Emergence of European avian influenza virus-like H1N1 swine influenza A viruses in China[J]. J Clin Microbiol 2009,47:2643-2646.
    [24]YU H, HUA RH, ZHANG Q, et al. Genetic evolution of swine influenza A (H3N2) viruses in China from 1970 to 2006[J]. J Clin Microbiol 2008,46:1067-1075.
    [25]LAM TT, ZHU H, WANG J, et al. Reassortment events among swine influenza A viruses in China:implications for the origin of the 2009 influenza pandemic[J]. J Virol 2011, 85:10279-10285.
    [26]FAN X, ZHU H, ZHOU B, et al. Emergence and Dissemination of a Swine H3N2 Reassortant Influenza Virus with 2009 Pandemic H1N1 Genes in Pigs in China[J]. J Virol 2012,86:2375-2378.
    [27]VIJAYKRISHNA D, SMITH GJ, PYBUS OG, et al. Long-term evolution and transmission dynamics of swine influenza A virus [J]. Nature 2011,473:519-522.
    [28]陈伯伦,张泽纪,陈伟斌.禽流感研究Ⅰ.鸡A型禽流感病毒的分离与血清学初步鉴定[J].中国兽医杂志1994.
    [29]PEIRIS. Co-circulation of avian H9N2 and human H3N2 viruses in pigs in southern China[J]. International Congress Series 2001,1219:195-200.
    [30]CONG YL, PU J, LIU QF, et al. Antigenic and genetic characterization of H9N2 swine influenza viruses in China[J]. J Gen Virol 2007,88:2035-2041.
    [31]XU C, FAN W, WEI R, et al. Isolation and identification of swine influenza recombinant A/Swine/Shandong/1/2003(H9N2) virus[J]. Microbes Infect 2004,6:919-925.
    [32]李海燕,于康震,杨焕良,等.中国猪源H5N1和H9N2亚型流感病毒的分离鉴定[J].中国预防兽医学报2004,26:1-6.
    [33]许传田.H1N2、H3N2及H5N1亚型猪流感病毒进化及致病性研究.中国农业科学院博士论文2008.
    [34]CASTRUCCI MR, CAMPITELLI L, RUGGIERI A, et al. Antigenic and sequence analysis of H3 influenza virus haemagglutinins from pigs in Italy[J]. J Gen Virol 1994,75 (Pt 2):371-379.
    [35]ZHOU NN, SENNE DA, LANDGRAF JS, et al. Genetic reassortment of avian, swine, and human influenza A viruses in American pigs[J]. J Virol 1999,73:8851-8856.
    [36]KUNDIN WD. Hong Kong A-2 influenza virus infection among swine during a human epidemic in Taiwan[J]. Nature 1970,228:857.
    [37]KATSUDA K, SATO S, SHIRAHATA T, et al.Antigenic and genetic characteristics of H1N1 human influenza virus isolated from pigs in Japan[J]. J Gen Virol 1995,76 (Pt 5):1247-1249.
    [38]NEROME K, ISHIDA M, OYA A,et al. Isolation of an influenza H1N1 virus from a pig[J]. Virology 1982,117:485-489.
    [39]YU H, ZHANG GH, HUA RH, et al. Isolation and genetic analysis of human origin H1N1 and H3N2 influenza viruses from pigs in China[J]. Biochem Biophys Res Commun 2007, 356:91-96.
    [40]DAWOOD FS, JAIN S, FINELL1 L, et al. Emergence of a novel swine-origin influenza A (H1N1) virus in humans[J]. N Engl J Med 2009,360:2605-2615.
    [41]SMITH GJ, VIJAYKRISHNA D, BAHL J, et al.Origins and evolutionary genomics of the 2009 swine-origin HIN1 influenza A epidemic[J]. Nature 2009,459:1122-1125.
    [42]BIN C, XINGWANG L, YUELONG S, et al. Clinical and epidemiologic characteristics of 3 early cases of influenza A pandemic (H1N1) 2009 virus infection, People's Republic of China,2009[J]. Emerg Infect Dis 2009,15:1418-1422.
    [43]ZHU H, ZHOU B, FAN X, et al. Novel reassortment of Eurasian avian-like and pandemic/2009 influenza viruses in swine:infectious potential for humans[J]. J Virol 2011, 85:10432-10439.
    [44]CDC. Swine-origin influenza A (H3N2) virus infection in two children-Indiana and Pennsylvania, July-August 2011. MMWR Morb Mortal Wkly Rep 2011,60:1213-1215.
    [45]SERVICE USDoAFA. Livestock and poultry:world markets and trade. Foreign Agricultural Service, USDA, Washington, DC. http://www.fas.usda.gov/dlp/circular/2006/06-03LP/swine_sum.pdf.2006.
    [46]CLEMENTS AC, PFEIFFER DU, OTTE MJ, et al. A global livestock production and health atlas (GLiPHA) for interactive presentation, integration and analysis of livestock data[J]. Prev Vet Med 2002,56:19-32.
    [47]WANG R. China-Pork Powerhouse of the World[J]. Advances Pork Prod 2006,17:33-46.
    [48]MA W, VINCENT AL, LAGER KM, et al. Identification and characterization of a highly virulent triple reassortant H1N1 swine influenza virus in the United States[J]. Virus Genes 2010,40:28-36.
    [49]MA W, VINCENT AL, GRAMER MR, et al.Identification of H2N3 influenza A viruses from swine in the United States[J]. Proc Natl Acad Sci U S A 2007,104:20949-20954.
    [50]WEBBY RJ, SWENSON SL, KRAUSS SL, et al. Evolution of swine H3N2 influenza viruses in the United States[J]. J Virol 2000,74:8243-8251.
    [51]VINCENT AL, MA W, LAGER KM, et al.Swine influenza viruses a North American perspective[J]. Adv Virus Res 2008,72:127-154.
    [52]MA W, KAHN RE, RICHT JA. The pig as a mixing vessel for influenza viruses:Human and veterinary implications[J]. J Mol Genet Med 2008,3:158-166.
    [53]LIPATOV AS, GOVORKOVA EA, WEBBY RJ, et al.Influenza:emergence and control[J]. J Virol 2004,78:8951-8959.
    [54]ZHANG G, KONG W, QI W, et al. Identification of an H6N6 swine influenza virus in southern China[J]. Infect Genet Evol 2011,11:1174-1177.
    [55]GAYDOS JC, HODDER RA, TOP FH, et al. Swine influenza A at Fort Dix, New Jersey (January-February 1976). I. Case finding and clinical study of cases[J]. J Infect Dis 1977, 136 Suppl:S356-362.
    [56]KLUSKA V, MACKU M, MENSIK J. Demonstration of antibodies against swine influenza viruses in man[J]. Cesk Pediatr 1961,16:408-414.
    [57]CLAAS EC, KAWAOKA Y, DE JONG JC, et al. Infection of children with avian-human reassortant influenza virus from pigs in Europe[J]. Virology 1994,204:453-457.
    [58]RIMMELZWAAN GF, DE JONG JC, BESTEBROER TM, et al.Antigenic and genetic characterization of swine influenza A (H1N1) viruses isolated from pneumonia patients in The Netherlands[J]. Virology 2001,282:301-306.
    [59]GREGORY V, LIM W, CAMERON K, et al. Infection of a child in Hong Kong by an influenza A H3N2 virus closely related to viruses circulating in European pigs[J]. J Gen Virol 2001,82:1397-1406.
    [60]MYERS KP, OLSEN CW, GRAY GC. Cases of swine influenza in humans:a review of the literature[J]. Clin Infect Dis 2007,44:1084-1088.
    [61]WEBSTER RG, SHARP GB, CLAAS EC. Interspecies transmission of influenza viruses[J]. Am J Respir Crit Care Med 1995,152:S25-30.
    [62]DE WIT MC, DE COO IF, VERBEEK E, et al. Brain abnormalities in a case of malonyl-CoA decarboxylase deficiency[J]. Mol Genet Metab 2006,87:102-106.
    [63]RENAUD C, KUYPERS J, ENGLUND JA. Emerging oseltamivir resistance in seasonal and pandemic influenza A/H1N1[J]. J Clin Virol 2011,52:70-78.
    [64]CDC. Oseltamivir-resistant 2009 pandemic influenza A (H1N1) virus infection in two summer campers receiving prophylaxis-North Carolina,2009. MMWR Morb Mortal Wkly Rep 2009,58:969-972.
    [65]CHEN H, CHEUNG CL, TAI H, et al. Oseltamivir-resistant influenza A pandemic (H1N1) 2009 virus, Hong Kong, China. Emerg Infect Dis 2009,15:1970-1972.
    [66]HURT AC, DENG YM, ERNEST J, et al. Oseltamivir-resistant influenza viruses circulating during the first year of the influenza A(H1N1) 2009 pandemic in the Asia-Pacific region, March 2009 to March 2010[J]. Euro Surveill 2011,16.
    [67]KIDA H, ITO T, YASUDA J, et al. Potential for transmission of avian influenza viruses to pigs[J]. J Gen Virol 1994,75 (Pt 9):2183-2188.
    [68]MA W, LAGER KM, LI X, et al. Pathogenicity of swine influenza viruses possessing an avian or swine-origin PB2 polymerase gene evaluated in mouse and pig models[J]. Virology 2011,410:1-6.
    [69]VINCENT AL, LAGER KM, JANKE BH, et al. Failure of protection and enhanced pneumonia with a US H1N2 swine influenza virus in pigs vaccinated with an inactivated classical swine H1N1 vaccine[J]. Vet Microbiol 2008,126:310-323.
    [70]Bikour MH, Cornaglia E, Elazhary Y. Evaluation of a protective immunity induced by an inactivated influenza H3N2 vaccine after an intratracheal challenge of pigs[J]. Can J Vet Res 1996,60:312-314.
    [71]VINCENT AL, CIACCI-ZANELLA JR, LORUSSO A, et al. Efficacy of inactivated swine influenza virus vaccines against the 2009 A/H1N1 influenza virus in pigs[J]. Vaccine 2010, 28:2782-2787.
    [72]VAN REETH K, GREGORY V, HAY A, et al. Protection against a European H1N2 swine influenza virus in pigs previously infected with H1N1 and/or H3N2 subtypes[J], Vaccine 2003,21:1375-1381.
    [73]KITIKOON P, NILUBOL D, ERICKSON BJ, et al. The immune response and maternal antibody interference to a heterologous H1N1 swine influenza virus infection following vaccination[J]. Vet Immunol Immunopathol 2006,112:117-128.
    [74]MA W, RICHT JA. Swine influenza vaccines:current status and future perspectives[J]. Anim Health Res Rev 2010,11:81-96.
    [75]JIN H, LU B, ZHOU H, et al. Multiple amino acid residues confer temperature sensitivity to human influenza virus vaccine strains (FluMist) derived from cold-adapted A/Ann Arbor/6/60[J]. Virology 2003,306:18-24.
    [76]YEWDELL JW, BENNINK JR, SMITH GL, et al. Influenza A virus nucleoprotein is a major target antigen for cross-reactive anti-influenza A virus cytotoxic T lymphocytes[J]. Proc Natl Acad Sci U S A 1985,82:1785-1789.
    [77]XIE H, LIU TM, LU X, et al. A live attenuated H1N1 M1 mutant provides broad cross-protection against influenza A viruses, including highly pathogenic A/Vietnam/1203/2004, in mice[J]. J Infect Dis 2009,200:1874-1883.
    [78]MASIC A, BABIUK LA, ZHOU Y. Reverse genetics-generated elastase-dependent swine influenza viruses are attenuated in pigs[J]. J Gen Virol 2009,90:375-385.
    [79]MASIC A, BOOTH JS, MUTWIRI GK, et al. Elastase-dependent live attenuated swine influenza A viruses are immunogenic and confer protection against swine influenza A virus infection in pigs[J]. J Virol 2009,83:10198-10210.
    [80]MAASSAB HF, DEBORDE DC. Development and characterization of cold-adapted viruses for use as live virus vaccines[J]. Vaccine 1985,3:355-369.
    [81]TREANOR JJ, ROTH FK, BETTS RF. Use of live cold-adapted influenza A H1N1 and H3N2 virus vaccines in seropositive adults[J]. J Clin Microbiol 1990,28:596-599.
    [82]FAN S, GAO Y, SHINYA K, et al. Immunogenicity and protective efficacy of a live attenuated H5N1 vaccine in nonhuman primates[J]. PLoS Pathog 2009,5:e 1000409.
    [83]YOUNGNER JS, WHITAKER-DOWLING P, CHAMBERS TM, et al. Derivation and characterization of a live attenuated equine influenza vaccine virus[J]. Am J Vet Res 2001, 62:1290-1294.
    [84]TOWNSEND HG, PENNER SJ, WATTS TC, et al. Efficacy of a cold-adapted, intranasal, equine influenza vaccine:challenge trials[J]. Equine Vet J 2001,33:637-643.
    [85]CHAMBERS TM, HOLLAND RE, TUDOR LR, et al. A new modified live equine nfluenza virus vaccine:phenotypic stability, restricted spread and efficacy against heterologous virus challenge[J]. Equine Vet J 2001,33:630-636.
    [86]SOLORZANO A, YE J, PEREZ DR. Alternative live-attenuated influenza vaccines based on modifications in the polymerase genes protect against epidemic and pandemic flu[J]. J Virol 2010,84:4587-4596.
    [87]RICHT JA, LEKCHAROENSUK P, LAGER KM, et al. Vaccination of pigs against swine influenza viruses by using an NS1-truncated modified live-virus vaccine[J]. J Virol 2006, 80:11009-11018.
    [88]VINCENT AL, MA W, LAGER KM, et al. Efficacy of intranasal administration of a truncated NS1 modified live influenza virus vaccine in swine[J]. Vaccine 2007, 25:7999-8009.
    [89]TIAN ZJ, ZHOU GH, ZHENG BL, et al. A recombinant pseudorabies virus encoding the HA gene from H3N2 subtype swine influenza virus protects mice from virulent challenge[J]. Vet Immunol Immunopathol 2006,111:211-218.
    [90]WESLEY RD, TANG M, LAGER KM. Protection of weaned pigs by vaccination with human adenovirus 5 recombinant viruses expressing the hemagglutinin and the nucleoprotein of H3N2 swine influenza virus[J]. Vaccine 2004,22:3427-3434.
    [91]WESLEY RD, LAGER KM. Overcoming maternal antibody interference by vaccination with human adenovirus 5 recombinant viruses expressing the hemagglutinin and the nucleoprotein of swine influenza virus[J]. Vet Microbiol 2006,118:67-75.
    [92]ERDMAN MM, KAMRUD KI, HARRIS DL, et al. Alphavirus replicon particle vaccines developed for use in humans induce high levels of antibodies to influenza virus hemagglutinin in swine:proof of concept[J]. Vaccine 2010,28:594-596.
    [93]VANDER VEEN R, KAMRUD K, MOGLER M, et al.Rapid development of an efficacious swine vaccine for novel H1N1[J]. PLoS Curr 2009,1:RRN1123.
    [94]FYNAN EF, ROBINSON HL, WEBSTER RG. Use of DNA encoding influenza hemagglutinin as an avian influenza vaccine[J]. DNA Cell Biol 1993,12:785-789.
    [95]WEBSTER RG, FYNAN EF, SANTORO JC, et al. Protection of ferrets against influenza challenge with a DNA vaccine to the haemagglutinin[J]. Vaccine 1994,12:1495-1498.
    [96]CHEN MW, CHENG TJ, HUANG Y, et al. A consensus-hemagglutinin-based DNA vaccine that protects mice against divergent H5N1 influenza viruses[J]. Proc Natl Acad Sci U S A 2008,105:13538-13543.
    [97]CHEN Z, MATSUO K, ASANUMA H, et al. Enhanced protection against a lethal influenza virus challenge by immunization with both hemagglutinin-and neuraminidase-expressing DNAs[J]. Vaccine 1999,17:653-659.
    [98]CHEN Z, YOSHIKAWA T, KADOWAKI S, et al. Protection and antibody responses in different strains of mouse immunized with plasmid DNAs encoding influenza virus haemagglutinin, neuraminidase and nucleoprotein[J]. J Gen Virol 1999,80 (Pt 10):2559-2564.
    [99]OKUDA K, IHATA A, WATABE S, et al. Protective immunity against influenza A virus induced by immunization with DNA plasmid containing influenza M gene[J]. Vaccine 2001, 19:3681-3691.
    [100]ZHANG F, CHEN J, FANG F, et al. Maternal immunization with both hemagglutinin-and neuraminidase-expressing DNAs provides an enhanced protection against a lethal influenza virus challenge in infant and adult mice[J]. DNA Cell Biol 2005,24:758-765.
    [101]OVEISSI S, OMAR AR, YUSOFF K, et al. DNA vaccine encoding avian influenza virus H5 and Esat-6 of Mycobacterium tuberculosis improved antibody responses against AIV in chickens [J]. Comp Immunol Microbiol Infect Dis 2010,33:491-503.
    [102]YAGER EJ, DEAN HJ, FULLER DH. Prospects for developing an effective particle-mediated DNA vaccine against influenza[J]. Expert Rev Vaccines 2009, 8:1205-1220.
    [103]DRAPE RJ, MACKLIN MD, BARR LJ, et al. Epidermal DNA vaccine for influenza is immunogenic in humans[J]. Vaccine 2006,24:4475-4481.
    [104]MACKLIN MD, MCCABE D, MCGREGOR MW, et al. Immunization of pigs with a particle-mediated DNA vaccine to influenza A virus protects against challenge with homologous virus[J]. J Virol 1998,72:1491-1496.
    [105]LARSEN DL, OLSEN CW. Effects of DNA dose, route of vaccination, and coadministration of porcine interleukin-6 DNA on results of DNA vaccination against influenza virus infection in pigs[J]. Am J Vet Res 2002,63:653-659.
    [106]LI GX, TIAN ZJ, YU H, et al. Fusion of C3d with hemagglutinin enhances protective immunity against swine influenza virus[J]. Res Vet Sci 2009,86:406-413.
    [107]LI GX, ZHOU YJ, YU H, et al. Prime-boost immunization with HA/C3d DNA followed by a recombinant pseudorabies virus boost enhanced protective immunity against H3N2 swine influenza virus in mice[J]. Res Vet Sci 2010,88:345-351.
    [108]KIM JH, JACOB J. DNA vaccines against influenza viruses[J]. Curr Top Microbiol Immunol 2009,333:197-210.
    [109]POWERS DC, MCELHANEY JE, FLORENDO OA, et al. Humoral and cellular immune responses following vaccination with purified recombinant hemagglutinin from influenza A (H3N2) virus[J]. J Infect Dis 1997,175:342-351.
    [110]CRAWFORD J, WILKINSON B, VOSNESENSKY A, et al. Baculovirus-derived hemagglutinin vaccines protect against lethal influenza infections by avian H5 and H7 subtypes[J]. Vaccine 1999,17:2265-2274.
    [111]GAMBOTTO A, BARRATT-BOYES SM, DE JONG MD, et al. Human infection with highly pathogenic H5N1 influenza virus[J]. Lancet 2008,371:1464-1475.
    [112]CARRAT F, FLAHAULT A. Influenza vaccine:the challenge of antigenic drift[J]. Vaccine 2007,25:6852-6862.
    [113]RAMIREZ JC, GHERARDI MM, RODRIGUEZ D, et al. Attenuated modified vaccinia virus Ankara can be used as an immunizing agent under conditions of preexisting immunity to the vector[J]. J Virol 2000,74:7651-7655.
    [114]DREXLER I, STAIB C, SUTTER G. Modified vaccinia virus Ankara as antigen delivery system:how can we best use its potential? [J] Curr Opin Biotechnol 2004,15:506-512.
    [115]BREATHNACH CC, CLARK HJ, CLARK RC, et al. Immunization with recombinant modified vaccinia Ankara (rMVA) constructs encoding the HA or NP gene protects ponies from equine influenza virus challenge[J]. Vaccine 2006,24:1180-1190.
    [116]KREIJTZ JH, SUEZER Y, VAN AMERONGEN G, et al. Recombinant modified vaccinia virus Ankara-based vaccine induces protective immunity in mice against infection with influenza virus H5N1[J]. J Infect Dis 2007,195:1598-1606.
    [117]KREIJTZ JH, SUEZER Y, DE MUTSERT G, et al. MVA-based H5N1 vaccine affords cross-clade protection in mice against influenza A/H5N1 viruses at low doses and after single immunization[J]. PLoS One 2009,4:e7790.
    [118]KREIJTZ JH, SUEZER Y, DE MUTSERT G, et al. Preclinical evaluation of a modified vaccinia virus Ankara (MVA)-based vaccine against influenza A/H5N1 viruses[J]. Vaccine 2009,27:6296-6299.
    [119]KREIJTZ JH, SUEZER Y, DE MUTSERT G, et al. Recombinant modified vaccinia virus Ankara expressing the hemagglutinin gene confers protection against homologous and heterologous H5N1 influenza virus infections in macaques[J]. J Infect Dis 2009, 199:405-413.
    [120]HAYNES JR, DOKKEN L, WILEY JA, et al. Influenza-pseudotyped Gag virus-like particle vaccines provide broad protection against highly pathogenic avian influenza challenge[J]. Vaccine 2009,27:530-541.
    [121]PUSHKO P, TUMPEY TM, BU F, et al. Influenza virus-like particles comprised of the HA, NA, and M1 proteins of H9N2 influenza virus induce protective immune responses in BALB/c mice[J]. Vaccine 2005,23:5751-5759.
    [122]SZECSI J, BOSON B, JOHNSSON P, et al. Induction of neutralising antibodies by virus-like particles harbouring surface proteins from highly pathogenic H5N1 and H7N1 influenza viruses[J]. Virol J 2006,3:70.
    [123]MATASSOV D, CUPO A, GALARZA JM. A novel intranasal virus-like particle (VLP) vaccine designed to protect against the pandemic 1918 influenza A virus (H1N1) [J]. Viral Immunol 2007,20:441-452.
    [124]QUAN FS, HUANG C, COMPANS RW, et al. Virus-like particle vaccine induces protective immunity against homologous and heterologous strains of influenza virus. [J] Virol 2007,81:3514-3524.
    [125]BRIGHT RA, CARTER DM, DANILUK S, et al. Influenza virus-like particles elicit broader immune responses than whole virion inactivated influenza virus or recombinant hemagglutinin[J]. Vaccine 2007,25:3871-3878.
    [126]MAHMOOD K, BRIGHT RA, MYTLE N, et al. H5N1 VLP vaccine induced protection in ferrets against lethal challenge with highly pathogenic H5N1 influenza viruses[J]. Vaccine 2008,26:5393-5399.
    [127]COMPANS R KANG SM, SONG JM, QUAN FS, et al. Influenza vaccines based on virus-like particles[J]. Virus Res 2009,143:140-146.
    [128]PERRONE LA, AHMAD A, VEGUILLA V, et al. Intranasal vaccination with 1918 influenza virus-like particles protects mice and ferrets from lethal 1918 and H5N1 influenza virus challenge[J]. J Virol 2009,83:5726-5734.
    [129]ROSS TM, MAHMOOD K, CREVAR CJ, et al. A trivalent virus-like particle vaccine elicits protective immune responses against seasonal influenza strains in mice and ferrets[J]. PLoS One 2009,4:e6032.
    [130]BRIGHT RA, CARTER DM, CREVAR CJ, et al. Cross-clade protective immune responses to influenza viruses with H5N1 HA and NA elicited by an influenza virus-like particle[J]. PLoS One 2008,3:e1501.
    [131]XU XG, LIU HJ. Baculovirus surface display of E2 envelope glycoprotein of classical swine fever virus and immunogenicity of the displayed proteins in a mouse mode[J]I. Vaccine 2008,26:5455-5460.
    [132]LIN YH, LEE LH, SHIH WL, et al. Baculovirus surface display of sigmaC and sigmaB proteins of avian reovirus and immunogenicity of the displayed proteins in a mouse model[J]. Vaccine 2008,26:6361-6367.
    [133]WANG B, HUA RH, TIAN ZJ, et al. Identification of a virus-specific and conserved B-cell epitope on NS1 protein of Japanese encephalitis virus[J]. Virus Res 2009, 141:90-95.
    [134]HE Q, VELUMANI S, DU Q, et al. Detection of H5 avian influenza viruses by antigen-capture enzyme-linked immunosorbent assay using H5-specific monoclonal antibody[J]. Clin Vaccine Immunol 2007,14:617-623.
    [135]VELUMANI S, DU Q, FENNER BJ, et al. Development of an antigen-capture ELISA for detection of H7 subtype avian influenza from experimentally infected chickens. [J]Virol Methods 2008,147:219-225.
    [136]JI Y, GUO W, ZHAO L, et al. Development of an antigen-capture ELISA for the detection of equine influenza virus nucleoprotein[J]. J Virol Methods 2011,175:120-124.
    [137]HO HT, QIAN HL, HE F, et al. Rapid detection of H5N1 subtype influenza viruses by antigen capture enzyme-linked immunosorbent assay using H5-and N1-specific monoclonal antibodies[J]. Clin Vaccine Immunol 2009,16:726-732.
    [138]KIDO H, OKUMURA Y, YAMADA H, et al. Proteases essential for human influenza virus entry into cells and their inhibitors as potential therapeutic agents[J]. Curr Pharm Des 2007,13:405-414.
    [139]XIA P, DANG Z, QIU H, et al. Function of PRRSV GP5 envelope protein by using pseudotyped virus[J]. Vet Microbiol 2009,138:297-303.
    [140]LADDY DJ, YAN J, CORBITT N, et al. Immunogenicity of novel consensus-based DNA vaccines against avian influenza[J]. Vaccine 2007,25:2984-2989.
    [141]CONRY RM, WIDERA G, LOBUGLIO AF, et al. Selected strategies to augment polynucleotide immunization[J]. Gene Ther 1996,3:67-74.
    [142]HUBER VC, MCKEON RM, BRACKIN MN, et al. Distinct contributions of vaccine-induced immunoglobulin G1 (IgG1) and IgG2a antibodies to protective immunity against influenza[J]. Clin Vaccine Immunol 2006,13:981-990.
    [143]WEBSTER RG, KAWAOKA Y, TAYLOR J, et al. Efficacy of nucleoprotein and haemagglutinin antigens expressed in fowlpox virus as vaccine for influenza in chickens[J]. Vaccine 1991,9:303-308.
    [144]KOSAKOVSKY POND SL, POSADA D, GRAVENOR MB, et al. GARD:a genetic algorithm for recombination detection[J]. Bioinformatics 2006,22:3096-3098.
    [145]OXFORD JS. Influenza A pandemics of the 20th century with special reference to 1918: virology, pathology and epidemiology [J]. Rev Med Virol 2000,10:119-133.
    [146]ITOH Y, SHINYA K, KISO M, et al. In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses[J]. Nature 2009,460:1021-1025.
    [147]LANGE E, KALTHOFF D, BLOHM U, et al. Pathogenesis and transmission of the novel swine-origin influenza virus A/H1N1 after experimental infection of pigs[J]. J Gen Virol 2009,90:2119-2123.
    [148]WEINGARTL HM, ALBRECHT RA, LAGER KM, et al. Experimental infection of pigs with the human 1918 pandemic influenza virus[J]. J Virol 2009,83:4287-4296.
    [149]VINCENT AL, LAGER KM, FAABERG KS, et al. Experimental inoculation of pigs with pandemic H1N1 2009 virus and HI cross-reactivity with contemporary swine influenza virus antisera[J]. Influenza Other Respi Viruses 2010,4:53-60.
    [150]HANCOCK K, VEGUILLA V, LU X, et al. Cross-reactive antibody responses to the 2009 pandemic H1N1 influenza virus[J]. N Engl J Med 2009,361:1945-1952.
    [151]DU L, ZHAO G, ZHANG X, et al. Development of a safe and convenient neutralization assay for rapid screening of influenza HA-specific neutralizing monoclonal antibodies[J]. Biochem Biophys Res Commun 2010,397:580-585.
    [152]WANG W, BUTLER EN, VEGUILLA V, et al. Establishment of retroviral pseudotypes with influenza hemagglutinins from HI, H3, and H5 subtypes for sensitive and specific detection of neutralizing antibodies[J]. J Virol Methods 2008,153:111-119.
    [153]MARTINEZ-SOBRIDO L, CADAGAN R, STEEL J, et al. Hemagglutinin-pseudotyped green fluorescent protein-expressing influenza viruses for the detection of influenza virus neutralizing antibodies[J]. J Virol 2010,84:2157-2163.
    [154]WOOL-LEWIS RJ, BATES P. Characterization of Ebola virus entry by using pseudotyped viruses:identification of receptor-deficient cell lines[J]. J Virol 1998,72:3155-3160.
    [155]NIE Y, WANG P, SHI X, et al. Highly infectious SARS-CoV pseudotyped virus reveals the cell tropism and its correlation with receptor expression. Biochem[J] Biophys Res Commun 2004,321:994-1000.
    [156]MATSUURA Y, TANI H, SUZUKI K, et al. Characterization of pseudotype VSV possessing HCV envelope proteins[J]. Virology 2001,286:263-275.
    [157]TAMIN A, HARCOURT BH, LO MK, et al. Development of a neutralization assay for Nipah virus using pseudotype particles[J]. J Virol Methods 2009,160:1-6.
    [158]AO Z, PATEL A, TRAN K, et al. Characterization of a trypsin-dependent avian influenza H5N1-pseudotyped HIV vector system for high throughput screening of inhibitory molecules[J]. Antiviral Res 2008,79:12-18.
    [159]WANG W, XIE H, YE Z, et al. Characterization of lentiviral pseudotypes with influenza H5N1 hemagglutinin and their performance in neutralization assays[J]. J Virol Methods 2010,165:305-310.
    [160]WANG W, ANDERSON CM, DE FEO CJ, et al. Cross-Neutralizing Antibodies to Pandemic 2009 H1N1 and Recent Seasonal H1N1 Influenza A Strains Influenced by a Mutation in Hemagglutinin Subunit 2[J]. PLoS Pathog 2011,7:e1002081.
    [161]VINCENT AL, LAGER KM, MA W, et al. Evaluation of hemagglutinin subtype 1 swine influenza viruses from the United States[J]. Vet Microbiol 2006,118:212-222.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700