猪流感病毒NASBA-ELISA检测方法的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪流感是由猪流感病毒引起的一种猪的急性的呼吸道传染病,病毒可以在猪体内发生重组后可以感染人,不仅给畜禽养殖造成重大经济损失,而且还对人类健康造成严重威胁。因此一种快速、敏感、准确的检测手段的建立显得尤为重要,核酸序列依赖性扩增(NASBA)具有操作简单、敏感性高、特异性好的优点,结合酶联寡核苷酸的高敏感性能够准确的检测到猪流感病毒。
     本研究根据GENBANK中已发表的猪流感病毒NP基因的高度保守序列设计引物和探针,通过对核酸序列依赖性扩增(NASBA)方法中酶浓度,离子浓度,反应温度等条件的摸索以及优化,建立了检测猪流感病毒NASBA扩增体系。将NASBA方法扩增产物进行琼脂糖凝胶电泳,结果扩增出了391bp的特异性条带。将H1N1、H3N2和H9N2等亚型猪流感病毒的扩增产物进行测序,与GENEBANK中已经发表的猪流感病毒NP基因进行同源性比较分析,结果同源性在80.9%~98.7%。
     将NASBA扩增反应与酶联免疫吸附试验(ELISA)相结合,应用ELISA方法来检测NASBA扩增产物,并对其反应条件进行了优化,最终建立了猪流感病毒NASBA-ELISA检测方法。采用已知猪流感病毒A/Swine/TJ4/2006(H1N1)株(H1N1)鸡胚尿囊液(10-7.5ELD50/.2ml),经过10倍系列连续稀释,使用建立的NASAB-ELISA方法检测,能够检测到10-5稀释倍数的病毒液,而PCR方法只检测到了10-2稀释倍数的病毒液,表明该方法有很强的敏感性。特异性试验结果表明,该方法具有很好的特异性,与猪瘟病毒、蓝耳病病毒、伪狂犬病毒、细小病毒、牛病毒性腹泻病毒等均无交叉反应。
     采集可疑猪流感临床病例猪鼻拭子样本14份、气管拭子和肺脏组织样本各8份,应用建立的NASBA-ELISA方法进行检测,同时用鸡胚法进行病毒分离培养,结果二者的符合率为96.7%。
Swine influenza is an acute respiratory disease infected by swine influenza virus(SIV).The virus can infect people after recombined in the blood of swine. It not only takeheavey losses to livestock and poultry, but also lead to serious threat to human healthy. So it’simportant to establish a fast, sensibility and accurate detection way. Nucleic acid sequence-based amplification(NASBA) has some advantages as convenience, highly sensibility andspecificity. It can detect SIV combined with enzyme-linked immunosorbent assay(ELISA)exactly.
     An nucleic acid sequence based amplification (NASBA) method was developed fordetecting swine influenza virus (SIV). Primers and probes used in the NASBA assay wasdesigned according to conserved sequence of NP of SIV by Primerpremier5.0and Oligo6.0.The NASBA amplification system was developed by exploratiing and optimizatingconcentration of the enzymes and ions used in the system, and the temperature of reaction. AnRNA gel e1ectrophoresis of product the NASBA revealed that a specific band was amplifiedand size of the RNA is391bp.The NASBA products of four isolates of SIV were sequencedand blasted with the published genes of NP in GENEBANK, the nucleotide homologies ofthem were from80.9%to98.7%. The four SIV isolates belong to H1N1, H3N2and H9N2subtype separately.
     For detecting the SIV specificity and sensitively, an enzyme-linked immunosorbentassay (ELISA) based on probes hybridization was used to detect the products of NASBA. AnNASBA-ELISA mothed was developed for detecting SIV by optimizating the concentrationof reagents and reaction conditions. The A/Swine/TJ4/2006(H1N1) of SIV liquid(ELD5010-7.5/0.2ml)was diluted from10-1to10-7continuouely and tested by theNASBA-ELISA and RT-PCR. The NASBA-ELISA results showed SIV diluton10-1to10-5were positive and others dilution were negative, but results of the RT-PCR only can detect10-2dulution of SIV.This results indicates the NASBA more sensitive than RT-PCR. Theresult of the specificity indicates the NASBA method could detect SIV specifici as well as nointeractions with HCV、PRRSV、PRV、PPV and BVDV.
     Fourteen nasal swab samples, eight tracheal swabs and eight lung tissue samples werecollected from suspected SI case in Tianjin area,and all of the samples was detected using theNASBA-ELISA established in this study and isolated SIV by inocluted SPF chicken embryos. The result indicates that the coincidence rate was96.7%between the NASBA-ELISA andvirus isolation and identification.
引文
[1]白文彬,康震.动物传染病诊断学.北京:中国农业出版社,2002:476-483.
    [2]丁铲.病毒的进化与传播.中国动物传染病学报,2010,18(4):71-75.
    [3]寇晓霞,吴清平,范宏英.轮状病毒NASBA检测研究.微生物学报,2006,46(2):328-330.
    [4]高闪电,常惠芸,丛国正等. NASBA(依赖核酸序列的扩增)技术及其在病毒检测中的应用.中国生物工程杂志,2009,29(1):80-85.
    [5]姜晓慧,陈寅,卢亦愚等. H3型流行性感冒病毒环介导逆转录等温扩增检测方法的建立与应用.中国疫苗和免疫,380-382.
    [6]孔令青,李勇,高洪等.生物素亲和素标记技术.动物医学进展,2008,29(4):100-102.
    [7]李小兰,聂福平,李应国等.猪传染性胃肠炎病毒NASBA检测方法的建立.中国预防兽医学报,2010,32(6):451-454.
    [8]李海燕,于康震,杨焕良等.中国猪源H5N1和H9N2亚型流感病毒的分离鉴定.中国预防兽医学报,2004,26(1):1-6.
    [9]梁海霞,薛青红,高金源等.高致病性猪生殖与呼吸综合征病毒NASBA-ELISA检测方法的建立.中国兽医科学,2009,39(05):401-404.
    [10]骆利敏,黄建生,李明等.应用NASBA定量检测HCV RNA的研究进展. Tropical Medicine,2002,52(1):64-66.
    [11]马义才,陈李容, Alison Cox.661份HIV抗体阳性血浆标本HIV-1RNA浓度测定.中国输血杂志.2003,16:312-313.
    [12]马保华,李贺,吕平等.依赖核酸序列的扩增技术在动物病原微生物检测中的应用.动物医学进展,2007,28(4):110-112.
    [13]秦维超.NASBA和IS-NASBA的临床应用及研究进展.国际检验医学杂志,2006,27(2):158-160.
    [14]单松华,刘乐庭,陈家华等. NASBA快速检测禽流感H5亚型病毒.中国病毒学,2005,20(3):288-292.
    [48]苏霞,杨兵,周宏专等. H1N1猪流感病毒环介导等温扩增快速检测方法的建立.中国动物检疫,2010.27(5):24-27.
    [15]斯特劳,赵德明等译.猪病学(第八版)[M].北京:中国农业大学出版社,2000.
    [16]孙忠晟,尹燕博,王平等.间接ELISA检测猪流感抗体方法的建立及应用.中国兽医杂志,2011,47(1):78-80.
    [17]沃恩康,王怡婷,吴海波等.环介导等温扩增方法检测H9亚型流感病毒的研究.中国卫生检验杂志,2010(5):979-981.
    [18]王连想,毕英佐,曹永长等.猪流感病毒广东株的分离鉴定及其特性.中国兽医科技,2003,33(2):17-21.
    [19]王云龙,陈小科等. H3亚型猪流感病毒荧光定量PCR检测方法的建立.动物医学进展.2009,6:34-36.
    [20]王虹,陈金华,曾位森等. NASBA荧光分子信标技术定量检测丙型肝炎病毒.中国生物工程杂志,2003,23(12):111-113.
    [21]许传田,范伟兴,赵宏坤. A型猪流感病毒山东分离株鉴定及其HA基因序列分析.中国病毒学,2004,19(1):27-31.
    [22]谢青梅,曹永长,张祥斌等. H5亚型禽流感病毒的逆转录环介导等温扩增RT-LAMP检测技术.中国兽医学报,2010,30(1)41-46.
    [23]杨鹏辉,杨潞芳.流感病毒呼吸道粘膜感染免疫防御机制的研究进展.国际免疫学杂志,2006,5(29):305-309.
    [24]杨林,马世春,苏增华等.猪流感病毒基因芯片检测技术的研究.中国兽医杂志,2008,44(7):3-6.
    [25]尹燕博坚,刘业兵,张磊等.猪流感RT-PCR诊断方法的建立.中国兽药杂志,2009,11:23-24.
    [26]殷震,刘景华.动物病毒学(第二版)[M].科学出版社,1997:333-334.
    [27]颜进,刘剑雄,彭红梅. NASBA(核酸序列依赖的扩增)及其在医学上的应用.国外医学临床生物化学与检验学分册.1997,18:66-69.
    [28]赵志权,王福广,郝环颍等.高致病性猪繁殖与呼吸综合征病毒的RT-PCR鉴别诊断方法.华南农业大学学报,2008,29(3):68-78.
    [29] Astuid V,Guillaume S,Lezin B,et a1. Compauison of three nonnested assay for the detection of Aswine influenza virus from nasal swabs and lungs. Vet Diagn Invest,2001,13(1):36-42.
    [30] Anna-Maria Costa, David Lamb, Suzanne M. Garland,et al. Evaluation of LightCycler as a Platformfor Nucleic Acid Sequence-Based Amplifcation (NASBA) in Real-Time Detection of Enteroviruses.Curr Microbiol,2008,56:80-83.
    [31] Blok J, AirGM. Sequence variation at the3'end of the neuraminidase gene from39influenza typeAviruses.Virology,1982,121:211-229.
    [32] Birgit Deiman, Pierre van Aarle, Peter Sillekens. Characteristics and Applications of Nucleic AcidSequence-Based Amplification (NASBA).Molecular Biotechnology,2002,20(2):163-179.
    [33] Cui S J, Fung Y W, Lau L T, et al. Detection of Newcastle disease virus using nucleic acidsequence-based amplification.. Biological,2007,35(1):13-18.
    [34] Collins RA, Ko LS, Fung KY, et al. Rapid and sensitive detection of avian influenza virus subtype H7using NASBA.Biochem Biophys Res Commun,2003;300(2):507-515.
    [35] Compton J. Nucleic acid sequence-based amplification. Nature,1991,350:91-92.
    [36] Choi C, Ha S K, Chae C. Detection and isolation of H1N1. Korea:2004,154:274-275.
    [37] D’ Souza DH, Jaykus LA. Nucleic acid sequence based amplification for the rapid and sensitivedetection of Salmonella enterica from foods. J Appl Microbiol,2003;95(6):1343-1350.
    [38] Deiman B, van Aarle P, Sillekens P. Characteristics and applications of nucleic acid sequence-basedamplification (NASBA). MolBiotechnol,2002;20(2):163-179.
    [39] D’ Souza DH, Jaykus LA. Nucleic acid sequence based amplification for the rapid and sensitivedetection of Salmonella enterica from foods. J Appl Microbiol,2003;95(6):1343-1350.
    [40] Fouchier R A, Munster A, Wallensten T M, Bestebroer S, Herfst D,SmithGF,Rimmelzwaan B,OlsenCW,OsterhausAD.Characterization of a novel influenza virus hemagglutinin subtype (H16) obtainedFromblack-headed gulls. JVirol,2005,79:2814-2822.
    [41] Gore HM, Wakeman CA, Hull RM, et al. Real-time molecular beacon NASBA reveals hblCexpression from Bacillus spp. in milk. Biochem Biophys Res Commun,2003;311(2):386-390.
    [42] JungK,ChaeC. Phylogenetic analysis of an H1N2influenza Avirus Isolated from apig[M].Korea:2004,149:1415-1422.
    [43] Jennings R, Potter CW, Mclaren C, et al. Effect of preinfection and preimmunization on the serumantibody response to subsequent immunization with heterotypic influenza vaccines. J Immunol,1974,113(6):1834-1843.
    [44] Keer JT, Birch L. Molecular methods for the assessment of bacterial viability. Microbiol Methods,2003;53(2):175-183.
    [45] Kievits T, van Gemen B, van Strijp D, et al. NASBA isothermal enzymatic in vitro nucleic acidamplification optimized for the diagnosis of HIV-1infection. J Virol Methods,1991;35(3):273-286.
    [46] Lamb R A, KrugR. Orthomyxoviridae:the viruses and their replication. FieldVirology:1353-1395.
    [47] Landry ML, Garner R, Ferguson D (2003) Comparison of the NucliSens basic kit (nucleic acidsequence-based amplifcation) and the Argene Biosoft Enterovirus consensus reversetranscription-PCR for rapid detection of enterovirus RNA in clinical specimens. J Clin Microbiol41:5006–5010
    [48] Lanciotti RS, Kerst AJ. Nucleic acid sequence-based amplification assays for rapid detection of WestNile and St. Louis encephalitis viruses. J Clin Microbiol,2001;39(12):4506-4513.
    [49] Loens K, Beck T, Ursi D, et al. Development of real-time multiplex nucleic acid sequence-basedamplification for detection of Mycoplasma pneumoniae, Chlamydophila pneumoniae, and Legionellaspp. inrespiratory specimens. J Clin Microbiol,2008;46(1):185-191.
    [50] Lau L T, ScottM R, Donald P K. Detection of foot and mouth disease virus by nucleic acidsequence-based amplification(NASBA). Vet Microbiology,2008,126(1~3):101-110.
    [51] MaW,GramerM,RossowK,YoonKJ. Isolation and genetic characterization of newreassortant H3N1swine influenza virus frompigs in the MidwesternUnited States.Virol80,2006:5092-5096.
    [52] Marie L L, Robin G, David F. Real-time Nucleic acid sequence-based amplification using molecularbeacons for detection of enterovirus RNA in clinical specimens. Journal of clinical microbiology,2005,43(7):3136-3139.
    [53] NicholsonKG,WebsterRG,HayAJ.Text book of influenza.Black wellScienceLtd,London,1998:43-53.
    [54] Petra S, Liselotte W, Gerard S. Real-time nucleic acid sequence-based amplification is moreconvenient than real-time PCR for quantification of plasmodium falciparum. Journal of clinicalmicrobiology,2005,43(1):402-405.
    [55] Romano JW, Williams KG, Shurtliff RN, et al. NASBA technology: isothermal RNA amplification inqualitative and quantitative diagnostics. Immunol Invest,1997;26(1-2):15-28.
    [56] Souza D H, Jaykus L A. Nucleic acid sequence based amplification for the rapid and sensitivedetection of Salmonella enterica from foods.App Microbiol.2003,95(6):1343-1350.
    [57] Samuelson A, Westmoreland D, Eccles R, et al. Development and application of a new method foramplification and detection of human rhinovirus RNA. Virol Methods,1998;71(2):197-209.
    [58] Shipitsyna E, Guschin A, Maximova A, et al. Comparison of microscopy, culture and in-house PCRand NASBA assays for diagnosis of Neisseria gonorrhoeae in Russia. APMIS,2008;116(2):133-138.
    [59] Tauriainen S, Dadu E, Oikarinen M, et al. Amplifying control RNA for RT-PCR applications bynucleic acid sequence based amplification (NASBA). Virol Methods,2006;132(1-2):222-226.
    [60] Uyttendaele M, Sehukkink R, Gemen B, et al. Development of NASBA, a nucleic acid amplificationsystem, or identification of Listeria monocytogenes and comparison to ELISA and a modified FDAmethod. Food Microbiology,1995,27(1):77-89.
    [61] van der Meide WF, Peekel I, van Thiel PP, et al. Treatment assessment by monitoring parasite load inskin biopsies from patients with cutaneous leishmaniasis, using quantitative nucleic acid sequence-based amplification. Clin Exp Dermatol,2008.
    [62] Weusten J J A M, CarpayW M, Tom A M, et al. Principles of quantitation of viral loads using nucleicacid sequence-based amplification in combination with homogenous detection using molecularbeacons. Nucleic Acid Research,2002,30, e26
    [63] Waleria-Aleixo,D. B. Greco, R. Brindeiro.False I50V resistance readings of HIV isolates,2005,45(31):92-93.
    [64] Wesley RD, Tang M, Lageu KM. Puotection of weaned pigs by vaccination with human adenovims5uecombinant vimses expuessing the hemagglutinin and the nucleopuotein of H3N2swineinfluenzavims. Vaccine,2004,22(25/26):3427-3435.
    [65] Wendy F M, Gerard J S, William R F, et al. Quantitative nucleic acid sequence-nased assay as a newmolecular tool for detection and quantification of leishmania parasites in skin biopsy samples. Journalof clinical microbiology,2005,43(11):5560-5566.
    [66] Wacharapluesadee S, Hemachudha T. Nucleic-acid sequence-based amplification in the rapiddiagnosis of rabies. Lancet,2001,358(9285):892-893.
    [67] Waddilove J. Immunosuppressive viruses a new pattern in pig disease. Pig International,1996,26(8):27-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700