猪流感病毒分型基因芯片的研制与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪流感(Swine influenza,SI)是由正黏病毒科猪流感病毒(SIV)引起的一种急性、高度接触传染性的群发性猪呼吸道疾病,目前已发现的SIV至少有H1N1、H1N2、H1N7、H3N2、H3N6、H4N6、H9N2和H5N1等8种不同血清亚型。血凝抑制试验(HI)和神经氨酸酶抑制试验(NI)是流感病毒亚型鉴定的常用方法,另外琼脂扩散试验、酶联免疫吸附试验等其他血清学方法也用于猪流感病毒亚型的检测,但是这些方法都存在灵敏度低且经验依赖性强等特点。PCR是一种快速准确的检测方法,但是普通的PCR方法只能一次对一种亚型进行检测,不能满足实际检测的需要。
     本研究根据流感病毒的HA和NA基因序列间的差异性,采用基因芯片技术,借助多重PCR和核酸标记技术,构建了猪流感病毒亚型分型基因芯片,用于猪流感病毒亚型的分型,具有检测A型流感病毒和同步鉴别猪流感病毒H1、H3、H9、N1和N2亚型的功能。本研究共分为以下3部分:
     1猪流感病毒分型基因芯片的建立
     本部分主要包括芯片的设计和制备、探针浓度和Biotin-11-dUTP使用浓度的选择,杂交时间和杂交温度的优化,芯片的灵敏度、特异性、重复性和稳定性检测。
     根据Genbank发表的核酸序列,运用DNAstar软件,分析流感病毒的HA和NA基因序列间的差异性,分别设计合成流感病毒H1、H3、H9、N1和N2的特异分型引物,并根据A型流感病毒的型特异性基因(M基因),设计了A型流感病毒的通用引物。应用RT-PCR分别扩增各亚型的特异片断,并分别克隆到pMD18-T Simple Vector构建重组质粒,用于各亚型探针的制备。将各探针测序后,应用BLAST对扩增产物测序结果与相应病毒亚型核酸序列的进行同源比对,证明与相应亚型的大部分毒株同源性在90%以上。将各探针纯化后,统一稀释为75 ng/μL,按一定的阵列点加到硝酸纤维素膜上,80℃烤膜2 h,制备成低密度基因芯片,并对芯片制备和杂交条件的优化以及芯片的性能进行测定。结果筛选出制备芯片的Biotin-11-dUTP使用浓度为80μM,探针浓度为75 ng/μL,杂交温度为42℃,杂交时间1 h。制备的芯片具有良好的特异性和可重复性,灵敏度比PCR高1个稀释度,比病毒分离高2个稀释度。该方法的建立,为猪流感的检测及猪流感病毒各亚型在猪群中的流行病学调查提供了一种快速、灵敏和高通量的手段。
     2不对称PCR在基因芯片中的应用
     利用不对称PCR可以制备单链PCR产物,较少基因芯片杂交时自身杂交的损失,提高基因芯片的杂交率,但同时也会减少PCR的最终产物。本试验选择了1:25、1:50、1:100和1:200的稀释滴度,芯片对比检测结果显示,在引物浓度为1:100时杂交结果最好,与不用不对称PCR的芯片检测结果相比,灵敏度提高了1~2个稀释度。
     3猪流感病毒分型基因芯片的初步应用
     利用制备好的基因芯片检测了从青岛、烟台、潍坊、济宁、南昌、葫芦岛等市健康猪群或病死猪采集的鼻拭子或组织426份,检测结果和PCR的符合率在87%以上,鸡胚传代病毒分离检测结果同基因芯片与PCR的检测结果相差比较大。结果表明猪流感病毒分型基因芯片可以作为猪流感病毒监测的一种重要手段,其灵敏度高于PCR方法。
Swine Influenza is an acute, high contagiousness respiratory disease of swine with a type A Influenza virus which belongs to the Orthomyxoviridae family. At present, eight subtypes of Swine Influenza Virus(SIV) which have been isolated are H1N1, H1N2, H1N7, H3N2, H3N6, H4N6, H9N2 and H5N1, the frequently used methods for identifying subgroups Influenza virus are hemagglutination inhibition assay(HI) and neuramidinase inhibition assay (NI). Besides, the agar diffusion reaction, enzyme linked immunosorbent assay and other serological methods can identify subgroups Influenza virus. Whereas these methods are all lower sensitivtive and hadro-dependence by experience. PCR is a quick and precise method, while the vukgar PCR only test one subtype once. Therefore it can not satisfy the need of detection.
     This research constructs low density DNAarray for diagnosing the subtypes of SIV by using the technology of DNAarray, multiplicitas PCR and nucleinic acid mark, which can diagnose the subtypes of SIV and the type A Influenza virus at the same time. Major studies are processed as follows:
     Part 1: Establishment of Low Density DNAarray for Diagnosing the Subtypes of SIV This part includes probe concentration options, biotin-11-dUTP concentration options, hybridization temperature and hybridization time options, sensitivity, specificity, reproducibility and constant testing.
     The hemagglutinin(HA) and neuraminidase(NA) gene of five subtypes influenza A virus were amplified by RT-PCR with primers based on the diversity of HA and NA gene. Meanwhile, conserved cDNA fragments of M were amplified by RT-PCR with consensus primer. Each fragment was cloned in pMD18-T Simple Vectors to construct recombinant plasmid respectively, and constructed recombinant plasmid for DNA probe preparation and recovered DNA probes were spotted on located sites on nitrocellulose filter to be DNAarray. After sequencing, the result was tested by using BLAST and compared with the corresponding subetypes. Aliment reports show that the sequence is above 90% with the bulk corresponding subetypes. After purificating, the probes are diluted to 75 ng/μ, and marked nitrocellulose filter, fixed to two hours, determined the preparation of genechip and condition of hybridization. The results show that the Biotin-11-dUTP is 80μM, probe is 75 ng/μl; hybridization temperature is 42℃, hybridization time is 1 hour. These DNAarrays have specificity and good reproducitivity. The sensitivity of genechip is one dilution higher than PCR, and two dilution higher than viral isolation. These DNAarray provids a quick, sensitive and high-flux method for large-scale epidemiology investigation and quarantine of Swine Influenza Virus.
     Part 2: Application of dissymmetry PCR in DNAarray
     Dissymmetry PCR can be applied to prepare single strand PCR products, and that can reduce the lose of self-hybridization in DNAarray hybridization. It raises the hybridization rate, and reduces the final prducts of PCR. This research chooses 1:25, 1:50, 1:100 and 1:200 titre. It shows that the optimization primer concentration is 1:100, the sensitivity is raised 10~100 times comparing with the conventional PCR.
     Part 3: The primary application of DNAarray in diagnosing the subtypes of SIV
     The DNAarray is applied to detect the nose swab or tissue samples of health swine or illness swine from Qingdao、Yantai、Weifang、Jining、Nanchang、Huludao and so on. The result shows that the coincidence of DNAarray and PCR is above 87%, but it has significant diversity with the method in which the virus was isolated by embryo passage. It shows that this DNAarray can be applied to monitor the swine influenza, the sensitivity is higher than PCR.
引文
[1] Straw B E, Allaire S D, M engeling W L, et al. Disease of swine (8thed)[M]. Iown state press, Ames, Iowa, USA, 1999, 277-290.
    [2] Harlbur P G. Defining the causes of PRDC[C]. Swine consultant, Pfizer Animal Health, 1996, fall: 4-15.
    [3] 世界动物卫生组织. 哺乳动物、禽、蜜蜂 A 和 B 类疾病诊断试验和疫苗标准手册[M]. 农业部畜牧兽医局译. 北京:中国农业科学技术出版社,2002, 197-206.
    [3] Rohm C, Zhou N, Suss A, et al. Characterization of a novel influenza hemagglutinin, H15: criteria for determination of influenza A subtypes[J]. Virology, 1996, 217(2): 508-516.
    [4] 李海燕,于康震,辛晓光,等. 部分省市猪流感的血清学调查及猪流感病毒的分离与鉴定[J]. 动物医学进展,2003, 24(3): 67-72.
    [5] 郭元吉,程小雯. 流行性感冒病毒及其实验技术[M]. 北京:中国三峡出版社,1997, 109-119.
    [6] 殷震,刘景华. 动物病毒学[M]. 北京:科学出版社(第二版),1997.
    [7] 黄文林. 分子病毒学[M]. 北京:人民出版社,2001, 283-291.
    [8] Fields B N, Knipe D M, Howley P M, et al. Fields virology[M]. Lippincott-Raven publishers, phildelphia, 1996: 1397-1445.
    [9] Lamb R A, Krug R M. Orthomyxoviruses: The virus and their replication: Fields B N, Knipe D M, Howley PM, et al. Fields virology[M]. Lippincott-Raven publishers, phildelphia, 1996: 1353-1395.
    [10] 李海燕. 猪流感病毒分离株生物学特性及分子流行病学与演化研究[D]. 广州:华南农业大学, 2002.
    [11] 中国农业科学院哈尔滨兽医研究所. 动物传染病[M]. 北京:中国农业出版社,1999: 248-250.
    [12] Raymond F L, catom A J, cox N J, et al. The antigenicity and evolution of influenza HA hemagglutinin, from 1950 to 1957 and 1977 to 1983: two path ways from one gene[J]. Virology, 148: 275-287.
    [13] Caton A J, Brownlee G G, Yewdell J W, et al. The antigenic structure of influenza virus A/PR/834 hemagglutinin(H1 subtype)[J]. Cell, 1981, 31(3): 417-427.
    [14] 崔尚金,李建伟,金 红,等. 中国 H3 亚型流感病毒生态学与分子进化的研究[J]. 中国预防兽医学报,2002, 24(4): 144-146.
    [15] Reid A H, Fanning T G, Hultin J V, et al. Origin and evlution of the 1918 "spanish" influenza A virus hemagglutin in gene[J]. Proc Natl Acad Sci USA, 1999, 96(3): 1651-1656.
    [16] Hughes M T, McGregor M, Suzuki T, et al. Adaption of influenza A viruses to cells expressing low levels of sialic leads to loss of neuraminidase activity[J]. J Virol, 2001, 75(2): 3766-3770.
    [17] 郭元吉,温乐英,王敏,等. 我国猪群中 H9N2 亚型毒株 HA 和 NA 基因特性的研究[J]. 中华实验和临床病毒学杂志,2004, 18(3): 7-11.
    [18] Bosch F X, Garten W, Klenk H D, et al. Proteolytic cleavage of influenza virus hemagglutinin primary structure of the connecting pepetide between HA1 and HA2 determines proteotic Cleavability and pathogenicity of avian influenza virus[J]. J Virol, 1981, 113(2): 725-735.
    [19] Liu C, Eichelberger M C, Compans R W, et al. Influenza type A virus neuraminidase does not play arole in viral entry replication, assembly, or budding[J]. J Virol, 1995, 69: 1099-1106.
    [20] Chomd J J, Remileux M F, Marchand P, et al. Rapid diagnosis of influenza A[J]. J Virol methods, 1992, 37(2): 337-350.
    [21] Holsingwe L J, Nichani D, Pinto L H, et al. Influenza A virus M2 channel protein: a structue-function analysis[J]. J Virol, 1994, 68(1): 1551-1563.
    [22] 郭元吉,Webster R G,王敏,等. 猪型流感病毒血凝素基因的核苷酸全序列分析[J]. 中华实验和临床病毒学杂志,1995, 9(3): 11-14.
    [23] 王连想,毕英佐,曹永长. 猪流感病毒广东株的分离鉴定及其特性[J]. 中国兽医科技,2003, 33(2): 17-21.
    [24] 倪汉忠,陈伟师,刘少梅,等. 1998 年广东猪群血清流感抗体调查分析[J]. 广东卫生检疫,2000, 26(1): 35-36.
    [25] Kundin W D. Hongkong H3N2 influenza virus infection among swine during a human epidemic in Taiiwan[J]. Nature, 1970, 228(2): 857.
    [26] 中国农业科学院哈尔滨兽医研究所. 动物传染病[M]. 北京:中国农业出版社,1999, 248-250.
    [27] 李海燕,于康震,杨焕良,等. 中国猪源 H5N1 和 H9N2 亚型流感病毒的分离鉴定[J]. 中国预防兽医学报,2004. 26(3): 1-6.
    [28] 范伟兴,许传田,赵宏昆,等. 山东猪流感病毒 H9N2 毒株的分离鉴定[J]. 中国动物检疫,2003, 8(2): 25-29.
    [29] Karasin A I, Anderson G A, Olsen C W. Genetic characterization of an H1N2 influenza virus isolated from a pig in Indiana[J]. J Clin Microbiol, 2000, 38(2): 2453-2456.
    [30] Murpy B R, Webster R G. Orthomyxoviruses. Fields B N, Knipe D M, Howley P M, et al. Fields virology[M]. Lippincott-Raven publishers, phildelphia, 1996: 1397-1445.
    [31] Dea S, Bilodeau R, Sauvageau R, et al. Antigenic variant of swine influenza virus causing proliferative and necrotizing pneumonia in pigs[J]. J Vet Diagn Invest, 1992, 12(4): 380-390.
    [32] Luoh S M, Mcgregor M W, Hinshaw V S. Hemagglutin in mutation related to antigenic variation in H1 Swine influenza virus[J]. J Virol, 1992, 66(2): 1066-1073.
    [33] Olsen C W, Mcgregor M W, Cooley A J, et al. Angentic and genetic analysis of a recently isolated H1N1 swine influenza virus[J]. J Vet, 1993, 54(1): 1630-1636.
    [34] Karasin A I, Schutten M M, Cooper L A, et al. Genetic characterization of H3N2 influenza virus isolation from pigs in North America, 1977-1999: evidence for wholly human and reassortant virus genotypes[J]. Virus Rec, 2000, 68(3): 71-85.
    [35] Goto H, Takal M, Iguchi H, et al. Antibody responses of type A influenza virus in the most recent several years[J]. J Vet Med Sci, 1992, 54(2): 35-329.
    [36] Brown I H, Chakravety P, Harris P A, et al. Disease outbreaks in Great Britain due to an influenza A virus of H1N2[J]. Vet Rec, 1995, 136(1): 328-329.
    [37] Dea S, Bilodeau R, Sauvageau R, et al. Antigenic variant of swine influenza virus causing proliferative and necrotizing pneumoniain pigs[J]. J Vet Diagn Invest, 1992, 4(3): 380-390.
    [38] Brown, I H ,D. J. Alexander, P .Chakraverty, et al. Isolation of aninfluenza A virus of unusual subtype (HIN7) from pigs in England, and the subsequent experimental transmission from pig to pig[J]. Vet. Microbiol. 39(2):125-134.
    [39] Bruce H Janke. Diagnostic tests for Swine Influenza[J]. Pig progress (special), 2001 Respiratorydiseases: 32-34.
    [40] Karasin, A .L, Landgraf, J, Swenson, S, Erickson, et al. Genetic Characterization of HIN2 Influenza A Viruses Isolated from Pigs throughout the United States[J]. Arch Virol, 2002, 15(2): 118-124.
    [41] Choi Y K, Goyal S W, Joo H S. Prevalence of swine influenza virus subtyped on swine farms in the united states[J]. Arch Vitol, 2002, 147(1): 1209-1220.
    [42] Scholtissek C. Pigs as the "mixingvessel" for the creation of new pandemic influenza A viruses[J]. Med Princ Pract, 1990, (2): 65-71.
    [43] Ito T, Kawaoka Y, Vines A, et al. Continued circulation of reassortant H1N2 influenza viruses in pigs in Japan[J]. Arch Virol, 1998, 143(3): 1773-1782.
    [44] Claas E C, Kawaoka Y, deJong J C, et al. Infection of children with avain-human reassortent influenza virus from pigs in Europe[J]. Virology, 1994, 204(2): 453-457.
    [45] Dacso C C, Couch R B, Six H R, et al. Sporadic occurrence of zoonotice swine influenza virus infections[J]. J Clin Microbiol, 1984, 20(2): 833-835.
    [46] 郭元吉,王永新,胡绍源,等. 我国猪群中的流感病毒[J]. 中国微生物学和免疫学杂志,1985, 5(4): 240-243.
    [47] 孙小飞,潘孝成,赵瑞洪,等. 安徽省猪流感的流行情况和防制[J]. 中国兽医科技,2002, 32(5): 36-37.
    [48] 郭元吉,R G Webster. 我国猪群中猪型(HIN1) 流感病毒的发现及其来源的调查[J]. 中国实验和临床病毒学杂志,1992, 6 (4): 347-251.
    [49] 张苏华,孙泉云,周锦萍,等. 1999-2002 年上海市规模化猪场猪流感的血清学调查[R]. 猪的重要传染病防制研究新成果,重庆. 2002, 188-191.
    [50] 王连想,毕英佐,曹永长. 猪流感病毒广东株的分离鉴定及其特性[J]. 中国兽医科技,2003,8(33): 17-21.
    [51] 李普霖. 动物病理学[M]. 长春: 吉林科学技术出版社,1994.
    [52] 王洪亮,曾德年,宁玲忠. 猪流感的病理学观察[J]. 湖南畜牧兽医,2006, 6: 12-14.
    [52] 程珏益,徐军,徐成刚,等. 猪流感病毒的分离鉴定及毒力检测[J]. 中国兽医杂志,2007, 43(3): 28-29.
    [53] Lee B W, Bey R F, Baarsch M J, et al. ELISA method for detection of influenza A infection in swine[J]. J Vet Diagn Invest, 2001, 13(1): 36-42.
    [54] Levi R, Amon R, Synthetic recombinant influenza vaccine induces efficient long-term immunity and cross–strain protection[J]. Vaccine, 1996, 14(1): 85-92.
    [55] Ebby R J, S L. Swenson S L. Krauss et al. 2000. Evolution of swine H3N2 influenza viruses in the United States[J]. J. Virol. 74: 8243-8251.
    [56] Astrid V, Guillaume S, Lezin B, et al. Comparison of three nonnested assay for the detection of A swine in fluenza virus from nasal swabs and lungs. Vet Diagn Invest, 2001, 13(1): 36-42.
    [57] Bruce H. Jank. Swine influenza and PRDC[J]. Pig Progress, 2001, 10(6): 28-30.
    [58] M. 谢纳著,张亮等译. 生物芯片分析[M], 北京, 科学出版社, 2004.
    [59] Lueking A, Horn M, Eickhoff H, et al. Protein microarrays for gene expression and antibody screening[J]. Anal Biochem, 1999, 270(1): 103-111.
    [60] 蔡钦生,冯美卿,黄海,等. 生物芯片、基因组学和蛋白质组学在药物研发中的应用[J]. 药学学报,2003, 38(10): 795-800.
    [61] 杨焕良,乔传玲,陈艳,等. 猪流感病毒 RT-PCR 快速检测方法的建立[J]. 动物医学进展,2007, 28(1): 42-45.
    [62] 黄良宗,顾万军,王淑敏,等. 多重 PCR 检测猪伪狂犬病病毒、猪繁殖与呼吸综合征病毒和猪流感病毒[J]. 动物医学进展,2006, 27(7): 62-65.
    [63] Wright K E, G A R Wilson, D Novosad, et al. 1995. Typing and subtyping of influenza viruses in clinical samples by PCR[J]. Clin. Microbiol, 1995, 33(3): 1180-1184.
    [64] Zhu H, Snyder M. Protein arrays and micrcoarrays[J]. Curr Opin Chem Biol, 2001, 5(1): 40-45.
    [65] Islam A, H arrison B ,Cheetham B F,et al. Differential amplification and quantitation of Marek's disease viruses using real-time polymerase chain reaction[J]. Virol Meth, 2004, 119(4): 103-113.
    [66] Baigent S J, Petherbridge L J, HowesK, et al. Absolute quantitation of Marek's diseasevirus genome copy number in chicken feather and lymphocyte samples using real-time PCR[J]. Virol Methods, 2005, 123(l): 53-64.
    [67] 王升启. 基因芯片技术及应用研究进展[J]. 生物工程进展,1999, 19(4): 45-51.
    [68] 李民乾. DNA 芯片的发展和应用[J]. 科学,1998, 50(5): 6-8.
    [69] 马立人,蒋中华. 生物芯片[M]. 北京,化学工业出版社,2000.
    [70] 府伟灵. 生物芯片概述[J]. 第三军医大学学报,2002, 24(1): 1-2.
    [71] 李凌,马文丽. DNA 芯片技术:新一代基因诊断技术[J]. 第一军医大学学报,2001, 21(4): 309-311.
    [72] 沈继龙. 基因诊断与基因芯片[J]. 安徽医科大学学报,2000, 35(4): 247-250.
    [73] 李凌,马文丽. DNA 芯片技术研究进展[J]. 中国生物化学与分子生物学报,2000, 16(2) : 147-151.
    [74] Chee M, Yang R, Hubbell E,et al. Accessing genetic information with high-density DNA arrays[J]. Science, 1996, 274: 610-613.
    [75] 刑婉丽, 程京. 生物芯片技术[M]. 北京,清华大学出版社,2004.
    [76] 安海谦,卢圣栋. DNA 芯片技术及其应用[J]. 生物工程进展,1998, 18(2): 37-40.
    [77] 周冬生. 生物芯片分类及其技术原理[J]. 微生物学免疫学进展,2002, 30(3): 101-107.
    [78] Falus A, Varadi A, Rasko I. The DNA-chip a new tool for medical genetics[J]. Orv Hetil, 1998, 139(136): 957-960.
    [79] 王升启. 基因芯片技术及应用研究进展[J]. 生物工程进展,1999, 19(4): 45-51.
    [80] 李珉珉,孙蓓. DNA 芯片与检验医学的发展[J]. 上海医学检验杂志,2001, 16(1): 51-53.
    [81] Cheng J, Sheldom E L, Wu L. Preparation and hybridization analysis of DNA/RNA from E.coli on microfabricated bioelectronic chips[J]. Nat Biotechnol, 1998, 16(6): 541-546.
    [82] McGal G H, Barone A D, Diggelmann M, et al. The Efficiency of Light-Directed Synthesis of DNA Arrays on Glass Substrates[J]. Journal of the American Chemical Society, 1997, 119(22): 5081-5090.
    [83] 刘毅,韩金祥,黄海. 应用基因芯片技术检测 20 种病原菌的探讨[J]. 中华检验医学杂志,2003, 26(10): 625-629.
    [84] 吴雪琼. 基因芯片技术在分支杆菌中的应用[J]. 中国现代医学杂志,2002, 12(10): 41-43.
    [85] Lockhart D, Dong H, Byrne M C, et al. Expression monitoring by hybridization to high-density oligonucleotide arrays[J]. Nat Biotechnol, 1996, 14(6): 1675-680.
    [86] Marshall A, Hodgson J. DNA chips: Anarray of possibilities[J]. Nat Biotechnol, 1998, 16(1): 27-31.
    [87] Schena M. Genome analysis with gene expression microarrays[J]. Bioessays, 1996, 18(5): 427-431.
    [88] Robert W. High throughput screening and genechip technology[J]. Drug discovery today, 1997, 2(3): 557-558.
    [89] 李瑶,陈菊祥,裘敏燕. 基因芯片的制备研究[J]. 第二军医大学学报,2000, 21(2): 812-814
    [90] 郭葆玉. DNA 芯片-逆向点杂交技术[J]. 第二军医大学学报,2000, 21(8): 789-790.
    [91] Hacia J G. Resequencing and mutational analysis using oligonucleotide microarrays[J]. Nat Genet, 1999, 21(1 Suppl): 42-47.
    [92] Heller R A, Schena M, Chai A, et al. Discovery and analysis of inflammatory disease- related genes using cDNA microarray[J]. Proc Natl Acad Sci USA, 1997, 94(6): 2150-2155.
    [93] 李晋涛. DNA 芯片技术及其在基因表达检测中的应用[J]. 生物技术,1999, 9(4): 33-36.
    [94] 李亚莉,陈沁,黄建锋,等. 对于基因芯片实验的动力学范围和结果可重复性的研究[J]. 复旦学报,2002, 41(12): 699-703.
    [95] Cheng J, Shoffner M A, Hvichia G E, et al. Chip PCR. II. Investigation of different PCR amplification systems in microbabricated silicon-glass chips[J]. Nucleic Acids Res, 1996, 24(2): 380-385.
    [96] Roger Y H, Jiang Baucom, Huang ZJ, et al. Immobilization of oligonucleotides on to a glass support via disulfide bond: a method for preparation of DNA microarrays[J].Anal Biochem, 1999, 266(1): 23-30.
    [97] Cheng J, Waters L C, Fortina P, et al. Degenerate oligonucleotide primed- polymerase chain reaction and capillary electrophoretic analysis of human DNA on microchip-based devices[J]. Anal Biochem, 1998, 257(2): 101-106.
    [98] Yershov G, Barsky V, Belgovskiy A, et al. DNA analysis and diagnostics on oligonucleotide microchips[J]. Proc Natl Acad Sci USA, 1996, 93: 4913-4918.
    [99] Schena M , Shalon D, Heller R, et al. Parallel human genome analysis: microarray-based expression monitoring of 1000 genes[J]. Pro Natl Acad sci USA, 1996, 93(20): 457-460.
    [100] Schena M, Shalon D, Dais R W, et al, Quantitative monitoring of gene expression patterns with a complementary DNA array[J]. Science, 1995, 270(20): 467-470.
    [101] Lipshutz R J, Morris D, Chee M, et al. Using oligonucleotide probe arrays to access genetic diversity[J]. Biotechniques. 1995, 19(3): 442-447.
    [102] Schena M, Heller K A, Theriault T P, et al. Microarrays: biotechnology's discovery platform for functional genomics[J]. TIB Tech, 1998, 16(3): 301-306.
    [103] Goffeau A. Molecular fish on chips[J]. Nature, 1997, 385(6613): 202-203.
    [104] 刘妍,成军,王建军,等. 基因芯片技术在肝炎病毒研究中的应用[J]. 世界华人消化杂志,2003, 11: 461-463.
    [105] Livache T, Fouque B, Roget A, et al. Polypyrrole DNA chip on a silicon device: example of hepatitis C virus genotyping [J]. Anal Biochem, 1998, 255: 188-194.
    [106] 吴海,顾少华,胡志前,等. 检测丙肝病毒基因芯片的制备[J]. 第二军医大学学报,2001, 22(6): 527-529.
    [107] 张锦海,陶开华,李越希. 分型基因芯片检测疟原虫的研制及应用[J]. 中国公共卫生,2003, 19(10): 1197-1182.
    [108] Larry J K .Microchips, microarrays, biochips and nanochips: personal laboratories for the 21th century[J]. Clinics Chimica Acts, 2001. 307: 219-223.
    [109] Bryant P A, Venter D, Robins-Browne R, et al. Lancet Infect Dis[J]. 2004, 4(2): 100-111.
    [110] Bartosiewiez M, Penn S, Buckpitt A. Application of gene involved drug metabolism and toxicology using DNA microarrays[J]. Environ Health Perspect, 2001, 109(1): 71-74.
    [111] 刘召锋,郭炳冉. 基因芯片在肿瘤治疗研究中的应用[J]. 中国医学研究与临床: 2006, 5(2): 38.
    [112] Wendisch V F, Zimmer D P, Khodursky A, et al. Isolation of Escherichia coli mRNA and comparison of expression using mRNA and total RNA on DNA microarrays[J]. Anal Biochem, 2001, 290(2): 205-213.
    [113] 陶生策,杨仁全等. SARS 冠状病毒基因芯片的制作与初步临床样本验证[J]. 清华大学学报(自然科学版),2003, 43(5): 715-720.
    [114] 周琦,赖平安,汪琳,等. 基因芯片技术快速检测 SARS 病毒[J]. 中国检验检疫科学,2003, 13(5): 33-36.
    [115] 常胜和,舒海燕,李滨,等. 生物芯片研究进展[J]. 生物信息学,2005, 12(1): 30.
    [116] 杨胜利. 生物芯片未来发展趋势及对策[J]. 第二军医大学学报,2000, 8(9): 801.
    [117] 秦智锋,钟安清,杨宝华. 用基因芯片鉴别诊断四种水泡性疾病[J]. 中国病毒学,2003, 18(2): 174-177.
    [118] Joe Sambrook. David Russell 主编. 黄培堂等译. 分子克隆实验指南[M]. 第三版 科学出版社,北京,2002.
    [119] 甘霖,陈亚利,陆祖宏.生物芯片的原理和制作方法[J]. 传感技术学报,1998, 9(6): 1-6.
    [120] 喻红霞,胡建达. 基因芯片的应用及其数据分析方法[J].福建医科大学学报,2005, 6(2): 35.
    [121] Marshall A.Hodg-on J .DNA chip: fin array of possibilities[J]. Nat Biotechnol, 1998, 16(1): 27-31.
    [122] Joseph W. From DNA biosensors togene chip[J]. Nucl Acid Res, 2000, 28(3): 3001.
    [123] 李海燕,于康震,辛晓光,等. 猪流感的世界流行及公共卫生[J]. 黑龙江畜牧兽医,2002, 12(1): 48-49.
    [124] 张亮,邢宛丽,程京. 基因芯片技术及其在药学研究领域的应用[J]. 基础医学与临床,2000, 20(4): 13-16.
    [125] 涂健,祁克宗,潘鑫. 多重 PCR 在畜禽疫病诊断上的应用及研究进展[J]. 动物医学进展,2004, 25(3): 22-27.
    [126] Campas M, Katakisl. DNA biochip arraying, detection and amplification strategies[J]. Trends in Analy Chem, 2004, 23(1): 49-63.
    [127] 石嵘,马文丽,宋艳斌,等. 两种限制性标记方法提高基因芯片杂交结果的信噪比[J]. 第一军医大学学报,2003, 23(1): 124-126.
    [128] Yershov G,Barsky V,Belgovskiy A,et al. DNA analysis and diagnostics oligonucleotide microchips[J]. Proc Natl Acad Sci USA,1996, 93(10): 4913-4918.
    [129] 张海燕,马文丽,李凌,等. 应用不对称 PCR 技术提高寡核苷酸基因芯片杂交效率[J]. 军医进修学院学报,2005, 26(4): 266-268.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700