深海热液原位探测技术研究及其原型系统集成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文开展了对深海热液温度和pH值原位探测的研究工作,为此分别研制了深海热液原位多点温度探测系统和长期原位pH值探测系统。原位多点温度探测系统具备九路测温通道,能获知热液烟囱形成过程的温度参数;长期原位pH值探测系统具备pH探测电极自校正的功能,能实现深海热液pH值的长期原位探测。论文针对pH探测电极不能长时间直接用于深海热液的pH值探测,提出了采用深海流体控制技术在海底实现pH探测电极自校正的技术措施。为了解决深海流体控制技术中耐高压的问题,采用压力补偿的方式设计了一种在深海高压环境下能自适应压力变化的流体控制系统,从而为实现深海热液pH值的长期原位探测提供了坚实的技术支持。针对两种深海热液原位探测系统的实现过程,论文对其机电集成技术进行了全面的研究,其中,对深海热液pH值探测的探头研制解决了pH探测电极自校正过程中的换液问题。为了验证所研制的两种原位探测系统的可靠性,论文最后对两种系统的海试进行了介绍。
     本论文的主要内容分为六章:
     第一章以国内外大量文献作为基础,通过介绍热液成矿、热液羽状流以及热液环境中的生命现象的研究概况,引出了对深海热液活动的几种探测方式的介绍,其中重点介绍了深海热液原位探测的特点、内容、研究现状以及关键技术。最后,提出了本文研究的目的、意义和主要内容。
     第二章分析了深海热液原位多点温度探测系统和长期原位pH值探测系统的探测原理,重点介绍了热电偶的冷端补偿原理和pH探测电极的自校正原理,并在此基础上提出了采用深海流体控制技术在海底实现pH探测电极自校正的技术措施。
     第三章对深海热液长期原位pH值探测系统的流体控制技术进行了理论与实验研究。采用压力补偿的方式,设计了一种在深海高压环境中能自适应压力变化的流体控制系统,从而解决了深海流体控制技术中耐高压的问题。考虑在海水中下降与上升的实际过程,对该流体控制系统进行了单向阀保护。为了确知该流体控制系统的动态性能,采用功率键合图法对其进行了建模与仿真,仿真结果表明:该流体控制系统即使通过压力补偿的方式能实现内外压平衡,但不能无限地应用于高压环境下,而且在排水时,系统会发生振动现象。为了验证流体控制系统压力补偿措施的可靠性,对该流体控制系统进行了由简到繁的定性的高压实验,实验结果表明该流体控制系统能够应用于高压环境,而且单向阀保护措施是可靠的。
     第四章对两种深海热液原位探测系统所涉及的机电集成技术进行了全面的研究,包括能量供给技术、控制技术、封装技术、探头技术以及数据采集技术等。其中,在能量供给技术中,研制了一种七十节电池的供能装置并测试了其放电能力,测试结果表明此能量可供系统工作2月之余;在控制技术中,研制与开发了深海热液长期原位pH值探测系统的主控电路板及其相应的软件,并进行了联调实验,实验结果表明研制的主控系统达到了预期的功能;在封装技术中,探讨了深海机电设备封装技术的一些共性问题,并给出了深海高压容器的设计规则;在探头技术中,为了解决pH探测电极自校正过程中的换液问题,采用结构参数仿真的方法对深海热液长期原位pH值探测系统的pH探测腔进行了设计,并对其进行了换液效果的实验测试,测试结果表明该pH探测腔具有很好的换液效果,从而为深海热液探测中涉及换液过程的探头研制提供了可以借鉴的经验;在数据采集技术中,探讨了针对pH和温度探测的前向测量通道。
     第五章首先介绍了深海热液原位多点温度探测系统的海试实验,实验结果表明所研制的系统在机电集成方面是可靠的。海试获得了大量的温度数据,为进一步的科学研究提供了原始的数据。其次,本章对深海热液长期原位pH值探测系统的高压实验进行了详细的介绍,实验结果表明研制的深海流体控制系统以及所采用的各种机电集成技术经受住了高压的考验,从而为该系统的海试打下了坚实的基础。最后,本章对深海热液长期原位pH值探测系统的海试进行了介绍,海试亦获得大量有价值的数据,从而再次表明研制的该套系统具有较高的可靠性。
     第六章对全文内容进行了总结,并为今后的研究工作提出了一些建议。
The dissertation has carried out the research on in-situ detections of temperature and pH value for deep-sea hydrothermal fluid, and therefore an in-situ multipoint temperature measurement system and a long-term in-situ pH value detection system for deep-sea hydrothermal fluid have been developed respectively. In-situ multipoint temperature measurement system has nine temperature measurement channels, which can acquire the temperature parameter during the form of hydrothermal chimney; long-term in-situ pH value detection system has self-calibration function of pH detection electrode, which can implement long-term in-situ pH value detection for deep-sea hydrothermal fluid. Owing to pH detection electrode can not implement long-time pH value detection in deep-sea hydrothermal fluid environment, the technical measures of implementing self-calibration of pH detection electrode using deep-sea fluid control technology has been put forward in the dissertation. In order to solve high pressure-resisting problem in deep-sea fluid control technology, a kind of fluid control system which could adapt the pressure variety in deep-sea high pressure environment was designed using pressure compensation method, thus, a firm technical support has been offered for implementing long-term in-situ pH value detection for deep-sea hydrothermal fluid. For the implement process of two in-situ detection systems for deep-sea hydrothermal fluid, technologies of mechatronic integration about two systems have been studied comprehensively, in which, the detector development of pH value detection for deep-sea hydrothermal fluid has solved the fluid change problem in the process of self-calibration of pH detection electrode. In order to validate the reliability of two in-situ detection systems, finally, sea tirals of two systems have been introduced.
     The main content of this dissertation is divided into six chapters:
     The first chapter has introduced several detection ways about deep-sea hydrothermal fluid activities by means of introducing the general research situation on hydrothermal mineralization, hydrothermal plumes and hydrothermal communities on the basis of lots of domestic and foreign literatures and references, in which, characteristic, content, present state and key technology about in-situ detection for deep-sea hydrothermal fluid have been especially introduced. Finally, the purpose, significance and main content of the research have been put forward.
     The second chapter has analyzed the detection principles of in-situ multipoint temperature measurement system and long-term in-situ pH value detection system for deep-sea hydrothermal fluid, and the cold-junction compensation principle of thermocouple and self-calibration principle of pH detection electrode have been introduced emphatically, and on the basis, the technical measures of implementing self-calibration of pH detection electrode using deep-sea fluid control technology has been put forward.
     The third chapter has studied in theory and experiment the fluid control technologies of long-term in-situ pH value detection system for deep-sea hydrothermal fluid. A kind of fluid control system which could adapt the pressure variety in deep-sea high pressure environment was designed using pressure compensation method, and it solves the high pressure-resisting problem in deep-sea fluid control technology. Considering the actual process during falling and rising in seawater, the fluid control system was protected by check valves. In order to know the dynamic performance of the fluid control system, using the method of power bond graph, the mathematic model was built and the simulation was done, and the simulation results indicate as following: the fluid control system can not be applied infinitely in high pressure environment even if the pressure equilibrium can be built through the way of pressure compensation, moreover, the system will vibrate when draining. In order to validate the reliability of pressure compensation of the fluid control system, the qualitative pressure experiments of the fluid control system were performed from easiness to complexity, and the experiment results indicate that the fluid control system can be applied in high pressure environment, in addition, the protect means of check valve is reliable.
     The fourth chapter has comprehensively studied the technologies of mechatronic integration about two in-situ detection systems for deep-sea hydrothermal fluid, including energy supply technology, control technology, encapsulation technology, detector technology, and data acquisition technology and so on. In the energy supply technology, a kind of energy supply equipment which was composed of seventy batteries was developed, and its discharge capacity was tested, and the test result indicates the equipment can supply more two months energy for the system. In control technology, the main control circuit and corresponding software of in-situ pH value detection system for deep-sea hydrothermal fluid were developed, and the combination experiment was performed, and the experiment results manifest that the main control system can implement prospective functions. In encapsulation technology, some common problems about encapsulation technology of deep-sea mechatronic equipment were discussed, and the design regulation about deep-sea high pressure vessel was presented. In detector technology, in order to solve the fluid change problem in the process of self-calibration of pH detection electrode, the pH detection chamber of long-term in-situ pH value detection system for deep-sea hydrothermal fluid was designed by means of structure parameter simulation, and the fluid change effect was tested, and the test results show that the pH detection chamber has very good fluid change effect, thus, some valuable experiences can be offered for the detector development of involving the fluid change process in deep-sea hydrothermal fluid detection. In data acquisition technology, the forward measurement channels for pH and temperature detection were discussed.
     The fifth chapter has introduced firstly the sea trial experiment of in-situ multipoint temperature measurement system for deep-sea hydrothermal, and the experiment results indicate that the technologies of mechatronic integration of the system are reliable. Plenty of temperature data are acquired in the sea trial, which provide original data for further scientific research. Secondly, the chapter has introduced in detail the pressure experiment of in-situ pH value detection system for deep-sea hydrothermal fluid, and the results show that the deep-sea fluid control system developed in the dissertation and all technologies of mechatronic integration adopted in the system go through the high pressure test, and this provides a firm basis for sea trial of the system. Finally, the chapter has introduced the sea trial experiment of long-term in-situ pH value detection system for deep-sea hydrothermal fluid, and plenty of valuable data are also acquired in the sea trial, and this indicates again the system has higher reliability.
     The sixth chapter has summarized the content of the dissertation, and puts forward some advices for further research.
引文
[1]戴宝章,赵葵东,蒋少涌。现代海底热液活动与块状硫化物矿床成因研究进展。矿物岩石地球化学通报,2004,23(3):246-254
    [2]张立生。现代海底的成矿作用与矿产资源。四川地质学报,1999,19(4):281-291
    [3]Spiess,FN,Macdonald,KC,Atwater,T,et al.East Pacific Rise:Hot springs and geophysical experiments,Science,1980,207(4438):1421-1433.
    [4]Haymon,RM,Macdonald,KC.The geology of deep-sea hot springs.American Scientist,1985,73:441-449.
    [5]栾锡武。现代海底热液活动区的分布与构造环境分析。地球科学进展,2004,19(6):931-938
    [6]冯军,李江海,陈征等。“海底黑烟囱”与生命起源述评。北京大学学报(自然科学版),2004,40(2):318-325
    [7]Zierenberg RA,Fouquet Y,Miller DJ.The Deep Structure of a Sea-Floor Hydrothermal Deposit.Nature,1998,392:485-488
    [8]Rona PA,Klinkhammer G,Nelsen TA,et al.Black Smokers,Massive Sulphides and Vent Biota at the Mid-Atlantic Ridge.Nature,1986,321:33-37
    [9]You CF,Bickle MJ.Evolution of an Active Sea-Floor Massive Sulphide Deposit.Nature,1998,394:668-671
    [10]Halbach P,Blum N,Munch U,et al.Formation and Decay of a Modern Massive Sulfide Deposit in the Indian Ocean.Mineralium Deposita,1998,33:302-309
    [11]German CR,Baker ET,Mevel C,et al.Hydrothermal Activity along the Southwest Indian Ridge.Nature,1998,395:490-493
    [12]Kelley DS,Karson JA,Blackman DK,et al.An Off-Axis Hydrothermal Vent Field near the Mid-Atlantic Ridge at 30° N.Nature,2001,412:145-148
    [13]Karen L,Von Damm.Lost City Found.Nature,2001,412:127-128
    [14]高爱国,何丽娟。冲绳海槽中部奄西海丘海底热液活动的若干特征。海洋科学,1994,(5):34-39
    [15]侯增谦,李延河,艾永德,等。冲绳海槽活动热水成矿系统的氦同位素组成:幔源氦证据。中国科学(D辑),1999,29(2):155-162
    [16]吴世迎。马里亚纳海槽海底热液烟囱物研究。北京:海洋出版社,1995
    [17]吴世迎,刘焱光,李泽林,等。马里亚纳海槽热液区岩石矿物学和岩石化学特征研究。黄渤海海洋,2001,19(4):22-29
    [18]Tiercelin JJ,Pflumio C,Castrec M,et al.Hydrothermal Vents in Lake Tanganyika,East African Rift System.Geology,1993,21:499-502
    [19]王兴涛,翟世奎,杜同军等。现代海底热液活动的研究模型分析。海洋科学,2005,29(5):60-65
    [20]Reysenbach AL,Cady SL.Microbiology of Ancient and Modern Hydrothermal Systems.TRENDS in Microbiology,2001,9:79-86
    [21]Rona PA,Scott SD.A Special Issue on Sea-Floor Hydrothermal Mineralization:New Perspectives Preface.Economic Geology,1993,88:1935-1976
    [22]Yumul GPJ,Balce GR.Supra-Subduction Zone Ophiolites as Favorable Hosts for Chromitite,Platinum and Massive Sulfide Deposits.Journal of Southeast Asian Earth Sciences,1994,10(1-2):65-79
    [23]毛彬。深海热液硫化物。海洋开发与管理,2002(4):67-72
    [24]牛向龙,李江海,冯军。海底硫化物黑烟囱典型结构构造及其成因意义。高校地质学报,2004,10(4):535-544
    [25]Tivey MK,Delaney JR.Growth of large sulfide structures on the Endeavour Segment of the Juan de Fuca Ridge.Earth Planet.Science Letters,1986,77:303-317.
    [26]陈弘,朱本铎,崔兆国。海底热液矿床地质和地球化学特点研究。热带海洋学报,2006,25(2):79-84
    [27]Rona PA,Scott SP.A special issue on sea-floor hydrothermal mineralization:New perspectives.Economic Geology,1993,88:1935-1976
    [28]李江海,牛向龙,冯军。海底黑烟囱的识别研究及其科学意义。地球科学进展,2004,19(1):17-25
    [29]李粹中。海底热液成矿活动研究的进展、热点及展望。地球科学进展,1994,9(1):14-19
    [30]翟世奎,王兴涛,于增慧等。现代海底热液活动的热和物质通量估算。海洋学报,2005,27(2):115-121
    [31]杨作升,范德江,李云海等。热液羽状流研究进展。地球科学进展,2006,21(10):999-1007
    [32]Baker ET,Massoth GJ.Characteristics of hydrothermal plumes from two vent fields on the Juan de Fuca Ridge,northeast Pacific Ocean.Earth and Planetary Science Letters,1987,85:59-73
    [33]Lupton JE,Craig H.A major helium-3 source at 15°S on the East Pacific Rise.Science,1981,214:13-18
    [34]Speer KG,Rona PA.A model of an Atlantic and pacific hydrothermal plume.Journal of Geophysical Research.1989,94:6213-6220
    [35]Lupton JE,Delaney JR,Johnson HP,et al.Entrainment and vertical transport of deep-ocean water by buoyant hydrothermal plumes.Nature,1985,316:621-623
    [36]Baker ET,German CR,Elderfield H.Hydrothermal plumes over spreading-center axes:Global distributions and geological inferences//Humphris S,Zierenberg R,Mullineaux L,et al,eds.Seafloor Hydrothermal Systems:Physical,Chemical,Biological,and Geological Interactions.Washington DC:Geophysical Monograph 91,American Geophysical Union,1995:47-71
    [37]Lupton JE.Hydrothermal plumes:Near and far field//Humphris S,Nierenberg R,Mullineaux L,et al,eds.Seafloor Hydrothermal Systems:Physical,Chemical,Biological,and Geological Interactions.Washington DC:Geophysical Monograph 91,American Geophysical Union,1995:317-346
    [38]McDuff RE.Physical dynamics of deep-sea hydrothermal plumes//Humphris S,Zierenberg R,Mullineaux L,et al,eds.Seafloor Hydrothermal Systems:Physical,Chemical,Biological,and Geological Interactions.Washington DC:Geophysical Monograph 91,American Geophysical Union,1995:357-368
    [39]Walker SL,Baker ET.Particle-size distributions within hydrothermal plumes over the Juan de Fuca Ridge.Marine Geology,1998,78:217-226
    [40]Baker ET,German CR.On the global distribution of hydrothermal vent fields//German CR,Lin J,Parson LM,eds.Mid-Ocean Ridges:Hydrothermal Interactions between the Lithosphere and Oceans,Geophysical Monograph Series 148.Washington DC:Geophysical Monograph 91,American Geophysical Union,2004:245-266
    [41]陈鹰,杨灿军,陶春辉等。海底观测系统。北京:海洋出版社,2006
    [42]冯军,李江海,牛向龙。现代海底热液微生物群落及其地质意义。地球科学进展,2005,20(7):732-739
    [43]Pradillon F,Shillito B,Young CM,et al.Developmental arrest in vent worm embryos.Nature,2001,413:698-699
    [44]Lutz RA.The biology of deep-sea vents and seeps.Oceanus,1991/92,34:75-83
    [45]庞艳春,林丽,朱利东等。热液喷口生物群的研究现状。成都理工学院学报,2002,29(4):448-452
    [46]Marsh AG,Mullineaux LS,Young CM,et al.Larval dispersal potential of the tubeworm Riftia pachyptila at deep-sea hydrothermal vents.Nature,2001,411:77-80
    [47]McClendon JH.The origin of life.Earth-Science Reviews,1999,47(1-2):71-93
    [48]栾锡武,秦蕴珊。现代海底热液活动的调查研究方法。地球物理学进展,2002,17(4):592-597
    [49]曹志敏,安伟,于新生等。现代海底热液活动异常条件探测关键技术研究。高技术通讯,2006,16(5):545-550
    [50]张潞怡,朱继懋。深海拖曳系统运动响应的理论研究。海洋学报,1997,19(2):99-106
    [51]苏新。著名国际大洋钻探计划中的地学普及教育。中国地质教育,2003(3):70-71
    [52]曾志刚,秦蕴珊。大洋钻探对海底热液活动研究的贡献。地球科学进展,2003,18(5):764-772
    [53]安伟,曹志敏,郑建斌等。古代与现代火山成因块状硫化物矿床研究进展。地球科学进展,2003,19(5):773-782
    [54]Phillips,H,Wells,LE,Johnson,RV,et al.LAREDO:a new instrument for sampling and in situ incubation of deep sea hydrothermal vent fluids.Deep sea Research Ⅰ,2003,50:1375-1387
    [55]李世伦,程毅,秦华伟等。重力活塞式天然气水合物保真取样器的研制。浙江大学学报(工学版),2006,40(5):888-892
    [56]朱亮,顾临怡,秦华伟。深海沉积物保真采样技术及应用。浙江大学学报(工学版),2005,39(7):1060-1063
    [57]刘少军,陈毅章,李力等。深海保真取样器研究及其虚拟样机实现。机械工程与自动化,2005(1):1-4
    [58]黄中华,刘少军,陈鹰等。深海浮游微生物浓缩保压取样技术研究。机械工程学报, 2006,42(3):212-216
    [59]Doherty KW,Taylor CD,Zafiriou OC.Design of a multi-purpose titanium bottle for uncontaminated sampling of carbon monoxide and potentiality of other analyses.Deep sea Research Ⅰ,2003,50:449-455
    [60]陈鹰。海底热液科学考察中的机电装备技术。机械工程学报,2002,38(增刊):207-211
    [61]Seewald JS,Doherty KW,Hammar TR,et al.A new gas-tight isobaric sampler for hydrothermal fluids.Deep-Sea Research Ⅰ,2001,49:189-196
    [62]Naganuma T,Kyo M,Ueki T,et al.A new,automatic hydrothermal fluid sampler using a shape-memory alloy.Journal of Oceanography,1998,54:241-246
    [63]Bianchi A,Garcin J,Tholosan O.A high-pressure serial sampler to measure microbial activity in the deep sea.Deep-Sea Research Ⅰ,1999,46(12):2129-2142
    [64]Malahoff A,Gregory T,Bossuyt A,et al.A seamless system for the collection and cultivation of extremophiles from deep-ocean hydrothermal vents.IEEE Journal of Oceanic Engineering,2002,27(4):862-869
    [65]Chen,Y,Wu,SJ,Xie,YJ,et al.A novel mechanical gas-tight sampler for hydrothermal fluids.IEEE Journal of Oceanic Engineering,2007,32(3):603-608
    [66]Chen,Y,Ye,Y,Yang,CJ.Integration of real-time chemical sensors for deep sea research.China Ocean Engineering,2005,19(1):129-137
    [67]Rubin K.Degassing of metals and metalloids from erupting seamount and mid-ocean ridge volcanoes;Observation and predictions.Geochemica et Cosmochimica Acta,1997,61(17):3525-3542
    [68]Ding K,Seyfried W E Jr.In-situ measurement of dissolved H_2 in aqueous fluid at elevated temperatures and pressures.Geochemica et Cosmochimica Acta,1995,59:4769-4773
    [69]Ding K,Seyfried WE Jr.Direct pH measurement of NaCl-bearing fluid with an in situ sensor at 400 degrees C and 40 megapascals.Science,1996,272:1634-1636
    [70]彭学伦。水下机器人的研究现状与发展趋势。机器人技术与应用,2004(4):43-47
    [71]封锡盛。从有缆遥控水下机器人到自治水下机器人。中国工程科学,2000,2(12):29-33
    [72]陈鹰,杨灿军,顾临怡,等。基于载人深潜器的深海资源勘探作业技术研究。机械工程学报,2003,39(11):38-42
    [73]周怀阳,彭晓彤。海洋原位化学探测核心技术的研究应用。2002,海洋环境科学,21(4):70-76
    [74]Brendel PJ,Luther GW Ⅲ.Development of a gold amalgam voltamrnetric microelectrode for the determination of dissolved Fe,Mn,O_2 and S(-Ⅱ) in porewaters of marine and freshwater sediments.Environmental Science and Technology,1995,29,751-761
    [75]Coale KH,Chin CS,Massoth GJ,et al.In situ chemical mapping of dissolved iron and manganese in hydrothermal plumes.Nature,1991,352:325-328
    [76]Gamo T,Okamura K,Nakayama E,et al.In situ flow through analyzer GAMOS for continuous measurement of Mn and Fe in seawater.Proc.Marc'h Mor International Workshop.Brest:IUEM,1997.71-75
    [77]Gamo T,Sakai H,Nakayama E,et al.A submersible flow-through analyzer for in situ colorimetric measurement down to 2000 m in the ocean.Anal.Sci.,1994,10:843-848
    [78]Massoth GJ,Milbum HB.SUAVE:A diverse tool to probe the submarine hydrothermal environment.Proc.Marc'h Mor International Workshop.Brest:IUEM,1997.80-87
    [79]Bris NL,Sarradin P-M,Birot D,et al.A new chemical analyzer for in situ measurement of nitrate and sulfide over hydrothermal vent biological communities.Marine Chemistry,2000,72:1-15
    [80]Radford-knoery J,Baker E,Charlou JP,et al.Hydrothermal plumes traced by dissolved sulfides.Proc.Marc'h Mor International Workshop.Brest:IUEM,1997.165-168
    [81]Tivey MK,Olson LO,Miller W,et al.Temperature measurements during initiation and growth of a black smoke chimney.Nature,1990,346(6279):51-54
    [82]Fornari DJ,Voegeli F,Olsson M.Improved low-cost,time-lapse temperature loggers for deep ocean and sea floor observatory monitoring.Ridge Events,1996,7(1):13-16
    [83]Ding K,Seyfried WE Jr,Tivey MK,et al.In situ measurement of dissolved H_2 and H_2S in high-temperature hydrothermal vent fluids at the Main Endeavour Field,Juan de Fuca Ridge.Earth and Planetary Science Letters,2001,186:417-425
    [84]Luther GW,Glazer BT,Hohman L,et al.Sulfur speciation monitored in situ with solid state gold amalgam voltammetric microelectrodes:polysulfides as a special case in sediments,microbial mats and hydrothermal vent waters.Journal of Environmental Monitoring,2001,3:61-66
    [85]Seyfried WE,Johnson KS,Tivey MK.In-Situ Sensors:Their Development and Application for the Study of Chemical,Physical and Biological Systems at Mid-Ocean Ridges.In:NSF/RIDGE-Sponsored Workshop reports,2000,9-16
    [86]Chin CS,Coale KH,Elrod VA,et al.In situ observations of dissolved iron and manganese in hydrothermal vent plumes,Juan de Fura Ridge.Journal of Geophysical Research,1994,99:4969-4984
    [87]Massoth GJ,Milbum HB,Johnson KS,el al.A SUAVE(Submersible System Used to Assess Vented Emissions) approach to plume sensing:The Buoyant Plume Experiment at Cleft Segment,Juan de Fuca Ridge and plume exploration along the EPR 9-11°N.EOS Transactions AGU,1991,72(44 Suppl.):234
    [88]Edmond JM,Von Datum KL,McDuff RE,et al.Chemistry of hot springs on the East Pacific rise and their effluent dispersal.Nature,1982,297:187-191
    [89]Beranzoli L,Santis AD,Etiope G,et al.GEOSTAR:a GEophysical and Oceanographic STation for Abyssal Research.Physics of the Earth and Planetary Interiors,1998,108:175-183
    [90]Bailey DM,Jamieson AJ,Bagley PM,et al.Measurement of in situ oxygen consumption of deep sea fish using an autonomous lander vehicle.Deep-Sea Research Ⅰ,2002,49:1519-1529
    [91]叶瑛,陈鹰,杨灿军等。适用于深海热液环境的全固态电化学传感器的研究进展。自然科学进展,2004,14(2):141-144
    [92]叶瑛。适用于高温高压的溶解硫化氢电化学传感器。中国专利,02111367。2004-09-01
    [93]叶瑛。集成式溶解氧、pH和盐度传感器及其制作与使用方法。中国专利,03150668.2004-05-05
    [94]陈鹰,潘依雯著。深海科考探险日记。杭州:浙江大学出版社,2004,3
    [95]游伯坤,阚家钜,江兆章。温度测量与仪表——热电偶和热电阻。北京:科学技术文献出版社,1990
    [96]黄泽铣。热电偶原理及其检定。北京:中国计量出版社,1993
    [97]陈浩,邓忠华,余红梅。热电偶测温系统原理及应用。制造业自动化,2004,26(9):68-71
    [98]赵继文。传感器与应用电路设计。北京:科学出版社,2002
    [99]RUBIN K.Degassing of metals and metalloids from erupting seamount and mid-ocean ridge volcanoes:observation and predictions.Geochemica et Cosmochimica Acta,1997,61(17):3525-3542
    [100]侯传嘉,张燕群。pH测量。北京:中国计量出版社,1993
    [101]叶瑛,邬黛黛,黄霞等。固态pH探测电极的制备及其性能表征。传感技术学报,2003(4):487-490
    [102]Suzuki H,Hiratsuka A,Sasaki S,et al.Problems associated with the thin-film Ag/AgCl reference electrode and a novel structure with improved durability.Sensors and Actuators B:Chemical.1998,46(2):104-113
    [103]Wang M,Yao S,Madou M,A long-term stable iridium oxide pH electrode.Sensors and Actuators B,2002,81(2-3):313-315
    [104]范宏斌。金属铱/氧化铱pH电极的研制。化学传感器,1996,16(2):99-102
    [105]黄宗益、李兴华、陈明。液压传动的负载敏感和压力补偿。建筑机械,2004,4:52-55
    [106]The Lee Company.Variable Volume Pump Manual.2003
    [107]The Lee Company,USA.http://www.theleeco.com/EFSWEB2.NSF
    [108]李延民。潜器外置设备液压系统的压力补偿研究。浙江大学博士学位论文,2005,10
    [109]United States Patent,Patent number:4903628.Pressure equalizer
    [110]孟庆鑫,王茁,魏洪兴等。深水液压动力源压力补偿器研究。船舶工程,2000,125(2):60-61
    [111]陈建平。AMETEK2006水下机器人液压系统分析。液压气动与密封,1997(2):25-27
    [112]OKAMURA K,KIMOTO H,SAEKI K,et al.Development of a deep-sea in situ Mn analyzer and its application for hydrothermal plume observation,Marine Chemistry,2001,76(1-2):17-26.
    [113]王懋瑶主编。液压传动与控制教程。天津:天津大学出版社,1987,2.
    [114]格·斯·皮萨连柯,阿·波·雅柯符列夫,符·符·马特维叶夫著.宋俊杰,刘茂江译。材料力学手册。石家庄:河北人民出版社,1981,1.
    [115]成大先主编。机械设计手册。第四版,第1卷。北京:化学工业出版社,2002,1.
    [116]刘鸿文主编。材料力学。第三版。北京:高等教育出版社,1992,9.
    [117]黄中华,金波,刘少军等。深海微生物取样器保压过程研究[J]。浙江大学学报(工学版),2006,40(5):878-882.
    [118]蔡改贫,黄志青。利用功率键合图和SIMULINK实现工业回转窑窑衬清窑机器人系统 的动态仿真。机床与液压,2005(2):116-118
    [119]郭世伟,任中全,刘永军。基于功率键合图的MATLAB建模仿真在液压系统中的应用研究。煤矿机械,2001(2):11-14
    [120]许沧粟,黄承修,郦光明。键合图理论在发动机电流变液力悬置中的应用。机械工程学报,2006,42(5):219-223
    [121]廖荣华,陈昌明。键合图理论在振动分析中的运用。上海铁道大学学报,2000,21(6):67-72
    [122]雷军波,童昕。基于键合图和SIMUL INK的定压阀的建模仿真。机床与液压,2006(1):153-154
    [123]李广伦,赵喜荣,王程远等。基于键合图的复杂动力系统约束方程的自动建模与解析。机电工程,2005,22(2):40-43
    [124]周恩涛,高磊,赵亮。功率键合图在研究阀控缸液压冲击中的应用。机床与液压,2006(11):124-125
    [125]Gawthrop,PJ,Bevan,GP.Bond-graph modeling.IEEE Control Systems Magazine,2007,27(2):24-45
    [126]Kam CS,Dauphin-Tanguy G.Bond graph models of structured parameter uncertainties.Journal of the Franklin Institute-Engineering and Applied Mathematics,2005,342(4):379-399
    [127]Borutzky W.Bond Graph Modeling from an Object Oriented Modeling Point of View.Simulation Practice and Theory,1999,11(7):439-461
    [128]DAUPHIN-TANGUY G,RAHMANI A,SUEUR C.Bond graph aided design of controlled systems.Simulation Practice and Theory,1999,7(6):493-513
    [129]Anand Vaz,Shinichi Hirai.A Bond Graph Approach to the Analysis of Prosthesis for a Partially Impaired Hand.Journal of Dynamic Systems Measurement and Control——Transactions of the ASME,2007,129(1):105-113
    [130]Cellier FE,Nebot A,Greifeneder J.Bond graph modeling of heat and humidity budgets of biosphere 2.Environmental Modelling & Software,2006,21(11):1598-1606
    [131]Wang JC,Fan Z,Terpenny JP,et al.Knowledge interaction with genetic programming in mechatronic systems design using bond graphs.IEEE Transactions on Systems Man and Cybemetics Part C-Applications and Reviews,2005,35(2):172-182
    [132]许同乐,郝兆喜。液压系统仿真中功率键合图的研究。煤矿机械,2006,27(2):220-221
    [133]吕刚,谷立臣。基于Simulink的液压动力系统动态仿真。现代电子技术,2003(12):62-64
    [134]江峰,冯刚,黄洪钟。变量柱塞泵的键合图建模和动态仿真研究。凿岩机械气动工具,2004(1):20-25
    [135]王欣,宋晓光,薛林。基于Matlab/Simulink的键合图在液压系统动态仿真中的应用。2007,35(6):123-124
    [136]郑红梅。仿真直动式溢流阀瞬态响应的键合图法。阀门,2001(5):12-16
    [137]李晓豁,徐辰丁,焦丽。SIMULINK和功率键合图在液压系统建模仿真中的应用。矿山机械,2004(3):69-71
    [138]蔡廷文,王星,徐鑫。液压转向系统功率键合图模型的研究。江苏科技大学学报(自然科学版),2007,21(1):66-69
    [139]张少华,王娟,李美艳。电流变隔振器系统的键合图分析及动特性仿真。北京理工大学学报,2005,25(7):570-574
    [140]黄涛,吕伟华,徐霖等。功率键合图在电液伺服系统建模和仿真中的应用。机电一体化,2000(2):39-41
    [141]王乐勤,吴大转,胡征宇等。基于键合图法的叶片泵启动特性仿真。工程热物理学报,2004,25(3):417-420
    [142]廖旭晖,王仲范。四轮驱动汽车驱动防滑的键合图仿真。现代机械,2005(4):27-29
    [143][澳大利亚]P.德兰斯菲尔德著,大连工学院液压教研室译。液压控制系统的设计与动态分析。北京:科学出版社,1987
    [144][美]D.C.卡诺普,R.C.罗森堡著。胡大纥,邓延光,译。系统动力学——应用键合图法。北京:机械工业出版社,1985
    [145][英]A.J.布伦德尔著。叶松柏等译。键合图在工程建模中的应用。上海:上海科学技术出版社,1990
    [146]潘亚东。键合图概论——一种系统动力学方法。重庆:重庆大学出版,1990
    [147]王中双。键合图理论及其在系统动力学中的应用。哈尔滨:哈尔滨工程大学出版社,2000
    [148]吴定海,张培林,傅建平。基于功率键合图的自行火炮液压系统动态仿真。先进制造与管理,2006,25(11):22-24
    [149]郑笑红。液压系统动态特性数字仿真。华北矿业高等专科学校学报,2000,2(4):21-25
    [150]徐灏。机械设计手册,第2版,第3卷。北京:机械工业出版社,2001
    [151]黄洪钟,祖旭,张旭。基于Matlab/Simulink的键合图仿真。大连理工大学学报,2003,43(5):632-635
    [152]樊志新,李利,宋宝韫。面向功率键合图的仿真软件一PBGSIM的研究。机床与液压,1999(6):28-30
    [153]李利,樊志新,宋宝韫等。面向功率键合图的通用仿真软件的研究。计算机仿真,2007,17(4):47-51
    [154]檀润华,孙力峰,苑彩云等。基于功率键合图的自动符号建模与仿真软件。中国机械工程,2000,11(9):1058-1061
    [155]王程远,赵喜荣。面向原理图的动力系统通用动态仿真软件的研究。机电工程,2001,18(1):7-9
    [156]孙亮。MATLAB语言与控制系统仿真。北京:北京工业大学出版社,2001
    [157]陈怀琛,吴大正,高西全。MATLAB及在电子信息课程中的应用。北京:电子工业出版社,2002
    [158]邹鲲,袁俊泉,龚享铱。MATLAB6.x信号处理。北京:清华大学出版社,2002
    [159]张志涌。精通MATLAB6.5版。北京:北京航空航天大学出版,2003
    [160]黄永安,马路,刘慧敏。MATLAB7.0/Simulink6.0建模仿真开发与高级工程应用。北京:清华大学出版社,2005
    [161]周勇。深海Smart Sensor测控系统开发研究。浙江大学硕士学位论文,2006,5
    [162]胡大可编著.MSP430系列FLASH型超低功耗16位单片机.北京:北京航空航天大学出版社,2001,11
    [163]魏小龙编著.MSP430系列单片机接口技术及系统设计实例.北京:北京航空航天大学出版社,2002,11
    [164]秦龙编著.MSP430单片机应用系统开发典型实例.北京:中国电力出版社,2005,7
    [165]胡大可编著.MSP430系列单片机C语言程序设计与开发.北京:北京航空航天大学出版社,2003,1
    [166]PCF8563 Product specification,1999,4.http://www.21icsearch.com/so.asp?t1=PCF85
    [167]AT45DB321B Product specification,2002.http://www.2licsearch.com/so.asp?t1=AT45D
    [168]LTC 1385 Product specification,1994.http://www.21icsearch.com/so.asp?t1=LTC13
    [169]赵伟。深海非接触式双向信号传输技术研究。浙江大学硕士学位论文,2004,2
    [170]AAT3221 Product specification,2002,3.http://www.21icsearch.com/so.asp?t1=AAT32
    [171]L297 Product specification,1996,8.http://www.21icsearch.com/so.asp?t1=L297
    [172]L298 Product specification,2000,1.http://www.21icsearch.com/so.asp?t1=L298
    [173]ULN2003 Product specification,1999,10.http://www.21icsearch.com/so.asp?t1=ULN20
    [174]黄嘉琥。压力容器材料实刚手册——特种材料。北京:化学工业出版社,1994,12
    [175]薛杨声,赵纪兰编著。高压装置及其设计原理。北京:兵器工业出版社,1992,5
    [176]李景辰,冯铗中,沈行道,李学潜编。压力容器基础知识。北京:劳动人事出版社,1986.9
    [177]董大勤,袁凤隐。压力容器与化工设备实用手册(上册)。北京:化学工业出版社,2000,3
    [178]丁伯民,蔡仁良编著。压力容器设计——原理及工程应用。北京:中国石化出版社,1992.7
    [179]韩占忠,王敬,兰小平。FLUENT——流体工程仿真计算实例与应用。北京:北京理工大学出版社,2004,6
    [180]王福军。计算流体动力学分析——CFD软件原理与应用。北京:清华大学出版社,2004,9
    [181]任玉新,陈海昕。计算流体力学基础。北京:清华大学出版社,2006,6
    [182]周云龙,洪文鹏。工程流体力学(第三版)。北京:中国电力出版社,2006,8
    [183]董志勇。射流力学。北京:科学出版社,2005,3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700