介孔氧化钛磁负载光催化剂的制备及应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
介孔氧化钛因其具有丰富的孔道结构、较高的比表面积、更多的催化活性位和更高的光催化活性而倍受关注。然而,纳米级介孔氧化钛光催化剂的固液分离是实际应用过程中面临的难题之一。通常,将纳米氧化钛负载于载体表面,以解决固液分离和活性组分易流失的问题。但是,由于载体对光源的遮蔽和色散效应,会降低光源能量的利用效率。将纳米级磁性颗粒作为光催化剂的载体,不仅可以减少载体对光源的遮蔽和色散效应,而且还可以使光催化剂保持较高的光催化活性,同时磁负载后的光催化剂在外加磁场条件下易于固液分离、实现光催化剂的快速高效回收和再利用。然而,磁负载光催化剂研究过程中也出现了两类问题,其一:在光催化剂内引入磁性材料,极易导致光降解过程中“photodissolution"的发生,从而影响磁负载光催化剂的稳定性;其二:磁负载光催化剂相对于纯组分的氧化钛光催化剂的光催化活性偏低。针对这些问题的研究一直在进行中,已证实前者可以在磁性核和活性组分之间引入惰性中间层(如氧化硅或氧化铝)阻止“photodissolution"的发生。针对后者,有不少学者尝试采用磁负载光催化剂的壳层中掺杂贵金属(如银或铂)或者增加比表面积(如引入活性炭或制成中空球)的方式提高光催化效率。目前,如何提高磁负载光催化剂的催化活性仍是该领域研究的热点问题。
     本论文提出制备具有介孔壳结构的磁负载光催化剂,其介孔壳结构可以提高比表面积,增加光催化反应物在孔道内的吸附和扩散,从而提高磁负载光催化剂的催化活性。
     本论文首先采用水热法制备了具有超顺磁特征的尖晶石铁酸镍纳米颗粒,其次应用溶胶-凝胶法对铁酸镍颗粒包覆氧化硅惰性层,再经过溶剂热合成路线制备了氧化钛/氧化硅/铁酸镍复合光催化剂。最后,以硝基苯为模拟污染物,对制备的介孔结构磁负载光催化剂的光催化活性和稳定性进行评价。
     采用湿化学法制备了Ti02/Si02/NiFe204磁负载光催化剂,样品采用X-电子衍射(XRD)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)、N2吸附-脱附、振动样品磁场计(VSM)等手段进行了表征。结果表明制备得Ti02/Si02/NiFe2O4磁负载光催化剂具有明显的壳/核型结构,颗粒分布均匀,呈超顺磁性。颗粒大小约50nm,壳层氧化钛为结晶度高的锐钛型,最佳实验条件下,其BET比表面积达145m2/g,平均孔径为5.28nm,孔容约为0.16 cm3/g。
     以硝基苯为模拟污染物,对TiO2/SiO2/NiFe2O4磁负载光催化剂进行了光催化性能评价。结果表明在UV/H2O2光降解条件下,18.8%包覆量的磁负载光催化剂性能最优,具有良好的光催化活性,300min时TOC去除率达90%,其拟一级反应速率常数是P25光催化剂的1.75倍。在外加磁场条件下,该介孔磁载光催化剂在30s可全部聚集回收。重复性实验表明制备的磁负载光催化剂具有良好的磁回收性能和稳定性。
     采用色质联用技术对UV/H2O2光降解硝基苯过程中间产物和离子碎片进行检测,对UV/H2O2与硝基苯反应途径进行探讨。认为硝基苯的光催化降解分为两种途径,即羟基自由基进攻使苯环羟基化,然后是羟基化的苯环发生开裂而逐步降解,或者先发生脱硝基反应再使苯环羟基化,最终均转化成各种脂肪族化合物或进一步矿化成二氧化碳和水。提出的硝基苯光催化降解的可能途径为:
     通过对TiO2/SiO2/NiFe2O4磁负载光催化剂的形成过程进行系统分析,探讨了TiO2/SiO2/NiFe2O4的介孔结构壳/核结构光催化剂的可能的形成机制如下:
Mesoporous TiO2 has been drawn more attention because of its abundant porous structure, large specific surface area and more cataystic active sites. However, the separation and recovery of suspended small nanostructure TiO2 particles from treated water is very difficult to operate in the practical application process. Usually, small TiO2 particles are immobilized onto a carrier to solve the problem of TiO2 particles separation from liquid phase and avoiding the loss of active component. Unfortunately, a significant loss of photocatalytic activity was generally reported due to greatly reducing surface area after immobilization, shadowing and the dispersion effect. The incorporation of magnetic carrier into nanostructure TiO2 provides an alternative way to solve this problem because of its small diameter. Compared to conventional supported TiO2 photocatalysts, the submicron sizes of the magnetic photocatalyst provide a larger surface area, which subsequently enables higher efficiency in photocatalytic degradations. However, there are two major problems in employing TiO2 coated magnetic materials as a photocatalyst. The first obstacle is a photo-dissolution phenomenon, which may affect the stabilization of magnetic photocatalyst due to the electronic interaction happening between TiO2 coating and the magnetic core. To overcome this problem, an inertial layer (SiO2 or Al2O3) between the TiO2 and magnetic materials was proposed. The second obstacle is the low photocatalystic activity due to low specific area arising from heat treatment of sintering, which is to increase the crystallinity of TiO2 particles. Many researches have tried to enhance the photocatalystic activity by loading the noble metal such as Ag and Pt, and the specific area of shell layer of magnic catalyst and so on. To improve the activity of magnetic photocatalyst is still a hot problem.
     In the dissertation, Mesoporous magnetic photocatalyst was proposed to enhance the specific surface area and more cataystic active sites, which can increase the reactant adsorption and disperse in the porous structure.
     The spinel structure nickel ferrete with superparamagnetism nature was firstly prepared by using hydrothermal method, and then its surface was coated with the silica inert layer via the sol-gel method. Finally, TiO2/SiO2/NiFe2O4 composite photocatalysts was prepared by using solvothermal method. Taking nitrobenzene as a simulating pollutant, the photocatalysis avtivities and stabilization of the prepaired mesoporous magnetic photocatalyst has been appreciated.
     The preparied magnetic TiO2/SiO2/NiFe2O4 composite photocatalysts by wet-chamical method was characterized by N2 adsorption-desorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). TiO2/SiO2/NiFe2O4 composite photocatalysts is spherical partical with shell/core structure, well distribution and superparamagnetism. The sample had an average size of about 50 nm in diameter with abundant mesopore structured anatase TiO2. Under the optimum experimental condition, the BET value is about 145m2/g, average pore size is 5.28 nm, and pore volume is 0.16 cm3/g.
     The photocatalytic activity of TiO2/SiO2/NiFe2O4 particles was also investigated by the photocatalytic degradation coupled with H2O2 oxidation of nitrobenzene in aqueous solution. Experimental results showed that the sample with 18.8% TiO2 coating amount has the best photocatalytic performance.The TOC removal could amount to 90% during 300 min, the rate of degradation of TiO2/SiO2/NiFe2O4 composite catalyst was 1.75 times of the P25. The TiO2/SiO2/NiFe2O4 composite catalyst could be recovered completely within 30s. The repetitive experiments have been also carried out in the photodegradation solution, which indicated the photocatalyst has good recovered ability and stabilization.
     Based on the analyzing of the degradation products including fragment ions and intermediate products with GC-MS, the possible degradation pathways of nitrobenzene were also suggested. The possible reaction routes could be divided into two pathways:One is hydroxyl radical attacked phenyl ring to form phenolic compounds, then the ring was opened, forming into various aliphatic compounds; Another is hydroxyl radical attacked directly the nitro-proup and phenol and its derivatives were generated while the nitro-proup was released by the radical addition-elimination. In the subsequent degradation processes, the two pathways have experimenced similar reaction being mineralized to inorganic compounds such as carbon dioxide and water. The probable photodegradation pathways were proposed and discussed as follows.
     The possible formation mechanism of mesopore shell/core structured photocatalyst TiO2/SiO2/NiFe2O4 has also been discussued as follows.
引文
[1]K. W. Thomulka, J. H. Lange., Mixture Toxicity of Nitrobenzene and Trinitrobenzene Using the Marine Bacterium Vibrio Harveyi as the Test Organism [J]. Ecotoxicology and Environmental Safety,1997,36(2):189-195.
    [2]姜安玺,刘丽艳,李一凡等.我国持久性有机物污染物的污染与控制[J].黑龙江大学自然科学学报,2004,21(2):97-101.
    [3]李俊生,徐靖,罗建武等.硝基苯环境效应的研究综述[J].生态环境学报,2009,18(1):368-373.
    [4]马承愚,彭英利.高浓度难降解有机废水的治理与控制[N].北京:化学工业出版社,2006,1-8.
    [5]J. Hoigne, H. Bader., The role of hydroxyl radical reactions in ozonation process in aqueous solutions[J].Water Research,1976,10(2):377-386.
    [6]孙晓君,冯玉杰,蔡伟民等.废水中难降解有机物的高级氧化技术[J].化工环保,2001,21(5):264-269.
    [7]A. Fujishima, K. Honda. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature,1972,238:37-38.
    [8]S. Yamazaki, S. Matsunaga, K. Hori. Photocatalytic degradation of trichloroethylene in water using TiO2 pellets[J]. Water Res.2001,35(2):1022-1028.
    [9]S. Kurinobu, K. Tsurusaki, Y. Natuic, M. Kimatac, M. Hasegawa. Decomposition of pollutants in wastewater using magnetic photo-catalyst particles[J]. Journal of Magnetism and Magnetic Materials,2007, (310):1025-1027.
    [10]A. Assabane, A. I. Yahia, H. Tahiri et al., Photocatalytic degradation of polycarboxylic benzoic acids in UV-irradiated aqueous suspensions of titania. Identification of intermediates and reaction pathway of the photomineralization of trimellitic acid (1,2,4-benzene tricarboxylic acid) [J]. Appl. Catal. B-Environ.2000,24 (2) 71-87.
    [11]T. M. Elmorsi, W. R. Budakowski, A. S. AbdelAziz et al., Photocatalytic Degradation of 1,10-Dichlorodecane in Aqueous Suspensions of TiO2:A Reaction of Adsorbed Chlorinated Alkane with Surface Hydroxyl Radicals[J]. Environ. Sci. Technol,2000,34 (66) 1018-1022.
    [12]H. Kenji., H. Teruaki. Photocatalytic degradation of organophosphorous insecticides in aqueous semiconductor suspensions[J]. Water Res,1990,24:1415-1417.
    [13]A. Assabane., A. I. Yahia., H. Tahiri., C. Guillard., J. M. Herrmann. Photocatalytic degradation of polycarboxylic benzoic acids in UV-irradiated aqueous suspensions of titania. Identification of intermediates and reaction pathway of the photomineralization of trimellitic acid (1,2,4-benzene tricarboxylic acid) [J]. Appl. Catal. B-Environ.2000,24:71-87.
    [14]J. Chen, Z. L. Tao, S. L. Li. Fabrication of Ru and Ru-based functionalized nanotubes [J]. J. Am. Chem. Soc.2004,126 (4717):3060-3061.
    [15]M. R. Hoffmann, S. T. Martin S.T, W. Choi W et al., Environmental applications of semiconductor photocatalysis [J]. Chem.Rev.1995,95(1):69-96.
    [16]A. Fernandez, G. Lassaletta, V. M. Jimenez et al., Preparation and characterization of TiO2 photocatalysts supported on various rigid supports[J]. Appl. Catal.B-Environ.1995, 7(1):49-63.
    [17]S. Yamazaki, S. Matsunaga, K. Hori. Photocatalytic degradation of trichloroethylene in water using TiO2 pellets[J]. Water Res.2001,35(2):1022-1028.
    [18]方佑龄,赵文宽,尹少华等.纳米Ti02在空心陶瓷球上的固定化及光催化及光催化分解辛烷[J].应用化学1997,14(2):81-83.
    [19]王怡中,胡春.有机物多相光催化降解反应中催化剂的固定化技术研究[J].环境科学,1998,19(3):40-43.
    [20]胡春,王怡中,汤鸿霄.表面键联型Ti02/Si02固定化催化剂的结构及催化性能[J].催化学报,2001,22(2):185-187.
    [21]D. F. Ollis and R. E. Marinageli. Photo assisted heterogeneous catalysis with optical fibres:Ⅰ.Isolated single fibre[J]. AICHE.1977,23(4):415-421.
    [22]N. J. Peill and M. R. Hoffmann, Development and Optimization of a TiO2-Coated Fiber-Optic Cable Reactor:Photocatalytic Degradation of 4-Chlorophenol[J]. Environ.Sci.Technol.1995,29(12):2974-2981.
    [23]N. J. Peill and M. R. Hoffmann, Chemical and Physical Characterization of a TiO2-Coated Fiber Optic Cable Reactor[J]. Environ.Sci.Technol,1996,30(9):2806-2812.
    [24]D. Beydoun, R. Amal, G. Low et al., Novel Photocatalyst:Titania-Coated Magnetite. Activity and Photodissolution[J]. J. Phys. Chem. B,2000,104 (18):4387-4396.
    [25]D. Beydoun, R. Amal. Implications of heat treatment on the properties of a magnetic iron oxide/titanium dioxide photo-catalyst[J]. Materials Science and Engineering,2002, 94:71-81.
    [26]D. Beydoun, R. Amal, G. Low et al., Occurrence and prevention of photodissolution at the phase junction of magnetite and titanium dioxide[J]. Journal of Molecular Catalysis A: Chemical,2002,180:193-200.
    [27]H. M. Coleman, C.P. Marquis, J.A. Scott et al., Bactericidal effects of titanium dioxide-based photo-catalysts[J]. Chemical Engineering Journal,2005,113:55-63.
    [28]W. Y. Teoh, L. Madler, D. Beydoun et al., Direct (one-step) synthesis of TiO2 and Pt-TiO2 nanoparticles for photocatalytic mineralisation of sucrose[J]. Chemical Engineering Science,2005,60:5852-5861.
    [29]H. M. Coleman, V. Vimonses, G. Leslie, R. Amal. Degradation of 1,4-dioxane in water using TiO2 based photocatalytic and H2O2/UV processes[J]. Journal of Hazardous Materials, 2007,146:496-501.
    [30]B. K. Sunkara, R. D. K. Misra., Enhanced antibactericidal function of W4+-doped titania-coated nickel ferrite composite nanoparticles:A biomaterial system [J]. Acta Biomaterialia,2008,4:273-283.
    [31]S. Rana, J. Rawat, R.D.K. Misra. Anti-microbial active composite nanoparticles with magnetic core and photocatalytic shell:TiO2-NiFe2O4 biomaterial system[J]. Acta Biomaterialia,2005,1:691-703.
    [32]S. Rana, R. S. Srivastava, M. M. Sorensson et al., Synthesis and characterization of nanoparticles with magnetic core and photocatalytic shell:Anatase TiO2-NiFe2O4 system[J]. Materials Science and Engineering B,2005,119:144-151
    [33]S. W. Lee, J. Drwiega, D. Mazyck et al., Synthesis and characterization of hard magnetic composite photocatalyst Barium ferrite/silica/titania[J]. Materials Chemistry and Physics, 2006,96:483-488.
    [34]S. Kurinobu, K. Tsurusaki, Y. Natui et al., Decomposition of pollutants in wastewater using magnetic photocatalyst particles [J]. Journal of Magnetism and Magnetic Materials, 2007,310:1025-1027.
    [35]A. Tarek. G. Allah, S. Kato et al., Treatment of synthetic dyes wastewater utilizing a magnetically separable photocatalyst (TiO2/SiO2/Fe3O4):Parametric and kinetic studies[J]. Desalination,2009,244:1-11.
    [36]V. Belessi, D. Lambropoulou, I. Konstantinou. Structure and photocatalytic performance of magnetically separable titania photocatalysts for the degradation of propachlor[J]. Applied Catalysis B:Environmental,2009, (87):181-189.
    [37]W. Qiu, Y. Zheng, K. A. Haralampides. Study on a novel POM-based magnetic photo-catalyst:Photocatalytic degradation and magnetic separation[J]. Chemical Engineering Journal,2007,125:165-176.
    [38]Y. S. Chung, S. B. Park, D. W. Kang. Magnetically separable titania-coated nickel ferrite photocatalyts[J]. Materials Chemistry and Physics,2004,86:375-381.
    [39]F. Chen, Xie Y, Zhao J., Lu G., Photocatalytic degradation of dyes on a magnetically separated photocatalyst under visible and UV irradiation [J]. Chemosphere,2001,44 (5):1159-1168.
    [40]Y.Gao, B.Chen, H.Li et al., Preparation and characterization of a magnetically separated photocatalyst and its catalytic properties[J]. Mater. Chem. Phys,2003,80 (1):348-355.
    [41]M. W. Xu, S. J. Bao, X. G. Zhang. Enhanced photocatalytic activity of magnetic TiO2 photocatalyst by silver deposition[J]. Materials Letters, (2005, (59):2194-2198.
    [42]S. H. Xu, F. Wen, G. Shan. Preparations and photocatalytic properties of magnetically separable nitrogen-doped TiO2 supported on nickel ferrite[J]. Applied Catalysis B: Environmental,2006,71 (3):177-184.
    [43]Y. H. Ao, J. J. Xu, D. G Fu, X. W. Shen, C. W. Yuan. A novel magnetically separable composite photocatalyst:Titania-coated magnetic activated carbon. Separation and Purification Technology,2008, (61):436-441.
    [44]Y. H. Ao, J. J. Xu, D. G Fu, C. W. Yuan. A simple route for the preparation of anatase titania-coated magnetic porous carbons with enhanced.photocatalytic activity. Carbon,2008, (46):596-603.
    [45]S. H. Xuan, W. Q. Jiang, X. L. Gong, Y. Hu and Z. Y. Chen. Magnetically Separable Fe3O4/TiO2 Hollow Spheres:Fabrication and Photocatalytic Activity. J. Phys. Chem. C,2009, 113:553-558.
    [46]Y. H. Chen, L. L. Chen, N. C. Shang. Photocatalytic degradation of dimethyl phthalate in an aqueous solution with Pt-doped TiO2-coated magnetic PMMA microspheres. Journal of Hazardous Materials,2009,10,234-244.
    [47]陈金媛,彭图治.磁性纳米TiO2/Fe3O4光催化复合材料的制备及性能[J].化学学报,2004,62(20),2093-2097.
    [48]李新军,李芳柏,古国榜,王良焱,徐悦华.磁性纳米光催化复合材料的制备及性能[J].中国有色金属学报,2001,11(6),971-976.
    [49]W. Y. Fu, H. B. Yang, M. H. Li et al. Anatase TiO2 nanolayer coating on cobalt ferrite nanoparticles for magnetic photocatalyst [J]. Materials Letters,2005,59,3530-3534.
    [50]W. Y. Fu, H. B. Yang, M. H. Li et al. Preparation and photocatalytic characteristics of core-shell structure TiO2/BaFe12O19naaoparticles [J]. Materials Letters,2006,60,2723-2727.
    [51]尹晓红,辛峰,张凤宝等.含磁性γ-Fe2O3核的TiO2/Al2O3催化剂的制备及光催化性能[J].精细化工,2006,23(1):58-61.
    [52]汤育欣,陶杰,陶海军等.一种磁负载光催化剂的制备及光催化活性的研究[J].南京航空航天大学学报,2006,38(2):239-244.
    [53]王拯,张风宝.磁载光催化剂TiO2/Al2O3/γ-Fe2O3的制备与降解染料的优化模型[J]. 环境化学,2008,27(3):283-287.
    [54]展宗城,任学昌,陈学民等.MnFeO4/SiO2/TiO2磁载光催化剂的制备及性能[J].环境科学与技术,2009,32(4):62-66.
    [55]肖信,张敬环,南俊民.铁离子掺杂磁载TiO2光催化剂的制备及光催化性能[J].硅酸盐学报,2008,36(11):1548-1552.
    [56]蒋荣立,刘永超,陈文龙.磁性纳米CoFe2O4/TiO2复合材料的制备及光催化性能[J].中国矿业大学学报,2008,37(4)498-502.
    [57]包淑娟,张校刚,刘献明等.TiO2/SiO2/Fe3O4的制备及其光催化性能[J].应用化学,2004,(21):261-265.
    [58]D. M. Antonelli, J. Y. Ying., Synthesis of hexagonally packed mesoporous TiO2 by a modified Sol-gel method. Angew Chem Int Ed Eng,1995,34 (18):2014.
    [59]M. Yoshikazu, K. Tsuyoshi., MesoPorous titania PrePared in the Presence of alkylamine. J. Chem.Eng.Jpn.2001,34(3):319-325.
    [60]I. Kartini, D. Menzies, D. Blake., Hydrothermal seeded synthesis of mesoPorous titania for aPPlieation in dye-sensitised solar cells (DSSCs). J.Mater.Chem.2004,14(19):2917-2921.
    [61]G. Soler-Illia, A. Louis, C. Sanehez. Synthesis and charaeterization of mesostruetured titania-based materials through evaporation-induced self-assembly. Chem. Mater. 2002,14(2):750-759.
    [1]D. Beydoun, R. Amal, G. Low et al., Novel Photocatalyst:Titania-Coated Magnetite. Activity and Photodissolution[J]. J. Phys. Chem. B,2000,104 (18):4387-4396.
    [2]D. Beydoun, R. Amal. Implications of heat treatment on the properties of a magnetic iron oxide / titanium dioxide photo-catalyst [J]. Materials Science and Engineering,2002, 94:71-81.
    [3]S. Kurinobu, K. Tsurusaki, Y. Natui et al., Decomposition of pollutants in wastewater using magnetic photocatalyst particles [J]. Journal of Magnetism and Magnetic Materials, 2007,310:1025-1027.
    [4]A. Tarek. G. Allah, S. Kato et al., Treatment of synthetic dyes wastewater utilizing a magnetically separable photocatalyst (TiO2/SiO2/Fe3O4):Parametric and kinetic studies [J]. Desalination,2009,244:1-11.
    [5]Y. L. Shi, W. Qiu, Y. Zheng. Synthesis and characterization of a POM-based nanocomposite as a novel magnetic photocatalyst [J]. Journal of Physics and Chemistry of Solids,2006,67:2409-2418.
    [6]W. Qiu, Y. Zheng, K. A. Haralampides. Study on a novel POM-based magnetic photo-catalyst:Photocatalytic degradation and magnetic separation [J]. Chemical Engineering Journal,2007,125:165-176.
    [7]陈金媛,彭图治.磁性纳米Ti02/Fe304光催化复合材料的制备及性能[J].化学学报,2004,62(20),2093-2097.
    [8]李新军,李芳柏,古国榜,王良焱,徐悦华.磁性纳米光催化复合材料的制备及性能[J].中国有色金属学报,2001,11(6),971-976.
    [9]包淑娟,张校刚,刘献明等.Ti02/Si02/Fe304的制备及其光催化性能[J].应用化学2004,(21):261-265.
    [10]V. Belessi, D. Lambropoulou, I. Konstantinou. Structure and photocatalytic performance of magnetically separable titania photocatalysts for the degradation of propachlor [J]. Applied Catalysis B:Environmental,2009,87:181-189.
    [11]F. Chen, Xie Y, Zhao J., Lu G., Photocatalytic degradation of dyes on a magnetically separated photocatalyst under visible and UV irradiation [J]. Chemosphere,2001,44 (5):1159-1168.
    [12]Y. Gao, B. Chen, H. Li et al., Preparation and characterization of a magnetically separated photocatalyst and its catalytic properties [J]. Mater. Chem. Phys,2003,80 (1):348-355.
    [13]尹晓红,辛峰,张凤宝等.含磁性y-Fe2O3核的TiO2/A12O3催化剂的制备及光催化性能[J].精细化工,2006,23(1):58-61.
    [14]W. Y. Fu, H. B. Yang, M. H. Li et al. Anatase HO2 nanolayer coating on cobalt ferrite nanoparticles for magnetic photocatalyst [J]. Materials Letters,2005,59:3530-3534.
    [15]蒋荣立,刘永超,陈文龙.磁性纳米CoFe2O4/TiO2复合材料的制备及光催化性能[J].中国矿业大学学报,2008,37(4):498-502.
    [16]S. H. Xu, F. Wen, G. Shan. Preparations and photocatalytic properties of magnetically separable nitrogen-doped TiO2 supported on nickel ferrite [J]. Applied Catalysis B: Environmental,2006,71 (3):177-184.
    [17]S. Rana, J. Rawat, R.D.K. Misra. Anti-microbial active composite nanoparticles with magnetic core and photocatalytic shell:TiO2-NiFe2O4 biomaterial system [J]. Acta Biomaterialia,2005,1:691-703.
    [18]Y. S. Chung, S. B. Park, D. W. Kang. Magnetically separable titania-coated nickel ferrite photocatalys [J]. Materials Chemistry and Physics,2004,86:375-381.
    [19]Y. Shi, J. Ding, X. Liu. NiFe2O4 ultrafine particles prepared by coprecipitation/ mechanical alloying [J]. Journal of Magnetism and Magnetic Materials,1999,205(2): 249-254.
    [20]莎木嘎,敖特根,娜仁图雅,阿木古楞,赵智宏,李金梅,娜赫娅.燃烧法制备纳米铁酸锌和铁酸镍及表征[J].内蒙古农业学学报,2009,30(1):2743-277.
    [21]X. M. Liu, S. Y. Fu, C. J. Huang. Magnetic properties of Ni ferrite nanocrystals dispersed in the silica matrix by sol-gel technique [J]. Journal of Magnetism and Magnetic Materials,2004,281 (2-3):234-239.
    [22]张海军,姚熹,张良莹.铁氧体的溶胶-凝胶合成及微波性能研究[J].功能材料,2003,34(1):39-40.
    [23]赵红晓,王淑敏.水热法合成纳米铁酸镍及其电化学性能的研究[J],石化技术与应用,2009,27(2):119-122.
    [24]赵红晓,胡中爱,孔超等.NiFe2O4纳米粒子的水热合成及表征[J].化工新型材料,2006,34(6):39-41.
    [1]D. Beydoun and R. Amal. Novel Photocatalyst:Titania-Coated Magnetite. Activity and Photo-dissolution[J]. J. Phys. Chem. B,2000,104,4387-4396.
    [2]D. Beydoun., R. Amal. Implications of heat treatment on the properties of a magnetic iron oxide titanium dioxide photo-catalyst[J]. Materials Science and Engineering B,2002, 94:71-81.
    [3]J. Yuan, H. Hu, M. X. Chen. Promotion effect of Al2O3-SiO2 interlayer and Pt loading on TiO2/nickel foam photocatalyst for degrading gaseous acetaldehyde[J]. Catalysis Today,2008, 139(1-2):140-145.
    [4]A. Tarek. G. Allah, S. Kato et al., Treatment of synthetic dyes wastewater utilizing a magnetically separable photocatalyst (TiO2/SiO2/Fe3O4):Parametric and kinetic studies[J]. Desalination,2009,244:1-11.
    [5]夏淑梅,陈利平,孙勇,张密林.片状磁性纳米TiO2/SiO2/NiFe2O4制备及光催化性能[J].才料科学与工艺2008,16(5):621-624.
    [31]夏淑梅,徐长松,张密林,杨兆,徐荣梅.磁性纳米TiO2/SiO2/NiFe2O4的制备及其催化性能[J].化学研究与应用,2009,21(4):455-458.
    [6]刘红,孙施,刘潘,陈进军,南昊.TiO2/SiO2/NiFe2O4磁性纳米材料的制备、表征及光催化性能[J].化工进展,2007,26(7):980-984.
    [7]包淑娟,张校刚,刘献明,辛凌云,屈建平.磁载W03-Ti02/Si02/Fe304复合光催化剂的制备及其光催化活性[J].催化学报,2003,24(12):909-913.
    [8]许士洪,冯道伦,李登新,上官文峰.可磁分离二氧化钛光催化剂的制备及其光催化性能[J].无机化学学报,2008,24(5):785-790.
    [9]Y. Lu, Y. Yin, Y. Xia, et al. Modifying the Surface Properties of superparamagnetic Iron oxide nanoparticeles through A Sol-Gel approach [J]. Nano Lett.2002,2(3):183-186.
    [10]W. Stober, A. Fink. Controlled Growth of Mono-disperse Silica Spheres in the Micron Size Range [J]. Colloid and Inter-surface Science,1968,26:62-69.
    [11]Y. Deng, D. Qi, D. Zhao. Supermaramagnetic high Magnetization Micro-spheres with an Fe3O4@SiO2 Core and perpendicularly Aligned Meso-porous SiO2 shell for removal of Microcystins [J]. Am. Chem. Soc,2008,130:28-29.
    [12]赵瑞玉,董鹏,梁文杰.单分散Si02体系制备中TEOS水解动力学研究[J].物理化学学报,1995 117:612-616.
    [1]S. Cosnier, C. Gondran, A. Senillou et al., Mesoporous TiO2 films:New catalytic electrode fabricating amperometric biosensors based onoxidases [J]. Electroanalysis,1997,9 (18):1387-1392.
    [2]E. Allain, S. Besson, C. Durand et al., Transparent Mesoporous Nanocomposite Films for Self-Cleaning Applications [J]. Advanced Functional Materials,2007,17(4):549-554.
    [3]E. Topoglidis, C. J. Campbell, A. E. Cass., Nitric Oxide Biosensors Based on the Immobilization of Hemoglobin on Mesoporous Titania Electrodes[J]. Electroanalysis, 2006,18(9):882-887.
    [4]J. C. Yu, X. Wang, X. Fu., Pore Wall Chemistry and Photocatalytic Activity of Mesoporous Titania Molecular Sieve Films[J]. Chemistry of Materials,2004,16(8): 1523-1530.
    [5]D. Beydoun, R. Amal, G. Low et al., Novel Photocatalyst:Titania-Coated Magnetite. Activity and Photodissolution[J]. J. Phys. Chem. B,2000,104 (18):4387-4396.
    [6]D. Beydoun, R. Amal, G. Low et al., Occurrence and prevention of photodissolution at the phase junction of magnetite and titanium dioxide[J]. Journal of Molecular Catalysis A: Chemical,2002,180:193-200.
    [7]H. M. Coleman, C.P. Marquis, J.A. Scott et al., Bactericidal effects of titanium dioxide-based photo-catalysts[J]. Chemical Engineering Journal,2005,113:55-63.
    [8]H. M. Coleman, V. Vimonses, G. Leslie, R. Amal. Degradation of 1,4-dioxane in water using TiO2 based photocatalytic and H2O2/UV processes[J]. Journal of Hazardous Materials, 2007,146:496-501.
    [9]S. Rana, J. Rawat, R.D.K. Misra. Anti-microbial active composite nanoparticles with magnetic core and photocatalytic shell:TiO2-NiFe2O4 biomaterial system[J]. Acta Biomaterialia,2005,1:691-703.
    [10]S. W. Lee, J. Drwiega, D. Mazyck et al., Synthesis and characterization of hard magnetic composite photocatalyst Barium ferrite/silica/titania[J]. Materials Chemistry and Physics, 2006,96:483-488.
    [11]W. Q. Han, W. Wen, D. Yi., Fe-Doped Trititanate Nanotubes:Formation, Optical and Magnetic Properties, and Catalytic Applications[J]. J. Phys. Chem. C,2007,111: 14339-14342.
    [12]D. Beydoun, R. Amal. Implications of heat treatment on the properties of a magnetic iron oxide / titanium dioxide photo-catalyst[J]. Materials Science and Engineering,2002, 94:71-81.
    [13]S. Rana, R. S. Srivastava, M. M. Sorensson et al., Synthesis and characterization of nanoparticles with magnetic core and photocatalytic shell:Anatase TiO2-NiFe2O4 system[J]. Materials Science and Engineering B,2005,119:144-151.
    [14]M. Y. Miah, I. Hiroaki, H. Hiroshi. Preparation of mesoporous TiO2 thin films by surfactant templating [J]. Non-Cryst. Solids,2001,85:90-95.
    [15]Q. Dai, P. Li, Y. Q. Miao. Synthesis of pure TiO2 mesoporous molecular sieves and t heir photocatalytic activity [J]. Chinese Journal of Catalysis,1998,19 (6):483-484.
    [16]Y. H. Yue, Z. Gao. Synthesis of mesoporous TiO2 wit h a crystalline framework [J]. Chem. Commun,2000,18:1755-1758.
    [17]G. David, J. A. Galo, B. Florence. Highly organized mesoporous titanic thin films showing mono-or-Tented 2D hexagonal channels [J]. Adv. Mater,2001,13:1085-1088.
    [18]D. S. Kim, S. Y. Kwak. The hydrothermal synthesis of mesoporous TiO2 with high crystallinity, thermal stability, large surface area, and enhanced photocatalytic activity. Applied Catalysis A:General,2007,323:110-118.
    [19]D. S. Kim, S. J. Han, S. Y. Kwak. Synthesis and photocatalytic activity of mesoporous TiO2 with the surface area, crystallite size, and pore size. Journal of Colloid and Interface Science,2007,316:85-91.
    [20]刘红,孙施,刘潘,陈进军,南昊.TiO2/SiO2/NiFe2O4磁性纳米材料的制备、表征及光催化性能[J].化工进展,2007,26(7):980-984.
    [1]Yoshinori Nishikawa, Tameo Okumura. Determination of nitrobenzenes in river water, sediment and fish samples by gas chromatography-mass spectrometry. Analytica Chimica Acta[J],1995,312(1,18):45-55.
    [2]Meng-chang He, Yan Sun, Xing-ru Li, Zhi-feng Yang. Distribution patterns of nitrobenzenes and polychlorinated biphenyls in water, suspended particulate matter and sediment from mid- and down-stream of the Yellow River (China) [J], Chemosphere,2006, 65(3):365-374.
    [3]Oliver J. Hao, Kotu K. Phull, Jin M. Chen. Wet oxidation of TNT red water and bacterial toxicity of treated waste [J]. Water Research,1994,28(2):283-290.
    [4]Dong Soo Lee, Sang Do Park. Decomposition of nitrobenzene in supercritical water [J]. Journal of Hazardous Materials,1996,51(1-3):67-76.
    [5]Shuang-Jun Chang, Yu-cun Liu. Degradation mechanism of 2,4,6-trinitrotoluene in supercritical water oxidation. Journal of Environmental Sciences,2007,19(12):1430-1435
    [6]Jin Anotai, Pasootah Sakulkittimasak, Nonglak Boonrattanakij, Ming-Chun Lu. Kinetics of nitrobenzene oxidation and iron crystallization in fluidized-bed Fenton process. Journal of Hazardous Materials [J],2009,165(1-3):874-880.
    [7]Miguel L. Rodriguez, Vitaliy I. Timokhin, Sandra Contreras, Esther Chamarro, Santiago Esplugas. Rate equation for the degradation of nitrobenzene by'Fenton-like'reagent [J]. Advances in Environmental Research,2003,7(2):583-595.
    [8]Qian-Rong Li, Cheng-Zhi Gu, Yan Di, Hao Yin, Jun-Ying Zhang. Photo-degradation of nitrobenzene using 172 nm excimer UV lamp [J]. Journal of Hazardous Materials,2006, 133(1-3):68-74.
    [9]Aimin Wang, Chun Hu, Jiuhui Qu, Min Yang, Huijuan Liu, Jia Ru, Rong Qi, Jingfang Sun. Phototransformation of nitrobenzene in the Songhua River:Kinetics and photoproduct analysis [J]. Journal of Environmental Sciences,2008,20(7):787-795.
    [10]Sandra Contreras, Miguel Rodriguez, Esther Chamarro, Santiago Esplugas. UV and UV/Fe(III)-enhanced ozonation of nitrobenzene in aqueous solution [J], Journal of Photochemistry and Photobiology A:Chemistry,2001,142(1,20):79-83.
    [11]付贤智,李旦振.提高多相光催化氧化过程效率的新途径[J].福州大学学报,2001,29(6):105-114.
    [12]张天永,李祥忠,赵进才.国产二氧化钛在光催化降解染料废水中的应用[J].催化学报,1999,23(3):356-358.
    [13]侯乙东,李旦振,付贤智,刘平,王绪绪.Ti02纳米晶表面羟基自由基的生成对光催化性能的影响[J].福州大学报,2004,32(6):747-750.
    [14]胡德文,程沧沧.紫外-双氧水和亚铁离子体系对硝基苯光降解的研究[J].重庆环境科学1999,21(3):34-36.
    [15]陈继章,赵一先,盛兆琪.水中硝基苯的光催化降解初步研究[J].化学世界,2002,(增刊):58-59.
    [16]马永明,张敏卿,余国琮.水中溶解有机物Ti02-UV-O2光催化氧化动力学研究[J]..化工进展,2002,21(2):112-115.
    [17]沈吉敏,陈忠林,李学艳,齐飞,叶苗苗.03/H202去除水中硝基苯效果与机理[J].环境科学,2006,27(9):1791-1797.
    [18]Lei Zhao, Jun Ma, Zhizhong Sun, Huiling Liu. Mechanism of heterogeneous catalytic ozonation of nitrobenzene in aqueous solution with modified ceramic honeycomb[J]. Applied Catalysis B:Environmental,2009, (89):326-334.
    [19]李春荣,杨胜科,段磊,刘江.二氧化钛光催化降解硝基苯废水[J].应用化工,2007,36(8):748-750.
    [20]尹菁菁,张彭义.VUV/Ti02/H202法去除水中微量硝基苯[J].中国环境科学,2008,28(8):689-693.
    [21]康艳红,薛向欣,汤显明.H202热氧化降解硝基苯废水的机理和动力学[J].环境化学,2009,28(5):670-674.
    [22]卢俊彩,陈火林,李首建.改性纳米二氧化钛的制备及其对硝基苯废水的光催化降解[J].西南大学学报,2009,31(9):116-119.
    [23]常江,陈晖.纳米Ti02光催化降解硝基酚类污染物动力学及机理的研究[J].环境工程学报,2009,3(1):43-46.
    [24]K. Chhor, J. F. Bocquet, J. C. Colbeau., Comparative studies of phenol and salicylic acid photocatalytic degradation:influence of adsorbed oxygen. Mater. Chem. Phys,2004,86: 123-131.
    [25]B. Z. Ska, J. Grzechulska, R. J. Czuk, A. W. Morawski., The pH influence on photocatalytic decomposition of organic dyes over Al 1 and P25 titanium dioxide. Appl. Catal. B-Envin,2003,45:293-300.
    [26]A. Assabane, A. I. Yahia, H. Tahiri, C. Guillard, J. M. Herrmann., Photocatalytic degradation of polycarboxylic benzoic acids in UV-irradiated aqueous suspensions of titania. Identification of intermediates and reaction pathway of the photomineralization of trimellitic acid (1,2,4-benzene tricarboxylic acid). Appl. Catal. B-Environ.2007,24:71-87.
    [27]Carrway E., Hoffman A., Hoffmann M., Photocatalytic Oxidation of Organic Acids on Quantum-Sized Semiconductor Colloids. Environ. Sci. Technol,1994,28:786-793.
    [28]K. I. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto., Quantum yields of active oxidative species formed on TiO2 photocatalyst Photochem. J. Photochem. Photobiol. A-Chem.2000,134:139-142.
    [29]R. Wang, K. Hashimoto, A. A. Fujishima. Light-induced amphiphilic surfaces. Nature, 1997,88:431-432.
    [1]J. S. Beck, J. C. Vartuli, W. J. Roth et al. A new family of mesoporous molecular-sieves prepared with liquid crystal templates[J]. J. Am. Chem. Soc,1992,114 (27):10834-10843.
    [2]S. A. Davis, S. L. Burkett, N. H. Mendelson et al. Bacterial Templating of Ordered Macrostructures in Silica and Silica-Surfactant Meso-phases [J]. Nature,1997,385:420-423.
    [3]A. Monnier, F. Schuth, Q. Huo et al. Coopperative formation of inoraganic-organic interfaces in the synthsis of silicate mesostructures [J]. Science,1993,261 (5126): 1299-1303.
    [4]T. Yanagisawa, T.Shimozw, K. Kuroda et al. The preparation of alkyltrimethy-amm onium-anemite complexes and their conversion to microporous materials [J]. Bull. Chem. Soc. Jpn,1990,63:988-992.
    [5]G. J. Soler-illia, C. Sanchez, B. Lebeau, J. Patarin. Chemical strategies to design textured materials:From microporous and mesoporous oxides to nanonetworks and hierarchical structures [J]. Chemical Reviews,2002,102(11):4093-4138.
    [6]G. J. Soler-illia, E. Scolan, A. Louis, P. A. Albouy, C. Sanchez. Design of mesoStructured titanium oxo based hybrid organic-inorganic networks [J]. New Journal of Chemistry,2001, 25(1):156-165.
    [7]G. J. Soler-illia, C. Sanchez. Interactions between poly (ethylene oxide)-based surfactants and transition metal alkoxides:their role in the templated construction of mesostructured hybrid organic-inorganic composites[J]. New Journal of Chemistry,2000,24(7):493-499.
    [8]A. Steel, S. W. Carr, M. W. Anderson,14N NMR study of surfactant mesophases in the synthesis of mesoporous silicates. Chem. Commun,1994:1571-1572.
    [9]A. Firouzi, D. Kumar, L. Bull et al. Cooperative Organization of Inorganic-Surfactant and Biomimetic Assemblies, Science,1995,267:1138-1143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700