LLDPE/POE基光催化及微波吸收复合材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文介绍线性低密度聚乙烯(LLDPE)/乙烯-辛烯共聚物(POE)基光催化及微波吸收复合材料的制备及表征。
     以钛酸丁酯作为钛源,分别选用硼酸-氟化铵、硼酸-硝酸铁-硝酸铈和硼酸-硝酸铁-正硅酸乙酯为掺杂体系,通过溶胶-凝胶法分别制备了可见光响应的硼-氮共掺杂二氧化钛、硼-铁-铈三元共掺杂二氧化钛和硼-铁共掺杂二氧化钛/二氧化硅光催化剂。采用X射线衍射(XRD)、X射线光电子能谱(XPS)、紫外-可见吸收光谱(UV-vis DRS)、红外光谱(FT-IR)、氮气吸脱附和扫描电镜(SEM)表征了所制备的共掺杂光催化剂;选用苯酚或2,4-二氯苯酚为模拟污染物在可见光照射下进行降解实验,评价了它们的光催化活性,并与商用二氧化钛P25的催化活性进行比较。结果表明:掺杂可阻止加热条件下二氧化钛由锐钛型向金红石的转化;非金属硼和氮原子或硼原子都已掺入二氧化钛晶格,导致带隙能降低,吸收光谱红移和可见光催化活性,而金属铁和铈原子或铁原子则以氧化物的形式分散在二氧化钛中,抑制光生电子-空穴对的复合,提高光量子效率,改善二氧化钛的光催化活性;二氧化钛和二氧化硅之间存在密切的相互连接,这种连接有利于形成高表面积的光催化剂;掺杂剂用量及热处理温度影响光催化剂的催化活性。催化活性的提高来源于共掺杂原子的协同效应。
     以LLDPE/POE/碳酸钙拉伸膜为基材,用浸渍法制备了二氧化钛光催化膜。用SEM观察了二氧化钛在催化膜上的分散状态。分别在紫外光和可见光照射下降解甲醛,评价光催化膜的催化活性。结果表明:在紫外照射下,P25光催化膜的催化活性要稍微大于硼-氮共掺杂二氧化钛光催化膜的活性;而在可见光照射下,硼-氮共掺杂二氧化钛光催化膜的活性要明显高于P25光催化膜的活性。
     以LLDPE/POE为聚合物基体,分别用羰基铁粉、短碳纤维、碳纳米管、炭黑作为微波吸收剂,采用熔融共混法制备了LLDPE/POE基微波吸收复合材料,分别用标量网络分析仪和矢量网络分析仪测试了复合材料的微波吸收性能和电磁参数,分析了微波吸收的来源。用SEM和TEM观察了复合材料的形貌。结果表明:固定吸波剂种类,在材料厚度相同的条件下,随着复合材料中吸波剂含量的提高,复合材料的吸收峰位置都向低频方向移动;为了获得最优吸收效果,每一种吸波剂都有相应的最佳含量;LLDPE/POE/羰基铁粉复合材料的微波吸收既有介电损耗也有磁损耗,而其余复合材料的微波吸收来自于介电损耗;填料粒子都较好地分散在聚合物基体中,表明熔融共混是制备LLDPE/POE基微波吸收复合材料的有效方法。模拟计算则表明:同一种复合材料体系,随着厚度增加,复合材料的吸收峰位置也向低频方向移动。
The thesis reported preparation and characterizationof low density polyethylene (LLDPE)/ethylene- octene copolymer (POE) matrix composites with photocatalytic and microwave absorbing properties.
     Using tetrabutyl titanate as the precursor of titanium, visible-light-driven titania photocatalysts co-doped with boron and nitrogen, with boron and ferrum and cerium, and titania/silica photocatalysts co-doped with boron and ferrum were prepared by sol-gel routes, in which boric acid and ammonium fluoride, boric acid and ferric nitrate and cerium nitrate, and boric acid and ferric nitrate and ethyl silicate were the sources of dopants, respectively. The prepared photocatalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-Vis diffusive reflectance spectroscopy (UV-vis DRS), Fourier transform infrared spectroscopy (FT-IR), N_2 adsorption-desorption isotherm and scanning electron microscopy (SEM). The decomposition of phenol or 2, 4-dichlorophenol under visible light irradiation was used as probe reaction to evaluate their photocatalytic activities, which were compared with the photoactivity of merchandise titania P25. The results show that the doping can retard the transformation from anatase to rutile at elevated temperatures, that nonmetal boron and nitrogen atoms or boron atoms are weaved into the crystal lattice of titania, resulting in the decreases of band gap, red-shift and visible-light-driven photoactivity, whereas ferrum and cerium atoms or ferrum atoms present in the forms of FeO/Fe_2O_3 and Ce_2O_3/CeO_2 or FeO/Fe_2O_3 and disperse in TiO_2, which can prohibit recombination of the photo-generated electrons and holes, increasing photo quantum efficiency and improving the photoactivity, and there are intimate molecule-level interactions between titania and silica, which are in favor of the preparing the photocatalysts with big surface area. The synergistic effects of co-doping are responsible for the visible light response and high photoactivity.
     Using microporous film prepared from LLDPE/POE/CaCO_3 as substrate, titania film with photocatalytic property was prepared by dipping. The morphologies were observed by SEM. Degradation of formaldehyde under ultraviolet radiation or visible illumination was used to evaluate the photoactivity of photocatalytic films. The results show that the photocatalytic property of P25 film under ultraviolet radiation is superior slightly to that of boron-nitrogen co-doped titania film, whereas the photocatalytic property of boron-nitrogen co-doped titania film under visible illumination is obviously higher than that of P25 film.
     Polymer matrix microwave absorbing composites were prepared by melt blend using LLDPE and POE as matrix, and carbonyl iron powder (CIP), short carbon fiber (SCF), multi-walled carbon nanobute (MWCNT) and carbon black (CB) as absorbents, respectively. The absorbing properties and electromagnetic parameters of microwave absorbing composites were measured by a scalar network analyzer and a vector network analyzer, respectively. The microwave absorption mechanisms of composites prepared with different absorbents were discussed. The morphologies were observed by SEM and TEM. The results show that the absorbing peak moves to the low frequency as absorbent content in composites increases when absorbent and thickness of composites are fixed, that there is the corresponding optimum content of absorbent in order to gain the best absorbing effectiveness. The microwave absorption can be attributed to a combining contribution of the dielectric loss and magnetic loss for LLDPE/POE/CIP composites, and the dielectric loss for LLDPE/POE/SCF,LLDPE/POE/MWCNT,LLDPE/POE/CB andLLDPE/POE/CB/CaCO_3 composites. The absorbents and filler (CaCO_3) are well dispersed in polymer matrix, demonstrating that LLDPE/POE matrix composites can be fabricated by melt blending. The simulation calculation show that the absorbing peak moves to the low frequency as thickness of composites increases when absorbent and content of absorbent in composites are fixed.
引文
[1]Fujishima A,Honda K.Electrochemical photolysis of water at a semiconductor electrode.[J]Nature 1972;238:37-38.
    [2]Borgarello E,Kiwi J,Gratzel M,Pelizzetti E,Visca M.Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles.[J]J Am Chem Soc 1982;104:2996-3002.
    [3]Keiichi T,Mario F V C,Teruaki H.Effect of crystallinity of TiO_2 on its photocatalytic action.[J]Chem Physics Lett 1991;187:73-76.
    [4]Matos J,Laine J,Herrmann J M.Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon.[J]Appl Catal B 1998;18:281-291.
    [5]Wilke K,Breuer H D The influence of transition metal doping on the physical and photocatalytic properties of titania.[J]J Photochem Photobiol A 1999;121:49-53.
    [6]张建臣,郭坤敏,马兰,赵红阳,TiO_2/AC复合光催化剂对苯和丁醛的气相光催化降解机理.[J]催化学报 2006;27(10):853-856.
    [7]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.[M]北京:化学工业出版社,2002.
    [8]陈建华,龚竹青著.二氧化钛半导体光催化材料离子掺杂.[M]北京:科学出版社,2006.
    [9]Linsebigler A L,Lu G,Yates J T.Photocatalysis on TiO_2 Surfaces:Principles,mechanisms,and selected results.[J]Chen Rev 1995;93:735-758.
    [10]Ishibashi K-I,Fujishima A,Watanabe T,Hashimoto K.Quantum yields of active oxidative species formed on TiO_2 photocatalyst.[J]J Photochem Photobiol A 2000;134:139-142.
    [11]Tanaka K,Capule M F V,Hisanaga T.Effect of crystallinity of TiO_2 on its photocatalytic action.[J]Chem Phys Lett 1991;187:73-76.
    [12]Bickley R I,Gonzalez-Carreno T,Lees J S,Palmisano L,Tilley R J D.A structural investigation of titanium dioxide photocatalysts.[J]J Solid State Chem 1991;92:178-190.
    [13]Yin S,Aita Y,Komatsu M,Wang J,Tang Q,Sato T.Synthesis of excellent visible-light responsive TiO_(2-x)N_y photocatalyst by a homogeneous precipitation-solvothermal process.[J]J Mater Chem 2005;15:674-682.
    [14]Addamo M,Augugliaro V,Bellardita M,Paola A D,Loddo V,Palmisano G,Paimisano L,Yurdakal S.Environmentally friendly photocatalytic oxidation of aromatic alcohol to aldehyde in aqueous suspension of brookite TiO_2.[J]Catal Lett 2006;126:58-62.
    [15]Heinz G,Adam H.The role of oxygen in photooxidation of organic molecules on semiconductor particles.[J]J Phys Chem 1991;95:5261-5267.
    [16]贺集诚一郎.超微粒子.[J]表面1998;26:27-29.
    [17]Wang Z,Xu J,Cai W,Zhou B,He Z,Cai C,Hong X.Visible light induced photodegradation of organic pollutants on nitrogen and fluorine co-doped TiO_2photocatalyst.[J]J Environ Sci 2005;17:76-80.
    [18]Hirakawa T,Nakaoka Y,Nishino J,Nosaka Y.Primary passages for various TiO_2photocatalysts studied by means of luminol chemiluminescent probe.[J]J Phem Chem B 1999;103:4399-4403.
    [19]Choi W,Termin A,Hoffmann M R.The role of metal ion dopants in quantum-sized TiO_2:correlation between photoreactivity and charge carrier recombination dynamics.[J]J Phys Chem 1994;98:13669-13679.
    [20]Xu A-W,Gao Y,Liu H-Q.The preparation,characterization,and their photocatalytic activities of rare-earth-doped TiO_2 nanoparticles.[J]J Catal 2002;207:151-157.
    [21]Ohno T,Akiyoshi M,Umebayashi T,Asai K,Mitsui T,Matsumura M.Preparation of S-doped TiO_2 photocatalysts and their photocatalytic activities under visible light.[J]Appl Catal A 2004;265:115-121.
    [22]Bamwenda G R,Tsubota S,Nakamura T,Haruta M.Photoassisted hydrogen production from a water-ethanol solution:a comparison of activities of Au-TiO_2 and Pt-TiO_2.[J]J Photochem Photobiol A 1995;89:177-189.
    [23]李兰延,赵谌琛.负载型Au/TiO_2催化剂的研制及其性能研究.[J]精细与专用化学品2008;16(5):23-26.
    [24]Haruta M,Yamada N,Kobayashi T,Iijima S.Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxid.J Catal 1989;115:301-309.
    [25]Sclafani A,Mozzanegay M-N,Herrmanny J-M.Influence of silver deposits on the photocatalytic activity of titania.[J]J Catal 1997;168:117-120.
    [26]Rao N N,Manjubala S D,Natarajan P.Photocatalytic reduction of nitrogen over(Fe,Ru or Os)-TiO_2 catalys.[J]Appl Catal B 1994:5:33-42.
    [27]郑珊,高濂,郭景坤.光沉积法合成纳米金属Pd负载的MCM-TiO_2及其光催化性质研究.[J] 高等学校化学学报2002:23:1126-1130.
    [28]Graztel M,Ruessel F H.Electron paramagnetic resonance studies of doped TiO_2 colloids.[J]J Phys Chem 1990;94:2566-2572.
    [29]Yuan Z H,Jia J H,Zhang L D.Influence of co-doping of Zn(Ⅱ) + Fe(Ⅲ) on the photocatalytic activity of TiO_2 for phenol degradation.[J]Mater Chem Phys 2002;73:323-326.
    [30]许金生,余润兰,冯泳兰,匡云飞.Fe~(3+),Ce~(3+)共掺杂纳米TiO_2的相变及其降解水中CHCl_3的催化性能.[J]中国有色金属学报2006;16(12):2092-2097.
    [31]Reddy B M,Khan A.Nanosized CeO_2-SiO_2,CeO_2-TiO_2,and CeO_2-ZrO_2:mixed oxides:influence of supporting oxide on thermal stability and oxygen storage properties of ceria.[J]Catal Surv Asia 2005;9:155-160.
    [32]张俊卿,冯德荣,郭军平.掺杂钇的纳米二氧化钛光催化降解邻硝基苯酚的研究.[J]稀土2006:27:52-54.
    [33]Asahi R,Morikawa T,Ohwaki T,Aoki K,Taga Y.Visible-light photocatalysis in nitrogen-doped titanium oxides.[J]Science 2001;293:269-271.
    [34]Irie H,Watanabe Y,Hashimoto K.Nitrogen-concentration dependence on photocatalytic activity of TiO_(2-x)N_x powders.[J]J Phem Phys B 2003;107:5483-5486.
    [35]Livraghi S,Paganini M C,Giamello E,Selloni A,Valentin C D,Pacchioni G.Origin of photoactivity of nitrogen-doped titanium dioxide under visible light.[J]J Am Chem Soc 2006;128:15666-15671.
    [36]Valentin C D,Pacchioni G,Selloni A,Livraghi S,Giamello E.Characterization of paramagnetic species in N-doped TiO_2 powders by EPR spectroscopy and DFT calculations.[J]J Phys Chem B 2005;109:11414-11419.
    [37]Liu Y,Li J,Qiu X F,Burda C.Bactericidal activity of nitrogen-doped metal oxide nanocatalysts and the influence of bacterial extracellular polymeric substances(EPS).[J]J Photochem Photobiol A 2007;190:94-100.
    [38]许士洪,冯道伦,上官文峰,李登新.可磁分离的氮掺杂二氧化钛光催化剂的制备及光催化性能.[J]高等学校化学学报2008;29(6):1205-1210.
    [39]Khan S U M,Al-Shahry M,Ingler Jr W B.Efficient photochemical water splitting by a chemically modified n-TiO_2.[J]Science 2002;297:2243-2245.
    [40]Sakthivel S,Kisch H.Daylight photocatalysis by carbon-modified titanium dioxide.[J]Angew Chem Int Ed 2003;42:4908-4911.
    [41]Li Y,Hwang D-S,Lee N-H,Kim S-J.Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst.[J]Chem Phys Lett 2005;404:25-29.
    [42]Lee S,Yun CY,Hahn MS,Lee J,Yi J.Synthesis and characterization of carbon-doped titania as a visible-light-sensitive photocatalyst.[J]Korean J Chem Eng 2008;25:892-896.
    [43]Ho W,Yu J C,Lee S.Synthesis of hierarchical nanoporous F-doped TiO_2 spheres with visible light photocatalytic activity.[J]Chem Commun 2006:1115-1117.
    [44]Umebayashi T,Yamaki T,Itoh H,Asai K.Band gap narrowing of titanium dioxide by sulfur doping.[J]Appl Phys Lett 2002;81:454-456.
    [45]Zhou Z,Zhang X,Wu Z,Dong L.Mechanochemical preparation of sulfur-doped nanosized TiO_2 and its photocatalytic activity under visible light.[J]Chin Sci Bull 2005;50:2691-2695.
    [46]Takeshita K,Yamakata A,Ishibashi T A,Onishi H,Nishijima K,Ohnoc T.Transient IR absorption study of charge carriers photogenerated in sulfur-doped TiO_2.[J]J Photochem Photobiol A 2006;177:269-275.
    [47]Chen D,Yang D,Wang Q,Jiang Z.Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles.[J]Ind Eng Chem Res 2006;45:4110-4116.
    [48]Lin L,Li W,Xie J L,Zhu Y X,Zhao B Y,Xie Y C.Photocatalytic properties of phosphor-doped titania nanoparticles.[J]Appl Catal B 2007;75:52-58.
    [49]陈恒,龙明策,徐俊,蔡伟民.可见光响应的氯掺杂TiO_2的制备、表征及其光催化活性.[J]催化学报2006;27(10):890-894.
    [50]Zhao W,Ma W H,Chen C C,Zhao J C,Shuai Z G.Efficient degradation of toxic organic pollutants with Ni_2O_3/TiO_(2-x)B_x under visible irradiation.[J]J Am Chem Soc 2004;126:4782-4783.
    [51]Li D,Haneda H,Hishita S,Ohashi N.Visible-light-driven N-F-co-doped TiO_2 photocatalysts.1.Synthesis by spray pyrolysis and surface characterization.[J]Chem Mater 2005;17:2588-2595.
    [52]Li D,Haneda H,Hishita S,Ohashi N.Visible-light-driven N-F-codoped TiO_2photocatalysts.2.Optical characterization,photocatalysis,and potential application to air purification. [J] Chem Mater 2005; 17:2596-2602.
    [53]Zhang G, Ding X, He F, Yu X, Zhou J, Hu Y, Xie J. Preparation and photocatalytic properties of TiO_2-montmorillonite doped with nitrogen and sulfur. [J] J Phys Chem Solids 2008;69:1102-1106.
    [54]Lin L, Zheng R Y, Xie J L, Zhu Y X, Xie Y C. Synthesis and characterization of phosphor and nitrogen co-doped titania, Appl. Catal. B. [J] 2007;76 :196-202.
    [55]Ozaki H, Iwamoto S, Inoue M. Improved visible-light responsive photocatalytic activity of N and Si co-doped titanias.[J] J Mater Sci 2007;42:4009-4017.
    [56]Sakatani Y, Nunoshige J, Ando H, Okusako K, Koike H, Takata T, Kondo J N, Hara M, Domen K. Photocatalytic decomposition of acetaldehyde under visible light irradiation over La~(3+) and N co-doped TiO_2.[J] Chem Lett 2003;32:l 156-1157.
    [57]Pan C-C, Wu J C S.Visible-light response Cr-doped TiO_(2-X)N_X photocatalysts. [J]Mater Chem Phys 2006; 100:102-107.
    [58]Reyes-Garcia E A, Sun Y, Raftery D. Solid-state characterization of the nuclear and electronic environments in a boron-fluoride co-doped TiO_2 visible-light photocatalyst. [J] J Phys Chem C 2007; 111:17146-17154.
    [59]Wei C-H, Tang X-H, Liang J-R, Tan S-Y. Preparation, characterization and photocatalytic activities of boron-and cerium-codoped TiO_2.[J] J Environ Sci 2007;19: 90-96.
    [60]Hong W-J, Kang M. The super-hydrophilicities of Bi-TiO_2, V-TiO_2, and Bi-V-TiO_2 nano-sized particles and their benzene photodecompositions with H_2O addition. [J] Mater Lett 2006; 60:1296-1305
    [61]Hamal D B, Klabunde K J. Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO_2.[J] J Colloid Interface Sci 2007;311: 514-522.
    [62]Wang W D, Silva C G, Faria J L. Photocatalytic degradation of Chromotrope 2R using nanocrystallineTiO_2/activated-carbon composite catalysts. [J] Appl Catal B 2007;70:470-478.
    [63]Xie C, Yang Q, Xu Z, Liu X, Du Y. New route to synthesize highly active nanocrystalline sulfated titania-silica: Synergetic effects between sulfate species and silica in enhancing the photocatalysis efficiency . [J] J Phys Chem B 2006; 110:8587-8592.
    
    [64]Zhang H M, Quan X, Chen S,Zhao H M. Fabrication and characterization of silica/titania nanotubes composite membrane with photocatalytic capability.[J]Environ Sci Technol.2006;40:6104-6109.
    [65]Li Y,Kim S J.Synthesis and characterization of nano titania particles embedded in mesoporous silica with both high photocatalytic activity and adsorption capability.[J]J Phys Chem B 2005;109:12309-12315.
    [66]Yang Q C,Xie C,.Xu Z L,Gao Z M,Li Z H,Wang D J,Du Y G.Effects of synthesis parameters on the physico-chemical and photoactivity properties of titania-silica mixed oxide prepared via basic hydrolyzation.[J]J Mol Catal A 2005;239:144-150.
    [67]Jung K Y,Park S B,Ihm S-K.Local structure and photocatalytic activity of B_2O_3-SiO_2/TiO_2ternary mixed oxides prepared by sol-gel method.[J]Appl Catal B 2004;51:239-245.
    [68]d'Hennezel O,Pichat P,Ollis D F.Benzene and toluene gas-phase photocatalytic degradation over H_2O and HCL pretreated TiO_2:by-products and mechanisms.[J]J Photochem Photobiol A 1998;118:197-204.
    [69]Kozlov D V,Paukshtis E A,Savinov E N.The comparative studies of titanium dioxide in gas-phase ethanol photocatalytic oxidation by the FTIR in situ method.[J]Appl Catal B 2000;24:L7-L12.
    [70]Muggli D S,Ding L.Photocatalytic performance of sulfated TiO_2 and Degussa P-25 TiO_2during oxidation of orga.[J]Appl Catal B 2001;32:181-194.
    [71]He,J J;Zhao,JC;Shen,T,et al.Title:Photosensitization of colloidal titania particles by electron injection from an excited organic dye-antennae function.[J]J Phem Chem B 1997;101:9027-9034.
    [72]Horikoshi S,Kajitani M,Serpone,N.The microwave-/photo-assisted degradation of bisphenol-A in aqueous TiO_2 dispersions revisited - Re-assessment of the microwave non-thermal effect.[J]J Photochem Photobiol A 2007;188:1-4
    [73]陈国宁,王双飞,邓超冰,杨滨,曾进.超声波协同光催化处理氯酚废水影响因素研究.[J]纸和造纸2008;27(4):58-60.
    [74]Kang M,Kim B-J,Cho S M,Chung C-H,Kim B-W,Han G Y,YoonK J.Decomposition of toluene using an atmospheric pressure plasma/TiO_2 catalytic system.[J]J Mol Catal A 2002;180:125-132.
    [75]樊彩梅,郭向丹,梁镇海,孙彦平.TiO_2薄膜电极的制备及光电催化性能.[J]稀有金属材料与 工程 2005;34(3):409-412.
    [76]王怡中,陈梅雪,胡春,王菊思.光催化氧化与生物氧化组合技术对染料化合物降解研究.[J]环境科学学报2000;20:772-775.
    [77]Modestov A D,Lev O.Photocatalytic oxidation of 2,4-dichlorophenoxyacetic acid with titania photocatalyst.Comparison of supported and suspended TiO_2.[J]J Photochem Photobiol A 1998;112:261-270.
    [78]Nam J-J,Itoh K,Murabayashi M.Photocatalytic activity of TiO_2 thin film-effect of substrate.[J]Electrochemistry 2002;70:429-431.
    [79]Hu H,XiaoW-J,Yuan J,Shi J-W,Chen M-X,Shang-Guan W-F.Preparations of TiO_2 film coated on foam nickel substrate by sol-gel processes and its photocatalytic activity for degradation of acetaldehyde.[J]J Environ Sci 2007;19:80-85.
    [80]戴文新,王绪绪,邵宇,付贤智,刘平.铝材表面状态对TiO_2薄膜光催化性能和光致亲水性的影响.[J]高等学校化学学报2004;25(7):1310-1313.
    [81]Yu Z,Mielczarski E,Mielczarski J,Laub D,Buffat P,Klehm U,Albers P,Lee K,Kulik A,Kiwi-Minsker L,Renken A,Kiwi J.Preparation,stabilization and characterization of TiO_2 on thin polyethylene films(LDPE).Photocatalytic applications.[J]Water Res 2007;41:862-874.
    [82]Shchukin D G,Kulak AI,Sviridov DV.Magnetic photocatalysts of the core-shell type.[J]Photoch Photobio Sci 2002;1:742-744.
    [83]Sonawane R S,Hegde S G,Dongare M K.Preparation of titanium(Ⅳ) oxide thin film photocatalyst by sol-gel dip coating.[J]Mater Chem Phys 2003;77:744-750.
    [84]Hoffmann M R,Martin S T,Choi W,Bahnemann D W.Environmental Applications of Semiconductor Photocatalysis.[J]Chem Rev 1995;95:69-96.
    [85]Rosana M.Alberici,Wilson F.Jardim.Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide.[J]Appl Catal B 1997;14(1-2):55-68.
    [86]桥本和仁,藤岛昭主编(日本).邱建荣,朱从善译.[M]图解光催化技术大全.北京:科学出版社,2007.
    [87]刘春艳编著.[M]纳米光催化及光催化环境净化材料.北京:化学工业出版社,2007.
    [88]史载锋,包帆帆,晋茜,胡颖.TiO_2/陶瓷光催化自洁杀菌性能研究.[J]环境科学与技术2008;31:109-112.
    [89]王晓强,张剑平,朱惟德,施利毅.纳米TiO_(2-x)N_x光催化剂的特性及其在净化空气功能性内 墙涂料中的甲醛分解动力学研究[J]涂料工业2006;36:1-3.
    [90]刘顺华,刘军民,董星龙编.[M]电磁波屏蔽及吸波材料.北京:化学工业出版社,2007.
    [9]]赵玉峰,肖瑞,赵东平编.[M]电磁辐射的抑制技术.北京:中国铁道出版社,1990.
    [92]Gandhi O P,Lazzi G,Furse C M.Electromagnetic absorption in the human head and neck for mobile telephone at 835 and 1900 MHz.[J]IEEE Trans Microw Theory 1996;44:1884-1896.
    [93]Hirata A,Matsuyama S,Shiozawa T.Temperature rises in the human eye exposed to EM wave in the frequency 0.6-6GHz.[J]IEEE Trans Electromagn Compat 2000;42:386-392.
    [94]Repacholi M H.Low-Level Exposure to RF electromagnetic fields:Health effects & research needs.[J]Bioelectromagnetics 1998;19:1-19.
    [95]高攸纲.谈电磁环境对生态的危害影响.[J]邮电设计技术1996;(11):28-31.
    [96]崔亚松,钟儒刚,曾毅.手机辐射对健康的影响.[J]国际生物医学工程杂志2007;30:42-45.
    [97]李刚,杨英超,林凌,程立君.电磁场的生物效应的研究现状与展望.[J]生命科学仪器2008;6(3):3-7.
    [98]刘鹏程,邱杨.电磁兼容原理及技术.北京:高等教育出版社,1993.
    [99]管洪涛.石英和水泥基体平板吸波材料研究.[博士学位论文]大连理工大学,2006.
    [100]冯桂山.计算机泄密机理及防护技术介绍.[J]宇航计测技术1994,13(1):27-32.
    [101]单国栋,戴英霞,王航.计算机电磁信息泄露与防护措施.[J]电子技术应用2002;(4):6-8.
    [102]韩毅.计算机泄密的主要途径与防范.[J]教育信息化2005;(9):26-27.
    [103]杨士元.电磁屏蔽理论与实践.[M]北京:国防工业出版社,2006
    [104]邢丽英等编著.隐身材料.[M]北京:化学工业出版社,2004
    [105]王海.雷达吸波材料的研究现状和发展方向.[J]上海航天1999;(1):55-59.
    [106]谢俊磊,杜仕国,施冬梅.新型雷达吸波材料研究进展.[J]飞航导弹2008;(1):58-61.
    [107]朱立群,古境,李卫平,刘慧丛,赵波.无纺布织物涂层的吸波性能.[J]航空材料学报2008;28(4):70-75.
    [108]Liu Z,Bai G,Huang Y,Li F,Ma Y,Guo T,He X,Lin X,Gao H,Chen Y.Microwave absorption of single-walled carbon nanotubes/soluble cross-linked polyurethane composites.[J]J Phys Chem C 2007;111:13696-13700.
    [109]Cao J,Chung D D L.Colloidal graphite as an admixture in cement and as a coating on cement for electromagnetic interference shielding.[J]Cem Concr Res 2003;33:1737-1740.
    [110]Kagotani T,Kobayashi R,Sugimoto S,Inomata K,Okayama K,Akedo J.Magnetic properties and microwave characteristics of Ni-Zn-Cu ferrite film fabricated by aerosol deposition method.[J]J Magn Magn Mater 2005;290-291:1442-1445.
    [111]Motojima S,Hoshiya S,Hishikawa Y.Electromagnetic wave absorption properties of carbon microcoils/PMMA composite beads in W bands.[J]Carbon 2003;41:2658-2660.
    [112]Park K Y,Lee S E,Kim C G,Han J H.Fabrication and electromagnetic characteristics of electromagnetic wave absorbing sandwich structures.[J]Compos Sci Technol 2006;66:576-584.
    [113]周磬我,张公正,范广裕.[M]功能材料学.北京:北京理工大学出版社,2002.
    [114]方亮,龚荣州.雷达吸波材料的现状与展望.[J]武汉工业大学学报1999;(6):21-24.
    [115]OImedo L,Hourquebie P,Jousse F.Microwave absorbing materials based on conducting polymers.[J]Adv Mater 1993;5:373-377.
    [116]Pinho M S,Gregori M L,Carvalho A S,Nunes R C R,Soares B G.Addition effect of barium and strontium titanate on the reflectivity of ferri and ferromagnetic composites.[J]Microw Opt Technol Lett 2002;32:325-326.
    [117]Che R C,Peng L M,Duan X F,Chen Q,Liang X L.Microwave Absorption Enhancement and Complex Permittivity and Permeability of Fe Encapsulated within Carbon Nanotubes.[J]Adv Mater 2004;16:401-405.
    [118]Barba A A,Lamberti G,Amore M,Acierno D.Carbon black/silicone rubber blends as absorbing materials to reduce electro magnetic interferences(EMI).[J]Polym Bull 2006;57:587-593.
    [119]Fan Z,Luo G,Zhang Z,Zhou L,Wei F.Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites.[J]Mater Sci Eng B 2006;132:85-89.
    [120]Zhang H,Zhang J,Zhang H.Electromagnetic properties of silicon carbide foams and their composites with silicon dioxide as matrix in X-band.[J]Composites Part A 2007;38:602-608.
    [121]Kim S-H,Park Y-G,Kim S-S.Double-layered microwave absorbers composed of ferrite and carbon fiber composite laminates.[J]Phys.Status Solidi C 2007;4:4602-4605.
    [122]Tanrattanakul V,Bunchuay A.Microwave absorbing rubber composites containing carbon black and aluminum powder.[J]J Appl Polym Sci 2007;105:2036-2045.
    [123]H(?)kansson E,Amiet A,Nahavandi S,Kaynak A.Electromagnetic interference shielding and radiation absorption in thin polypyrrole films.[J]Eur Polym J 2007;43:205-213.
    [124]Kim J B,Lee S K,Kim C G.Comparison study on the effect of carbon nano materials for single-layer microwave absorbers in X-band.[J]Compos Sci Technol 2008;68:2909-2916.
    [125]Fan Y,Yang H,Liu X,Zhu H,Zou G.Preparation and study on radar absorbing materials of nickel-coated carbon fiber and flake graphite.[J]J Alloys Compd 2008;461:490-494.
    [126]Wu K H,Ting T H,Wang G P,Ho W D,Shih C C.Effect of carbon black content on electrical and microwave absorbing properties of polyaniline/carbon black nanocomposites.[J]Polym.Degrad.Stabil.2008;93:483-488.
    [127]Lakshmi K,John H,Mathew K T,Joseph R,George K E.Microwave absorption,reflection and EMI shielding of PU-PANI composite.[J]Acta Mater 2009;57:371-375.
    [128]Wen B,Zhao J,Duan Y,Li T,Zhao Y,Dong C,Liu S,Jin J.Numerical analysis of effects of thickness on electromagnetic wave absorption properties of CPCCB/paraffin wax composite.[J]Appl Phys B 2006;83:629-633.
    [129]Neelakanta P S.Handbook of electromagnetic materials.CRC Press,Boca Raton,1995.
    [130]Musal H M J,Hahn H T.Thin-layer electromagnetic absorber design.[J]IEEE Trans Magn 1989;25:3851-3853.
    [131]吴晓光,车哗秋编译.[M]国外徽波吸收材料.长沙:国防科技大学出版社,1992.
    [132]宫清,方正,张劲.雷达波吸收材料的研究进展.[J]材料导报2002;16(11):45-47.
    [133]Pereira F M M,Santos M R P,Sohn R S T M,Almeida J S,Medeiros A M L,Costa M M,Sombra A S B.Magnetic and dielectric properties of the M-type barium strontium hexaferrite(Ba_x Sr_(1-x)Fe_(12)O_(19))in the RF and(MW)frequency range.[J]J Mater Sci:Mater Electron 2009;20:408-417.
    [134]Giannakopoulou T,Kompotiatis L,Kontogeorgakos A,Kordas G.Microwave behavior of ferrites prepared via sol-gel method.[J]J Magn Magn Mater 2002;246:360-365.
    [135]Meshram M R,Agrawal N K,Sinha B,Misra P S.Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber.[J]J Magn Magn Mater 2004;271:207-214.
    [136]Singh P,Babbar V K,Razdan A,Srivastava S L,Agrawal V K,Goel T C.Dielectric constant,magnetic permeability and microwave absorption studies of hot-pressed BaCoTi hexaferrite composites in X-band.[J]J Mater Sci 2006;41:7190-7196.
    [137]方以坤,汪忠柱,方庆清.纳米级六角晶系M型铁氧体微波吸收特性的研究.[J]功能材料2001;32(4):370-371.
    [138]Lima U R,Nasar M C,Nasar R S,Rezende M C,Arafijo J H.Ni-Zn nanoferrite for radar-absorbing material.[J]J Magn Magn Mater 2008;320:1666-1670.
    [139]Bueno A R,Gregori M L,N6brega M C S.Microwave-absorbing properties of Ni_(0.50-x)Zn_(0.50-x)Me_(2x)Fe_2O_(4)(Me=Cu,Mn,Mg)ferrite-wax composite in X-band frequencies.[J]J Magn Magn Mater 2006;320:864-870.
    [140]Jia L,Luo J,Zhang H,Jing Y,Shi Y.Effect of Y_2O_3 additive on the microstructure and high-frequency properties of Z-type hexaferrites.[J]J Magn Magn Mater 2008;321:77-80.
    [141]李明辉,付乌有,李伊荇,杨海滨.空心玻璃微珠表面的CoFe_2O_4包覆及其微波吸收性能研究.[J]现代仪器2007;(5):10-12.
    [142]Gorshenev V N,Bibikov S B,Spector V N.Simulation,synthesis and investigation of microwave absorbing composite materials.[J]Synthetic Met 1997;86:2255-2256.
    [143]Wang G,Chen X,Duan Y,Liu S.Electromagnetic properties of carbon black and barium titanate composite materials.[J]J Alloy.Compd.2008;454:340-346.
    [144]Oh J H,Oh K S,Kim C G,Hong C S.Design of radar absorbing structures using glass/epoxy composite containing carbon black in X-band frequency ranges.[J]Composites Part B 2004;35:49-56.
    [145]Kwon S K,Ahn J M,Kim G H,Chun C H,Hwang J S,Lee J H.Microwave absorbing properties of carbon black/silicone rubber blend.[J]Polym Eng Sci 2002;42(11):2165-2171.
    [146]张昕,刘顺华,段玉平,管洪涛,温斌.纳米二氧化锰掺杂炭黑复合材料电磁特性的研究.[J]航空材料学报2007;27(2):58-61.
    [147]贺福.[M]碳纤维及其应用技术.北京:化学工业出版社,2004.
    [148]邹田春,赵乃勤,师春生.活性碳纤维/树脂复合吸波材料的设计.[J]功能材料与器件学报2007;13(1):54-58.
    [149]Tianchun Zou,Chunsheng Shi,Naiqin Zhao,Microwave absorbing properties of activated carbon-fiber felt dipole array/epoxy resin composites.[J]J Mater Sci 2007;42:4870-4876.
    [150]Xie W,Cheng H-F,Chu Z-Y,Zhou Y-J,Liu H-T,Chen Z-H.Effect of FSS on microwave absorbing properties of hollow-porous carbon fiber composites.[J]J Mater Design 2009;30:1201-1204.
    [151]Shen G,Xu Z,Li Y.Absorbing properties and structural design of microwave absorbers based on W-type La-doped ferrite and carbon fiber composites.[J]J Magn Magn Mater 2006;301:325-330.
    [152]Zhao N,Zou T,Shi C,Li J,Guo W.Microwave absorbing properties of activated carbon-fiber felt screens(vertical-arranged carbon fibers)/epoxy resin composites.[J]Mater Sci Eng:B 2006;127:207-211.
    [153]Nanni F,Travaglia P,Valentini M.Effect of carbon nanofibres dispersion on the microwave absorbing properties of CNF/epoxy composites.[J]Compos Sci Technol 2009;69:485-490.
    [154]曾祥云,李家俊,师春生.碳纤维在电磁功能复合材料中的应用.[J]材料导报1998;(2):64-67.
    [155]Iijima S.Helical microtubules of graphitic carbon.[J]Nature 1991;354:56-58.
    [156]Xie X-L,Mai Y-W,Zhou X-P.Dispersion and alignment of carbon nanotubes in polymer matrix:A review.[J]Mater Sci Eng R 2005;49:89-112.
    [157]Zhao D-L,Li X,Shen Z-M.Microwave absorbing property and complex permittivity and permeability of epoxy composites containing Ni-coated and Ag filled carbon nanotubes[J]Compos Sci Technol 2008;68:2902-2908.
    [158]Feng X,Liao G,Du J,Dong L,Jin K,Jian X.Electrical conductivity and microwave absorbing properties of nickel-coated multiwalled carbon nanotubes/poly(phthalazinone ether sulfone ketone)s composites.[J]Polym Eng Sci 2008;48:1007-1014.
    [159]Xiang C,Pan Y,Liu X,Sun X,Shi X,Guo J.Microwave attenuation of multiwalled carbon nanotube-fused silica composites.[J]Appl Phys Lett 2005;87:123103.
    [160]Lin H,Zhu H,Guo H,Yu L.Investigation of the microwave-absorbing properties of Fe-filled carbon nanotubes.[J]Mater Lett 2007;61:3547-3550.
    [161]Zhang H,Zhang J,Zhang H.Computation of radar absorbing silicon carbide foams and their silica matrix composites.[J]Comp Mater Sci 2007;38:857-864.
    [162]王军,宋永才.掺混型碳化硅纤维及其微波吸收特性.[J]材料工程1998;(5):41-43.
    [163]赵东林,周万城,万伟.纳米复相粉体的微波介电特性.[J]物理学报2001;50:2471-2476.
    [164]Li Y,Wang R,Qi F,Wang C.Preparation,characterization and microwave absorption properties of electroless Ni-Co-P coated SiC powder.[J]Appl Surf Sci 2008;254:4708-4715.
    [165]Wang Y,Afsar M N.Measurement of complex permittivity and permeability of carbonyl iron powders at microwave frequencies.Microw Opt Technol Lett 2004;42:458-459.
    [166]Kim I,Bae S,Kim J.Composition effect on high frequency properties of carbonyl-iron composites.[J]Mater Lett 2008;62:3043-3046.
    [167]陈利民,元家钟.γ-(Fe,Ni)合金粉开发与应用研究.[J]材料开发与应用1998;12(4):1-4
    [168]童国秀,官建国,张五一,张巍,王维,董德明.[J]金属学报2008;44:1001-1005.
    [169]Wu M,He H,Zhao Z,Yao X.Preparation of magnetic cobalt fibres and their microwave properties.[J]J Phys D 2000;33:2927-2930.
    [170]Yu M,Li X,Gong R,He Y,He H,Lu P.Magnetic properties of carbonyl iron fibers and their microwave absorbing characterization as the filler in polymer foams.[J]J Alloy Compd 2008;456:452-455
    [171]Kimura S,Kato T,Hyodo T,Shimizu Y,Egashira M.Electromagnetic wave absorption properties of carbonyl iron-ferrite/PMMA composites fabricated by hybridization method.[J]J Magn Magn Mater 2007;312:181-186.
    [172]邓建国,王建华,贺传兰.纳米微波吸收剂研究现状与进展.[J]宇航材料工艺2002;32(5):5-9.
    [173]刘飚,官建国,王琦.纳米技术在微波吸收材料中的应用.[J]材料导报 2003;17(3):45-47,58.
    [174]王丽熙,张其土.微波吸收剂的研究现状与发展趋势.[J]材料导报2005;19(9):26-29,40.
    [175]熊国宣,徐玲玲,邓敏,黄海青,唐明述.掺杂TiO_2水泥的吸波性能与力学性能研究.[J]功能材料与器件学报2005;11(1):87-91
    [176]万梅香.导电高聚物微波吸收剂里的研究.[J]物理学报1992;41(6):917-923.
    [177]Truong V T,Riddell S Z,Muscat R F.Polypyrrole based microwave absorbers.[J]J Mater Sci 1998;33:4971-4976.
    [178]Chandrasekhar P,Naishadham K.Broadband microwave absorption and shielding properties of a poly(aniline).[J]Synth Met 1999;105:115-120.
    [179]吕绪良,许卫东.聚噻吩导电聚合物及其微波吸收性能研究.[J]工兵装备研究2002;21(2):18-22.
    [180]Jaggard D L,Liu J C,Sun X.Spherical chiroshield.[J]Electron Lett 1991;27:77-79.
    [181]徐生求,段永法.新型吸波材料的研究现状与展望.[J]空军雷达学院学报2001;15(1):45-48.
    [182]赵东林,沈曾民,螺旋形手征碳纤维的微波介电特性.[J]无机材料学报2003;18(5):1057-1062.
    [183]Ge M,Shen Z,Chi W,Liu H.Anisotropy of mesophase pitch-derived carbon foams.[J]Carbon 2007;45:141-145.
    [184]李述文,范如霖.[M]实用有机化学手册.上海:上海科学技术出版社,1981.
    [185]Clinton R.[J].Aviation Week and Space Technolgy,1987;128(20):52-58.
    [186]熊国宣.水泥基复合吸波材料.[博士学位论文]南京工业大学,2005.
    [187]Feng Y B,Qiu Tai,Zhang Jun,Shen C Y.Effects of silane coupling agent on microstructure and mechanical properties of EPDM/carbonyl iron microwave absorbing patch.[J]J Wuhan Univ Technol-Mat Sci Edit 2006;21(4):78-82.
    [188]Feng Y B,Qiu Tai,Li X Y,Shen C Y.Microwave absorption properties of the carbonyl iron/EPDM radar absorbing materials.[J]J Wuhan Univ Technol-Mat Sci Edit 2007;22(2):266-270.
    [189]Faez R,Reis A D,Soto-Oviedo M A,Rezende M C,Paoli M A D.Microwave absorbing coatings based on a blend of nitrile rubber,EPDM rubber and polyaniline.[J]Polym Bull 2005;55:299-307.
    [190]康青编著.[M]新型微波吸收材料.北京:科学出版社,2006.
    [191]张兴华,何显运,梁健军,罗乐然.碳黑/无机材料填充聚合物复合材料的微波吸收特性.[J]材料导报2002;16(7):76-77.
    [192]戴全辉.20世纪隐身科学的主要成就及其对武器装备和战略技术发展的影响.[J]飞航导弹2003;(12):1-3.
    [193]Tang J,Radosz M,Shen Y.Poly(ionic liquid)s as optically transparent microwave absorbing materials.[J]Macromolecules 2008,41:493-496.
    [194]Petrov V M,Gagulin V V.Microwave absorbing materials.[J]Inorg Mater 2001;37:93-98.
    [195]Saib A,Bednarz L,Daussin R,Bailly C,Lou X,Thomassin,J M,Pagnoulle C,Detrembleur C,Jerome R,Huynen I.Carbon nanotube composites for broadband microwave absorbing materials.[J]IEEE Trans.Microwave Theor Tech 2006;54:2745-2754.
    [196]王道登.LLDPE/POE/CaCO_3防水透湿微孔膜剂多层复合膜研究.[硕士学位论文]浙江大学,2007.
    [197]王道登,孙建中,周其云.工艺条件对LLDPE/POE/CaCO_3微孔膜的孔结构及防水透湿性 2008;21(1):92-95.
    [198]Hashimoto K, Irie H, Fujishima A. TiO_2 photocatalysis: A Historical overview and future prospects.[J] Jpn J Appl Phys 2005:44:8269-8285.
    [199]Lam R C W, Leung M K H, Leung D Y C, Vrijmoed L L P, Yam W C, Ng S P. Visible-light-assisted photocatalytic degradation of gaseous formaldehyde by parallel-plate reactor coated with Cr ion-implanted TiO_2 thin film.[J]Sol Energy Mater Sol Cells 2007;91:54-61.
    [200]Gombac V, Rogatis L D, Gasparotto A, Vicario G, Montini T, Barreca D,Balducci G, Fornasiero P,Tondello E,Graziani M.TiO_2 nanopowders doped with boron and nitrogen for photocatalytic applications.[J] Chem Phys 2007;339:l 11-123.
    [201]Li H, Li J, Huo Y. Highly Active TiO_2N Photocatalysts Prepared by Treating TiO_2 Precursors in NH_3/Ethanol Fluid under Supercritical Conditions.[J J Phys Chem B 2006;110:1559-1565.
    [202]Tayade R J , Kulkarni R G, Jasra R V. Photocatalytic degradation of aqueous nitrobenzene by nanocrystalline TiO_2 [J] Ind Eng Chem Res 2006;45: 922-927.
    [203]Lide D R, Editor-in Chief. [M] CRC Handbook of Chemistry and Physics, 80~(th) Edition. Boca Raton Florida: CRC Press, 1999.
    [204]Joyner D J, Hercules D M. Chemical bonding and electronic structure of B_2O_3, H_3BO_3, and BN: An ESCA, Auger, SIMS, and SXS study.[J]J Chem Phys 1980;72: 1095-1108.
    [205]Schreifels J A, Maybury P C, Swartz W E. X-Ray photoelectron spectroscopy of nickel boride catalysts: Correlation of surface states with reaction products in the hydrogenation of acrylonitrile.[J] J Catal 1980;65:195-206.
    [206]Mavel G, Escard J, Costa P, Castaing J. ESCA surface study of metal borides.[J] Surf Sci 1973;35:109-116.
    [207]Wagner C D, Riggs W M, Davis L E, Moulder J F, in: GE Muilenberg(Ed.). Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer Co., Minnesota, 1979.
    [208]Badrinarayanan S, Sinha S, Mandale A B. XPS studies of nitrogen ion implanted zirconium and titanium. [J] J Electron Spectrosc Relat Phemon 1989; 49:303-309.
    
    [209]Biwer B M, Bernasek S L. Electron spectroscopic study of the iron surface and its interaction with oxygen and nitrogen. [J] J Electron Spectrosc Relat Phemon 1986;40: 339-351.
    [210]Armelao L,Barreca D,Bottaro G,Gasparotto A,Tondello E,Ferroni M,Polizzi S.Au/TiO_2Nanosystems:A Combined RF-Sputtering/Sol-Gel Approach.[J]Chem Mat 2004;16:3331-3338.
    [211]Nukumizu K,Nunoshig J,Takata T,Kondo J N,Hara M.TiN_xO_yF_z as a stable photocatalyst for water oxidation in visible light(<570 nm).[J]Chem Lett 2003;32:196-197.
    [212]Wan L,Li J-F,Feng J-Y,Sun W,MaoZ Q.Improved optical response and photocatalysis for N-doped titanium oxide(TiO_2)films prepared by oxidation of TiN.[J]Appl Sur Sci 2007;253:4764-4767.
    [213]Fittipaldi M,Gombac V,Montini T,Fornasiero P,Graziani M.A high-frequency(95 GHz)electron paramagnetic resonance study of B-doped TiO_2 photocatalysts.[J]Inorg Chin Acta 2008;361:3980-3987.
    [214]Iwasaki M,Hara M,Kawada H,Taday H,Ito S.Cobalt ion-doped TiO_2 photocatalyst response to visible light.[J]J Colloid Interface Sci 2000;224:202-204.
    [215]Ling Q C,Sun J Z,Zhou Q Y.Preparation and characterization of visible-light-driven titania photocatalyst co-doped with boron and nitroge.[J]Appl Surf Sci 2008;254:3236.
    [216]Joyner DJ,Johnson O,Hercules D M.A Study of the iron borides.1.Electron spectroscopy.[J]J Am Chem Soc 1980;102:1910-1917.
    [217]Mills P,Sullivan J L.A study of the core level electrons in iron and its three oxides by means of X-ray photoelectron spectroscopy.[J]J Phys D 1983;16:723-732.
    [218]Mclntyre N S,Zetaruk D G.X-ray photoelectron spectroscopic studies of iron oxides.[J]Anal Chem 1977;49:1521-1529.
    [219]Praline G,Koel B E,Hance R L,Lee H I,White J M.X-Ray photoelectron study of the reaction of oxygen with cerium.[J]J Electron Spectrosc Relat Phenom 1980;21:17-30.
    [220]Li F B,Li X Z,Hou M F,Cheah K W,Choy W C H.Enhanced photocatalytic activity of Ce~(3+)-TiO_2 for 2-mercaptobenzothiazole degradation in aqueous suspension for odour control.[J]Appl Catal A 2005;285:181-189.
    [22]]井立强,李晓倩,李姝丹,王百齐,辛柏福,付宏刚,王德军,蔡伟民.纳米Au/TiO_2光催化剂的XPS和SPS研究.[J]催化学报2005;26(3):189-193.
    [222]Yang K S,Dai Y,Huang B B.Origin of the photoactivity in boron-doped anatase and rutile TiO_2 calculated from first principles.[J]Phys Rev B 2007;76:195201
    [223]Lukac J,Klementova M,Bezdicka P,Bakardjieva S,Subrt J,Szatmary L,Bastl Z,Jirkovsky J.lnfluence of Zr as TiO_2 doping ion on photocatalytic degradation of 4-chlorophenol.[J]Appl Catal B 2007;74:83-91.
    [224]肖奇,邱冠周,徐兢,胡岳华.纳米TiO_2表面修饰理论与实践.[J]功能材料2002;33(1):9-11.
    [225]Shen X Z,Liu Z C,Xie S M,Guo J.Degradation of nitrobenzene using titania photocalyst co-doped with nitrogen and cerium under visible light illumin.[J]J Hazard Mater 2009;162:1193-1198
    [226]Ling Q C,Ling,Sun J Z,Zhou Q Y,Zhao Q,Ren H.Visible-light-driven boron/ferrurn/cerium/titania photocatalyst.[J]J Photochem Photobiol A 2008;200:141-147.
    [227]Stakheev A Y,Shpiro E S,Apijok J.XPS and XAES study of titania-silica mixed oxide system.[J]J Phys Chem 1993;97:5668-5672.
    [228]Duran A,Serna C,Fornes V,Fernandez Navarro J M.Structural considerations about SiO_2glasses prepared by sol-gel.[J]J Non-Cryst Solids 1986;82:69-77.
    [229]Dutoit D C M,Schmeider M,Baiker A.Titania-silica mixed oxides:I.Influence of sol-gel and drying conditions on structural properties.[J]J Catal 1995;153:165-176.
    [230]Jung K Y,ParkS B.Enhanced photoactivity of silica-embedded titania particles prepared by sol-gel process for the decomposition of trichloroethylene.[J]Appl Catal B 2000;25:249-256.
    [231]Xie T-H,Lin J.Origin of photocatalytic deactivation of TiO_2 film coated on ceramic substrate.[J]J Phys Chem C 2007;111:9968-9974.
    [232]陈崧哲,张彭义,祝万鹏,陈乐.不同基材上TiO_2膜的表征和光催化活性评价.[J]催化学报2004;25(8):641-647.
    [233]Lee J S,Song H W,Lee W J,Yu B G,No,K.Effects of process parameters on titanium dioxide thin film deposited using ECR MOCVD.[J]Thin Solid Films 1996;287:120-124.
    [234]Pizem H,Sukenik C N.Effects of substrate surface functionality on solution-deposited titania films.[J]Chem Mater 2002;14:2476-2485.
    [235]Eufinger K,Poelman D,Poelman H,Gryse R D,Marin G B.Photocatalytic activity of dc magnetron sputter deposited amorphous TiO_2 thin films.[J]Appl Surf Sci 2007;254:148-152
    [236]黄婉霞,孙作风,吴建春,涂铭旌.纳米二氧化钛光催化作用降解甲醛的研究.[J]稀有金 属2005;29(1):34-38.
    [237]Yu Z,Keppner H,Laub D,Mielczarski E,Mielczarski J,Kiwi-Minsker L,Renken A,Kiwi J.Photocatalytic discoloration of methyl orange on innovative parylene-TiO_2 flexible thin films under simulated sunlight.[J]Appl Catal B 2008;79:63-71.
    [238]黄冬根,廖石,党志,杨杰,郭伟.催化荧光灯的制备及其降解甲醛的能力.[J]华南理工大学学报(自然科学版)2006;34(10):36-39.
    [239]Ling Q C,Sun J Z,Zhou Q Y,Ren H,Zhao Q.Visible-light-driven titania/silica photocatalyst co-doped with boron and ferrum.[J]Appl Surf Sci 2008;254:6731-6735.
    [240]丁震,陈晓东,林萍,付德刚,袁春伟.纳米TiL_2对气相中甲醛光催化降解的研究.[J]环境科学研究2006;19(4):74-79.
    [241]Feng Y B,Qiu T,Shen C Y.Absorbing properties and structural design of microwave absorbers based on carbonyl iron and barium ferrite.[J]J Magn Magn Mater 2007;318:8-13.
    [242]周一平,刘归,周克省,孔德明,尹荔松.纳米Fe_3O_4/PANI复合体系的微波电磁特性研究.[J]湖南大学学报.2006:33(6):81-84.
    [243]Ohlan A,Singh K,Chandra A,Dhawan S K.Conducting ferromagnetic copolymer of aniline and 3,4-ethylenedioxythiophene containing nanocrystalline barium ferrite particles.[J]J Appl Polym Sci 2008,108,2218-2225.
    [244]Pinho M S,Gregori M,Nunes R C R,Soares B G.Aging effect on the reflectivity measurements of polychloroprene matrices containing carbon black and carbonyl-iron powder.[J]Polym Degrad Stab 2001;73:1-5.
    [245]Ruan S P,Xu B K,Suo H,Wu F Q,xiang S Q,Zhao M Y.Microwave absorptive behavior of ZnCo-substituted W-type Ba hexaferrite nanocrystalline composite material.[J]J Magn Magn Mater 2000;212:175-177.
    [246]Yang Y,Zhang B S,Xu W D,Shi Y B,Zhou N S,Lu H X.Microwave absorption studies of W-hexaferrite prepared by co-precipitation/mechanical milling.[J]J Magn Magn Mater2003;265:119-122.
    [247]Kim H,Biswas J,Choe S.Effects of stearic acid coating on zeolite in LDPE,LLDPE,and HDPE composite.[J]Polymer 2006;47:3981-3992.
    [248]Green D L,McAmish L,McCormick A V.Three-dimensional pore connectivity in bi-axially stretched,microporous composite membranes.[J]J Membr Sci 2006;279:100-110.
    [249]The Institute of Electrical and Electronics Engineers Inc.,IEEE standards,IEEE recommended practice for radio-frequency(RF) absorber evaluation in the range of 30 MHz to 5 GHz,New York,1998.
    [250]何山.雷达吸波材料性能测试.[J]材料工程2003;(6):25-28.
    [251]Baker-Jarvis J,Vanzura E J,Kissick W A.Improved technique for determining complex permittivity with the transmission/reflection method.[J]IEEE Trans Microwave Theory Technol 1990;38:1096-1103.
    [252]郝元恺,肖加余编著.[M]高性能复合材料学.北京:化学工业出版社,2004
    [253]Rupprecht L,editor.Conductive polymers and plastics:in industrial applications.[M]New York:William Ardrew Inc.;1999.
    [254]Koval'chuk A A,Shchegolikhin A N,Shevchenko VG,Nedorezova P M,Klyamkina A N,Aladyshev A M.Synthesis and properties of polypropylene/multiwall carbon nanotube composites.[J]Macromolecules 2008;41;3149-3156.
    [255]Wu J H,Chung D D L.Increasing the electromagnetic interference shielding effectiveness of carbon fiber polymer-matrix composite by using activated carbon fibers.[J]Carbon 2002;40:445-447.
    [256]Rezaei F,Yunus R,Ibrahim N A.Effect of fiber length on thermomechanical properties of short carbon fiber reinforced polypropylene composites.[J]Mater Design 2009;30:260-263.
    [257]Jimenez G A,Jana S C.Oxidized carbon nanofiber/polymer composites prepared by chaotic mixing.[J]Carbon 2007;45:2079-2091.
    [258]Liang J-Z.Tensile,Flow,and thermal properties of CaCO_3-filled LDPE/LLDPE composites.[J]J Appl Polym Sci 2007,104,1692-1696.
    [259]周琦,王勇,段予忠.POE在塑料改性中的应用.[J]塑料加工2007;42(6):31-35.
    [260]刘立柱,张丽本,温云飞,马成国.偶联剂对线性低密度聚乙烯/水滑石体系力学和流变性能影响.[J]化工进展2008;27(3):435-439.
    [261]Ling Q C,Sun J Z,Zhao Q,Zhou Q Y.Microwave-absorbing properties of linear low-density polyethylene/ethylene-octene copolymer/carbonyl iron powder composites.[J]J Appl Polym Sci 2009;111:1911-1916.
    [262]Watts P C P,Hsu W K,Barnes A,Chambers B.High permittivity from defective multi-walled carbon nanotubes in the X-Band.[J]Adv Mater 2003;15;600-603.
    [263]Semet V,Thien Binh V,Guillot D,Teo K B K,Chhowalla M,Amaratunga G A J,Milne W I,Legagneux P,Pribat D.Reversible electromechanical characteristics of individual multiwall carbon nanotubes.[J]Appl Phys Lett 2005;87:223103.
    [264]Zhang M,Fang S L,Zakhidov A A,Lee S B,Aliev A E,Williams C D,Atkinson K R,Baughman R H.Strong,transparent,multifunctional,carbon nanotube sheets.[J]Science 2005;309:1215-1219.
    [265]McNally T,P(o|¨)tschke P,Halley P,Murphy M,Martin D,Bell S E J,Brennan G P,Bein D,Lemoine P,John P Q.Polyethylene multiwalled carbon nanotube composites.[J]Polymer 2005;46:8222-8232.
    [266]Darren A.Makeiff,Trisha Huber.Microwave absorption by polyaniline-carbon nanotube composites.[J]Synthetic Met 2006;156:497-505.
    [267]Saini P,Choudhary V,Singh B P,Mathur R B,Dhawan S K.Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding.[J]Mater Chem Phys 2009;113:919-926.
    [268]蔡道炎,顾家琳,黄正宏,康飞宇.镍钴合金包覆碳纳米管复合材料.[J]材料科学与工程学报2007;(5):712-714.
    [269]Li Y,Chen C,Zhang S,Ni Y,Huang J.Electrical conductivity and electromagnetic interference shielding characteristics of multiwalled carbon nanotube filled polyacrylate composite.[J]Appl Surf Sci 2008;254:5766-5771.
    [270]Bryning M B,Islam M F,Kikkawa J M,Yodh A G.Very low conductivity threshold in bulk isotropic single-walled carbon nanotube-epoxy composites.[J]Adv Mater 2005;17:1186-1191.
    [271]杨波,林聪妹,陈光顺,郭少云.导电炭黑在聚丙烯/极性聚合物体系中的选择性分散及其对导电性能的影响.[J]功能高分子学报2007;19-20(3):231-236.
    [272]Cui L,Zhang Y,Zhang Y,Zhang X,Zhou W.Electrical properties and conductive mechanisms of immiscible polypropylene/Novolac blends filled with carbon black.[J]Eur Polym J 2007;43:5097-5106.
    [273]Xu S G,Wen M,Li J,GuoS Y,Wang M,Du Q,Shen J B,Zhang Y Q,Jiang S L.Structure and properties of electrically conducting composites consisting of alternating layers of pure polypropylene and polypropylene with a carbon black filler.[J]Polymer 2008;49:4861-4870.
    [274]Sindhu S,Jegadesan S, Hairong L,Ajikumar P K, Vetrichelvan M, Valiyaveettil S. Synthesis and patterning of luminescent CaCO_3-Poly(p-Phenylene) hybrid materials and thin films [J] Adv Funct Mater 2007;17:1698-1704.
    [275]Oaki Y,Kajiyama S, Nishimura T, Imai H, Kato T. Nanosegregated amorphous composites of calcium carbonate and an organic polymer. [J] Adv Mater 2008; 20:3633-3637..
    [276]Kim H-S,Park B H,Choi J H,Yoon J-S. Mechanical properties and thermal stability of poly(L-lactide)/calcium carbonate composites. [J]J Appl Polym Sci 2008; 109:3087-3092.
    [277]Huang J C. Carbon black filled conducting polymers and polymer blend. Adv Polym Tech 2002;21:299-313.
    [278]Tsuji H, Kawashima Y, Takikawa H, Tanaka S. Poly(L-lactide)/nano-structured carbon composites: Conductivity, thermal properties, crystallization, and biodegradation. Polymer 2007;48:4213-4225.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700