基于纳米材料增敏效应的双酚A和银离子检测新方法的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以功能性纳米材料增敏效应在食品安全检测领域的应用为背景,以具有磁分离、核磁共振、等离子共振特性的纳米材料作为特异增敏效应的探针,并与其他先进的检测技术相结合,建立了针对痕量双酚A(BPA)和银离子的高选择、高通量、超灵敏的分析检测新方法。主要开展了以下几方面的研究工作:
     1.通过原子转移自由基聚合(Atom Transfer Radical Polymerization-ATRP)法制备核壳结构超顺磁性纳米粒子(Fe_3O_4@MIPs),并建立了磁性固相萃取-高效液相色谱荧光光谱(MSPE-HPLC–FLD)测定桔子罐头和鲜牛奶中双酚A的方法。利用透射电镜和傅立叶红外光谱仪对Fe_3O_4@MIPs进行了表征,研究了溶液pH、磁性纳米粒子用量、洗脱溶剂和体积等因素对分析结果的影响。结果表明,在以Waters C18柱为分析柱,以甲醇溶液为流动相,激发波长275纳米和发射波长305纳米的条件时,分别测定桔子罐头和鲜牛奶中的双酚A。桔子罐头中双酚A的线性范围为0.5-100纳克/毫升,回收率为83%-107%,方法检出限为0.1纳克/毫升;鲜牛奶中双酚A的线性范围为1-100纳克/毫升,回收率为72%-113%,方法检出限为0.3纳克/毫升。该方法能用于复杂食品基质中痕量双酚A的高选择性测定。
     2.通过EDC法将双酚A包被原化学键合于磁性纳米粒子表面,成功的制备了功能性磁纳米粒子,并建立了核磁共振测定自来水中双酚A的方法。利用透射电镜和激光动态光散射光谱仪对功能性磁纳米粒子进行了表征,研究了溶液pH、孵育时间、孵育温度等因素对分析结果的影响。结果表明,在pH为7.58,反应时间为50℃,室温条件下测定双酚A,在1-45纳克/毫升的线性范围内线性关系良好(r~2>0.9980),回收率为86-109%,方法检出限为0.4纳克/毫升。该方法能用于自来水中痕量双酚A的高通量测定。
     3.通过静电吸附作用将双酚A包被原和抗双酚A抗体分别修饰于粒径为10nm和20nm金纳米粒子表面,成功制备功能化金纳米粒子,并建立了用等离子手性增敏效应测定自来水中双酚A的方法。利用透射电镜、紫外/可见光光谱和动态光散射光谱仪对功能性金纳米粒子及组装体结构进行了表征。结果表明,双酚A在0.01-10纳克/毫升的线性范围内线性关系良好(r~2>0.9863),回收率为86.5%-96.7%,方法检出限为0.02纳克/毫升。该方法能用于自来水中痕量双酚A的超灵敏测定。
     4.将稳定剂(DBD)通过静电吸附修饰于金纳米粒子表面,得到表面被保护的金纳米粒子,提高了其在溶液中的稳定性,将表面保护的金纳米粒子通过Au-SH化学交联的方法修饰富含C碱基的单链核苷酸,并建立了圆二光谱测定自来水中银离子的方法。利用透射电镜、X-射线能量散射谱、紫外/可见光光谱和动态光散射光谱仪,考察13bp,26bp和39bp三种不同碱基长度的组装体,并对功能性金纳米粒子及组装体结构进行了表征。结果表明,以26bp碱基长度的单链核苷酸为组装条件时检测灵敏度最高,银离子在0.005-10纳克/毫升的线性范围内线性关系良好(r~2>0.9913),方法检出限为2皮摩。该方法能用于自来水中痕量银离子的超灵敏测定。
With the applications of the sensitizing effects of functional nanomaterials in food safetyanalytical fields, the unique magnetic separation, nuclear magnetic resonance properties(NMR) and surface plasmon resonance (SPR) of functional nanomaterials were fully utilizedfor developing a series of novel, rapid and sensitive BPA and silver ions detection methods,combining the traditional and advanced detection methods, All the studies were shown in thefollowing steps:
     1. Molecularly imprinted polymer (MIP) coated Fe_3O_4nanoparticles (Fe_3O_4@MIP) weresynthesized by atom transfer radical polymerization (ATRP) and used as highly selectivemagnetic solid-phase extraction (MSPE) sorbents for trace bisphenol A (BPA) of packedfood. The morphological and polymeric characteristics of the Fe_3O_4@MIP were characterizedby transmission electron microscopy and Fourier transform infrared spectroscopy. In thiswork, competitive recognition compounds (4-noctylphenol and bisphenol A diglycidyl ether)exhibited lower binding capability to the Fe_3O_4@MIP than BPA. A high performance liquidchromatography with fluorescence detection (HPLC-FLD) method was developed for thedetermination of BPA in canned orange and milk samples. The main factors influencing theextraction efficiency, high specificity, the amount of surfactant, the shaking time and thedesorption ability of complex food matrices were investigated and optimized. Various ofparameters such as the pH of the sample, the amount of Fe_3O_4@MIP sorbent, the extractiontime, and the desorption conditions were optimized. Notably, the extraction can be carried outquickly, and the extraction time for BPA onto Fe_3O_4@MIP sorbents can be clearly shortenedto5min. Good linearity (r~2>0.9965) for all calibration curves were obtained, and the limit ofdetection (LOD) for BPA was0.1and0.3ng/mL in canned orange and milk samplesrespectively. To the best of our knowledge, this is the first time that surface molecularlyimprinted polymer nanoparticles have been used for the pretreatment of packed food.
     2. In order to develop facile, fast and sensitive detection methods for BPA, we describeda sensitive biosensing system involving magnetic relaxation switch, based on the assembly ofcross-linked superparamagnetic iron oxide (CLIO) nanoparticles induced by theantigen–antibody biorecognition. The design of smart CLIO-based superparamagnetic ironoxide nanoparticles and antigen-OVA was described for the detection of bisphenol A [2,2-bis(4-hydroxyphenol) propane (BPA)]. The addition of BPA to the rapid magnetic relaxationswitch immunosensor led to transverse relaxation time (T2) shortening compared to a blankcontrol as shown by NMR relaxometry measurements. This process was also applied to therapid and facile determination of concentrations of BPA in drinking water (tap water). Goodlinearity for all calibration curves was obtained, and the limit of detection (LOD) for BPA was0.4ng/mL in tap water.
     3. The antibodies and coating antigen were adhered to the10nm Au NPs and20nm AuNPs respectively through electrostatic interaction. A smart chirality detection for BPA basedon immunorecognition-driven nanoparticle assembly has been fabricated for the first time.The structure characteristics of the assembly were characterized by transmission electron microscopy, UV/Vis spectroscopy and Dynamic Light Scattering (DLS).A strong shiftedchiral signal was produced by asymmetric plasmonic nanoparticle dimers. The results showedthat the standard curve in the range of0.01-10ng/mL had good linear relation, reclaimationefficience was86.5%-96.7%, and LOD for BPA was0.02ng/mL in drink water.
     4. We report the formation of chiroptically active plasmonic heterodimers through DNArecognition mediated by silver ions, based on the assembly of cross-linked gold nanoparticlesinduced by the C-Ag+-C biorecognition. The different assembly by13bp,26bp and39bpDNA was studied and the structure characteristics of the assembly were characterized bytransmission electron microscopy, X-ray energy dispersive spectroscopy (XEDS), UV/Visspectroscopy and Dynamic Light Scattering (DLS).The results showed that the standardcurve in the range of0.005-10ng/mL had good linear relation, and LOD for Ag+was2pM indrink water, significantly better than those of fluorescence assays and electrochemicalmethods.
引文
[1] REN Y, MA W, MA J, et al. Synthesis and properties of bisphenol A molecular imprinted particlefor selective recognition of BPA from water [J]. Journal of Colloid and Interface Science,2012,367(3):55-61.
    [2] BLOMQVIST J,SALO P. First-principles study for the adsorption of segments of BPA-PC onalpha-Al2O3(0001)[J]. Physical Review B,2011,84(15):104-111.
    [3] LACROIX M Z,PUEL S,COLLET S H,et al. Simultaneous quantification of bisphenol A and itsglucuronide metabolite (BPA-G) in plasma and urine: Applicability to toxicokinetic investigations [J].Talanta,2011,85(4):2053-9.
    [4] ZHOU J,ZHU X-S,CAI Z-H. The impacts of bisphenol A (BPA) on abalone (Haliotis diversicolorsupertexta) embryonic development [J]. Chemosphere,2011,82(3):443-50.
    [5] BETTS K S. Plastics and Food Sources Dietary Intervention to Reduce BPA and DEHP [J].Environmental Health Perspectives,2011,119(7): A306-A308.
    [6] ACKERMAN L K,NOONAN G O. Comment on "Bisphenol A (BPA) in U.S. Food"[J].Environmental Science&Technology,2011,45(8):3812-3813.
    [7] REDDY D H K,LEE S-M,SESHAIAH K. Biosorption of Toxic Heavy Metal Ions from WaterEnvironment Using Honeycomb Biomass-An Industrial Waste Material [J]. Water Air and Soil Pollution,2012,223(9):5967-5982.
    [8] BRAZOVA T,TORRES J,EIRA C,et al. Perch and Its Parasites as Heavy Metal Biomonitors in aFreshwater Environment: The Case Study of the Ruzin Water Reservoir,Slovakia [J]. Sensors,2012,12(3):3068-3081.
    [9] SINGH A,PRASAD S M. Reduction of heavy metal load in food chain: technology assessment [J].Reviews in Environmental Science and Bio-Technology,2011,10(3):199-214.
    [10] MANSOUR S A. An approach,combining chemical analysis and bioassay,for monitoring and riskassessment of pesticides,heavy metals and their mixtures in food [J]. Toxicology Letters,2011,205(S265-S270).
    [11] JONATHAN S G,AMOS-TAUTUA B M W,OLAWUYI O J. Food values,heavy metalaccumulation,aflatoxin contamination and detection of exo-polysaccharrides in Lentinus SquarrosulusBerk,a Nigerian mushroom [J]. African Journal of Agricultural Research,2011,6(13):3007-3012.
    [12] STEWART M,PHILLIPS N R,OLSEN G,et al. Organochlorines and heavy metals in wild caughtfood as a potential human health risk to the indigenous Maori population of South Canterbury,NewZealand [J]. Science of the Total Environment,2011,409(11):2029-2039.
    [13] ZHAO S,FENG C,QUAN W,et al. Role of living environments in the accumulation characteristicsof heavy metals in fishes and crabs in the Yangtze River Estuary,China [J]. Marine Pollution Bulletin,2012,64(6):1163-1171.
    [14] BAGHERI H,AFKHAMI A,SABER-TEHRANI M,et al. Preparation and characterization ofmagnetic nanocomposite of Schiff base/silica/magnetite as a preconcentration phase for the tracedetermination of heavy metal ions in water,food and biological samples using atomic absorptionspectrometry [J]. Talanta,2012,97:87-95.
    [15] BLUME K,LINDTNER O,SCHNEIDER K,et al. Exposure to heavy metals via food consumption[J]. Naunyn-Schmiedebergs Archives of Pharmacology,2012,385:12-18.
    [16] GORUR F K,KESER R,AKCAY N,et al. Radioactivity and heavy metal concentrations in foodsamples from Rize,Turkey [J]. Journal of the Science of Food and Agriculture,2012,92(2):307-312.
    [17] RATANI S S,SILETZKY R M,DUTTA V,et al. Heavy Metal and Disinfectant Resistance ofListeria monocytogenes from Foods and Food Processing Plants [J]. Applied and EnvironmentalMicrobiology,2012,78(19):6938-6945.
    [18] NANJAPPA M K,SIMON L,AKINGBEMI B T. The Industrial Chemical Bisphenol A (BPA)Interferes with Proliferative Activity and Development of Steroidogenic Capacity in Rat Leydig Cells [J].Biology of Reproduction,2012,86(5):
    [19] BONTEMPO P,MITA L,DOTO A,et al. Molecular analysis of the apoptotic effects of BPA in acutemyeloid leukemia cells [J]. Journal of Translational Medicine,2009,7:89-98.
    [20] CHAN W K,CHAN K M. Disruption of the hypothalamic-pituitary-thyroid axis in zebrafishembryo-larvae following waterborne exposure to BDE-47,TBBPA and BPA [J]. Aquatic toxicology,2012,108:106-111.
    [21] BARRETT J R. Hormone Impact BPA Linked to Altered Gene Expression in Humans [J].Environmental Health Perspectives,2011,119(12): A524-A531.
    [22] GALEA L A M,BARHA C K. Maternal bisphenol A (BPA) decreases attractiveness of maleoffspring [J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108(28):11305-11306.
    [23] DOHERTY L F,BROMER J G,ZHOU Y,et al. In utero exposure to diethylstilbestrol (DES) orbisphenol-A (BPA) increases EZH2expression in the mammary gland: an epigenetic mechanism linkingendocrine disruptors to breast cancer [J]. Hormones&cancer,2010,1(3):146-155.
    [24] CHO S,CHOI Y S,LUU H M-D,et al. Determination of total leachable bisphenol A frompolysulfone membranes based on multiple consecutive extractions [J]. Talanta,2012,101:537-540.
    [25] LIAO C,LIU F,MOON H-B,et al. Bisphenol Analogues in Sediments from Industrialized Areas inthe United States,Japan,and Korea: Spatial and Temporal Distributions [J]. Environmental Science&Technology,2012,46(21):11558-11565.
    [26] JANG E Y,PARK C U,KIM M-J,et al. Stability of Bisphenol A (BPA) in Oil-In Water Emulsionsunder Riboflavin Photosensitization [J]. Journal of Food Science,2012,77(8): C844-C848.
    [27] BRAUNRATH R, CICHNA M. Sample preparation including sol–gel immunoaffinitychromatography for determination of bisphenol A in canned beverages,fruits and vegetables [J]. Journal ofChromatography A,2005,1062(2):189-198.
    [28]肖晶,邵兵,吴永宁,et al.用高压液相色谱法检测罐装食中类雌激素双酚A和烷基酚[J].2007,36:137-142.
    [29] LU Y,PETERSON J R,GOODING J J,et al. Development of sensitive direct and indirectenzyme-linked immunosorbent assays (ELISAs) for monitoring bisphenol-A in canned foods andbeverages [J]. Analytical and bioanalytical chemistry,2012,34:1-12.
    [30] LINDHOLST C,PEDERSEN K L,PEDERSEN S N. Estrogenic response of bisphenol A in rainbowtrout ( Oncorhynchus mykiss)[J]. Aquatic toxicology,2000,48(2):87-94.
    [31] FENG Y,NING B,SU P,et al. An immunoassay for bisphenol A based on direct hapten conjugationto the polystyrene surface of microtiter plates [J]. Talanta,2009,80(2):803-808.
    [32] DEL OLMO M,ZAFRA A,JURADO A,et al. Determination of bisphenol A (BPA) in the presenceof phenol by first-derivative fluorescence following micro liquid–liquid extraction (MLLE)[J]. Talanta,2000,50(6):1141-1148.
    [33] FAN J,GUO H,LIU G,et al. Simple and sensitive fluorimetric method for determination ofenvironmental hormone bisphenol A based on its inhibitory effect on the redox reaction between peroxylradical and rhodamine6G [J]. Analytica Chimica Acta,2007,585(1):134-138.
    [34] LU C,LI J,YANG Y,et al. Determination of bisphenol A based on chemiluminescence from gold(III)–peroxymonocarbonate [J]. Talanta,2010,82(4):1576-1580.
    [35] YIN H S,ZHOU Y L,AI S Y,et al. Sensitivity and selectivity determination of BPA in real watersamples using PAMAM dendrimer and CoTe quantum dots modified glassy carbon electrode [J]. Journal ofHazardous Materials,2010,174(1-3):236-243.
    [36] MEI Z,CHU H,CHEN W,et al. Ultrasensitive one-step rapid visual detection of bisphenol A in watersamples by label-free aptasensor [J]. Biosensors and Bioelectronics,2012,13:248-253.
    [37] HEGNEROV K,PILIARIK M, TEINBACHOV M,et al. Detection of bisphenol A using a novelsurface plasmon resonance biosensor [J]. Analytical and bioanalytical chemistry,2010,398(5):1963-1966.
    [38] HOELZEL C S,MUELLER C,HARMS K S,et al. Heavy metals in liquid pig manure in light ofbacterial antimicrobial resistance [J]. Environmental Research,2012,113:21-27.
    [39] CHAURE S,PAUL D,VADAGMA P,et al. Spectroscopic investigation of sulfonate phthalocyanineto probe enzyme reactions for heavy metals detection [J]. Journal of Hazardous Materials,2010,173(3):253-257.
    [40] BOADI N,MENSAH J,TWUMASI S,et al. Levels of selected heavy metals in canned tomato pastesold in Ghana [J]. Food Additives&Contaminants Part B-Surveillance,2012,5(1):50-54.
    [41] XUE J,GONG S F,WANG X M,et al. DETERMINATION OF Hg,As,Pb,AND Cd IN ORCHARDSOILS BY SEQUENTIAL INJECTION VAPOR GENERATION ATOMIC FLUORESCENCESPECTROMETRY [J]. Anal Lett,2012,45(15):2257-2268.
    [42] HYNNINEN A,T NISMANN K,VIRTA M. Improving the sensitivity of bacterial bioreporters forheavy metals [J]. Bioengineered,2010,1(2):132-8.
    [43] SONG S E,CHO N B,FISCHER G,et al. Development of a pneumatic robot for MRI-guidedtransperineal prostate biopsy and brachytherapy: New approaches; proceedings of the Robotics andAutomation (ICRA),2010IEEE International Conference on,F,2010[C]. IEEE.
    [44] JAHROMI E Z,WHITE W,WU Q,et al. Remarkable effect of mobile phase buffer on theSEC-ICP-AES derived Cu,Fe and Zn-metalloproteome pattern of rabbit blood plasma [J]. Metallomics,2010,2(7):460-468.
    [45] SWART C,RIENITZ O,SCHIEL D. Alternative approach to post column online isotope dilutionICP-MS [J]. Talanta,2011,83(5):1544-1551.
    [46] DAM J S,PEDERSEN C,TIDEMAND-LICHTENBERG P. High-resolution two-dimensional imageupconversion of incoherent light [J]. Optics letters,2010,35(22):3796-3798.
    [47] HOUGHTON R L,STEVENS Y Y,HJERRILD K,et al. Lateral flow immunoassay for diagnosis ofTrypanosoma cruzi infection with high correlation to the radioimmunoprecipitation assay [J]. Clinical andVaccine Immunology,2009,16(4):515-520.
    [48] EVERITT C. Maxwell’s Scientific Papers [J]. Applied optics,1967,6(4):639-646.
    [49] JUN Y-W, SEO J-W, CHEON J. Nanoscaling Laws of Magnetic Nanoparticles and TheirApplicabilities in Biomedical Sciences [J]. Accounts of Chemical Research,2008,41(2):179-189.
    [50] MORALES M P,VEINTEMILLAS-VERDAGUER S,MONTERO M I,et al. Surface and InternalSpin Canting in γ-Fe2O3Nanoparticles [J]. Chemistry of Materials,1999,11(11):3058-3064.
    [51] SMITH C. Striving for purity: advances in protein purification [J]. Nat Meth,2005,2(1):71-77.
    [52] KIM J S,VALENCIA C A,LIU R,et al. Highly-Efficient Purification of Native Polyhistidine-TaggedProteins by Multivalent NTA-Modified Magnetic Nanoparticles [J]. Bioconjugate Chemistry,2007,18(2):333-3341.
    [53] TANAKA T, SAKAI R, KOBAYASHI R, et al. Contributions of Phosphate to DNAAdsorption/Desorption Behaviors on Aminosilane-Modified Magnetic Nanoparticles [J]. Langmuir,2009,25(5):2956-2961.
    [54] GARCíA I,GALLO J,GENICIO N,et al. Magnetic Glyconanoparticles as a Versatile Platform forSelective Immunolabeling and Imaging of Cells [J]. Bioconjugate Chemistry,2011,22(2):264-273.
    [55] MAZZUCCHELLI S,COLOMBO M,DE PALMA C,et al. Single-Domain Protein A-EngineeredMagnetic Nanoparticles: Toward a Universal Strategy to Site-Specific Labeling of Antibodies for TargetedDetection of Tumor Cells [J]. ACS Nano,2010,4(10):5693-5702.
    [56] GAO J,GU H,XU B. Multifunctional Magnetic Nanoparticles: Design,Synthesis,and BiomedicalApplications [J]. Accounts of Chemical Research,2009,42(8):1097-1107.
    [57] GU H,XU K,XU C,et al. Biofunctional magnetic nanoparticles for protein separation and pathogendetection [J]. Chemical Communications,2006,0(9):941-949.
    [58] COLOMBO M,RONCHI S,MONTI D,et al. Femtomolar detection of autoantibodies by magneticrelaxation nanosensors [J]. Analytical Biochemistry,2009,392(1):96-102.
    [59] EL-BOUBBOU K,ZHU D C,VASILEIOU C,et al. Magnetic Glyco-Nanoparticles: A Tool ToDetect,Differentiate,and Unlock the Glyco-Codes of Cancer via Magnetic Resonance Imaging [J]. Journalof the American Chemical Society,2010,132(12):4490-4499.
    [60] LEE H,YOON T-J,WEISSLEDER R. Ultrasensitive Detection of Bacteria Using Core–ShellNanoparticles and an NMR-Filter System [J]. Angewandte Chemie International Edition,2009,48(31):5657-5660.
    [61] JIMENEZ DE ABERASTURI D,MONTENEGRO J-M,RUIZ DE LARRAMENDI I,et al. OpticalSensing of Small Ions with Colloidal Nanoparticles [J]. Chemistry of Materials,2011,24(5):738-745.
    [62] GILJOHANN D A,SEFEROS D S,DANIEL W L,et al. Gold Nanoparticles for Biology andMedicine [J]. Angewandte Chemie International Edition,2010,49(19):3280-3294.
    [63] PEREZ J M,JOSEPHSON L,WEISSLEDER R. Use of Magnetic Nanoparticles as Nanosensors toProbe for Molecular Interactions [J]. ChemBioChem,2004,5(3):261-264.
    [64] PEREZ J M,O'LOUGHIN T,SIMEONE F J,et al. DNA-Based Magnetic Nanoparticle AssemblyActs as a Magnetic Relaxation Nanoswitch Allowing Screening of DNA-Cleaving Agents [J]. Journal ofthe American Chemical Society,2002,124(12):2856-2857.
    [65] KELL A J,STEWART G,RYAN S,et al. Vancomycin-Modified Nanoparticles for EfficientTargeting and Preconcentration of Gram-Positive and Gram-Negative Bacteria [J]. ACS Nano,2008,2(9):1777-1788.
    [66] RYAN S,KELL A J,VAN FAASSEN H,et al. Single-Domain Antibody-Nanoparticles: PromisingArchitectures for Increased Staphylococcus aureus Detection Specificity and Sensitivity [J]. BioconjugateChemistry,2009,20(10):1966-1974.
    [67] KIM G Y,JOSEPHSON L,LANGER R,et al. Magnetic relaxation switch detection of humanchorionic gonadotrophin [J]. Bioconjugate Chemistry,2007,18(6):2024-2028.
    [68] KAITTANIS C,NASER S A,PEREZ J M. One-Step,Nanoparticle-Mediated Bacterial Detectionwith Magnetic Relaxation [J]. Nano Letters,2006,7(2):380-383.
    [69] KAITTANIS C,SANTRA S,PEREZ J M. Role of Nanoparticle Valency in the NondestructiveMagnetic-Relaxation-Mediated Detection and Magnetic Isolation of Cells in Complex Media [J]. Journal ofthe American Chemical Society,2009,131(35):12780-12791.
    [70] WU N-Y,GAO W,HE X-L,et al. Direct electrochemical sensor for label-free DNA detection basedon zero current potentiometry [J]. Biosensors&Bioelectronics,2013,39(1):210-214.
    [71] JEONG H-H,ERDENE N,PARK J-H,et al. Real-time label-free immunoassay of interferon-gammaand prostate-specific antigen using a Fiber-Optic Localized Surface Plasmon Resonance sensor [J].Biosensors&Bioelectronics,2013,39(1):346-351.
    [72] LU G,HOU L,ZHANG T,et al. Plasmonic Sensing via Photoluminescence of Individual GoldNanorod [J]. Journal of Physical Chemistry C,2012,116(48):25509-25516.
    [73] DE MENEZES E W,NUNES M R,ARENAS L T,et al. Gold nanoparticle/charged silsesquioxanefilms immobilized onto Al/SiO2surface applied on the electrooxidation of nitrite [J]. Journal of Solid StateElectrochemistry,2012,16(12):3703-3713.
    [74] SHENG P,WU S,BAO L,et al. Surface enhanced Raman scattering detecting polycyclic aromatichydrocarbons with gold nanoparticle-modified TiO2nanotube arrays [J]. New Journal of Chemistry,2012,36(12):2501-2505.
    [75] SPRINGER T,HOMOLA J. Biofunctionalized gold nanoparticles for SPR-biosensor-based detectionof CEA in blood plasma [J]. Analytical and bioanalytical chemistry,2012,404(10):2869-2875.
    [76] BISKER G,MINAI L,YELIN D. Controlled Fabrication of Gold Nanoparticle and FluorescentProtein Conjugates [J]. Plasmonics,2012,7(4):609-617.
    [77] GANGULA A,CHELLI J,BUKKA S,et al. Thione-gold nanoparticles interactions: Vroman-likeeffect,self-assembly and sensing [J]. Journal of Materials Chemistry,2012,22(43):22866-22872.
    [78] KIM E J, CHUNG B H, LEE H J. Parts per Trillion Detection of Ni(II) Ions byNanoparticle-Enhanced Surface Plasmon Resonance [J]. Analytical chemistry,2012,84(22):10091-10096.
    [79] RADHAKUMARY C,SREENIVASAN K. Rapid and highly selective dipchecking for cyanide ionsin aqueous media [J]. Analyst,2012,137(22):5387-5391.
    [80] SAUTE B,PREMASIRI R,ZIEGLER L,et al. Gold nanorods as surface enhanced Ramanspectroscopy substrates for sensitive and selective detection of ultra-low levels of dithiocarbamatepesticides [J]. Analyst,2012,137(21):5082-5087.
    [81] KALAIVANI G,SIVANESAN A,KANNAN A,et al. Plasmon-Tuned Silver Colloids for SERRSAnalysis of Methemoglobin with Preserved Nativity [J]. Langmuir,2012,28(40):14357-14363.
    [82] GOH M S,LEE Y H,PEDIREDDY S,et al. A Chemical Route To Increase Hot Spots on SilverNanowires for Surface-Enhanced Raman Spectroscopy Application [J]. Langmuir,2012,28(40):14441-14449.
    [83] JOSHI G K,MCCLORY P J,MUHOBERAC B B,et al. Designing Efficient Localized SurfacePlasmon Resonance-Based Sensing Platforms: Optimization of Sensor Response by Controlling the EdgeLength of Gold Nanoprisms [J]. Journal of Physical Chemistry C,2012,116(39):20990-21000.
    [84] HONG X,HALL E A H. Contribution of gold nanoparticles to the signal amplification in surfaceplasmon resonance [J]. Analyst,2012,137(20):4712-4719.
    [85] ZHAO S S,BICHELBERGER M A,COLIN D Y,et al. Monitoring methotrexate in clinical samplesfrom cancer patients during chemotherapy with a LSPR-based competitive sensor [J]. Analyst,2012,137(20):4742-4750.
    [86] JONES M R,MACFARLANE R J,PRIGODICH A E,et al. Nanoparticle Shape Anisotropy Dictatesthe Collective Behavior of Surface-Bound Ligands [J]. Journal of the American Chemical Society,2011,133(46):18865-18869.
    [87] GILJOHANN D A,SEFEROS D S,DANIEL W L,et al. Gold Nanoparticles for Biology andMedicine [J]. Angewandte Chemie-International Edition,2010,49(19):3280-3294.
    [88] ERLER C,NOVAK J. Bisphenol A Exposure: Human Risk and Health Policy [J]. Journal of PediatricNursing,2010,25(5):400-407.
    [89] SCHECTER A,MALIK N,HAFFNER D,et al. Bisphenol A (BPA) in U.S. Food [J]. EnvironmentalScience&Technology,2010,44(24):9425-9430.
    [90] GORE A C,DIAMANTI-KANDARAKIS E,BOURGUIGNON J P,et al. Endocrine-DisruptingChemicals: An Endocrine Society Scientific Statement [J]. Endocr Rev,2009,30(4):293-342.
    [91] VOM SAAL F S,WELSHONS W V. Large effects from small exposures. II. The importance ofpositive controls in low-dose research on bisphenol A [J]. Environ Res,2006,100(1):50-76.
    [92] GRUMETTO L,MONTESANO D,SECCIA S,et al. Determination of Bisphenol A and BisphenolB Residues in Canned Peeled Tomatoes by Reversed-Phase Liquid Chromatography [J]. Journal ofAgricultural and Food Chemistry,2008,56(22):10633-10637.
    [93] SAJIKI J,MIYAMOTO F,FUKATA H,et al. Bisphenol A (BPA) and its source in foods in Japanesemarkets [J]. Food Additives and Contaminants,2007,24(1):103-112.
    [94] IMANAKA M,SASAKI K,NEMOTO S,et al. Determination of bisphenol A in foods using GC/MS[J]. J Food Hyg Soc Jpn,2001,42(2):71-78.
    [95] ALTAMIRANO J C, FONTANA A R, DE TORO M M. One-Step Derivatization andPreconcentration Microextraction Technique for Determination of Bisphenol A in Beverage Samples byGas Chromatography-Mass Spectrometry [J]. Journal of Agricultural and Food Chemistry,2011,59(8):3559-3565.
    [96] HUANG S D,LIN C Y,FUH M R. Application of liquid-liquid-liquid microextraction andhigh-performance liquid chromatography for the determination of alkylphenols and bisphenol-A in water[J]. Journal of Separation Science,2011,34(4):428-435.
    [97] VIGANO L,BENFENATI E,VAN CAUWENBERGE A,et al. Estrogenicity profile and estrogeniccompounds determined in river sediments by chemical analysis, ELISA and yeast assays [J].Chemosphere,2008,73(7):1078-1089.
    [98] KUANG H,LIN F,SONG S S,et al. Development of the detection of benzophenone in recycled paperpackaging materials by ELISA [J]. Food Agr Immunol,2011,22(1):39-46.
    [99] AI S Y,YIN H S,ZHOU Y L,et al. Amperometric biosensor based on tyrosinase immobilized ontomultiwalled carbon nanotubes-cobalt phthalocyanine-silk fibroin film and its application to determinebisphenol A [J]. Anal Chim Acta,2010,659(1-2):144-150.
    [100] NYOKONG T,CHAUKE V P,CHIDAWANYIKA W. The Electrochemical Behavior of GoldNanoparticle-Tantalum(V) Phthalocyanine Composites: Applications Towards the Electroanalysis ofBisphenol A [J]. Electroanal,2011,23(2):487-496.
    [101] SHIM Y B,PIAO M H,NOH H B,et al. Label-free detection of bisphenol A using apotentiometric immunosensor [J]. Electroanal,2008,20(1):30-37.
    [102] AI S Y,YIN H S,ZHOU Y L,et al. Sensitivity and selectivity determination of BPA in realwater samples using PAMAM dendrimer and CoTe quantum dots modified glassy carbon electrode [J]. JHazard Mater,2010,174(1-3):236-243.
    [103] PERRIN F X,MINH HANH NGUYEN T,MY LINH TRAN T,et al. Determination ofbisphenol A (BPA) by gas chromatography-mass spectrometry and1H NMR spectroscopy during curing ofepoxy-amine resins [J]. Polymer Testing,2006,25(7):912-922.
    [104] SHAO B,HAN H,LI D,et al. Analysis of alkylphenol and bisphenol A in meat by acceleratedsolvent extraction and liquid chromatography with tandem mass spectrometry [J]. Food Chemistry,2007,105(3):1236-1241.
    [105] GAO Q, LUO D, DING J, et al. Rapid magnetic solid-phase extraction based onmagnetite/silica/poly(methacrylic acid-co-ethylene glycol dimethacrylate) composite microspheres for thedetermination of sulfonamide in milk samples [J]. Journal of Chromatography A,2010,1217(35):5602-5609.
    [106] LI Q,LAM M H W,WU R S S,et al. Rapid magnetic-mediated solid-phase extraction andpre-concentration of selected endocrine disrupting chemicals in natural waters bypoly(divinylbenzene-co-methacrylic acid) coated Fe3O4core-shell magnetite microspheres for their liquidchromatography-tandem mass spectrometry determination [J]. Journal of Chromatography A,2010,1217(8):1219-1226.
    [107] SUN L,CHEN L,SUN X,et al. Analysis of sulfonamides in environmental water samples basedon magnetic mixed hemimicelles solid-phase extraction coupled with HPLC-UV detection [J].Chemosphere,2009,77(10):1306-1312.
    [108] ZHANG Q,YANG F,TANG F,et al. Ionic liquid-coated Fe3O4magnetic nanoparticles as anadsorbent of mixed hemimicelles solid-phase extraction for preconcentration of polycyclic aromatichydrocarbons in environmental samples [J]. Analyst,2010,135(9):2426-2433.
    [109] ZHU L,PAN D,DING L,et al. Mixed hemimicelles SPE based on CTAB-coated Fe3O4/SiO2NPs for the determination of herbal bioactive constituents from biological samples [J]. Talanta,2010,80(5):1873-1880.
    [110] DENG Y,QI D,DENG C,et al. Superparamagnetic High-Magnetization Microspheres with anFe3O4@SiO2Core and Perpendicularly Aligned Mesoporous SiO2Shell for Removal of Microcystins [J].Journal of the American Chemical Society,2007,130(1):28-29.
    [111] ZHANG S,NIU H,HU Z,et al. Preparation of carbon coated Fe3O4nanoparticles and theirapplication for solid-phase extraction of polycyclic aromatic hydrocarbons from environmental watersamples [J]. Journal of Chromatography A,2010,1217(29):4757-4764.
    [112] LI Y,LENG T,LIN H,et al. Preparation of Fe3O4@ZrO2Core Shell Microspheres as AffinityProbes for Selective Enrichment and Direct Determination of Phosphopeptides Using Matrix-AssistedLaser Desorption Ionization Mass Spectrometry [J]. Journal of Proteome Research,2007,6(11):4498-4510.
    [113] LI Y,XU X,QI D,et al. Novel Fe3O4@TiO2Core Shell Microspheres for Selective Enrichmentof Phosphopeptides in Phosphoproteome Analysis [J]. Journal of Proteome Research,2008,7(6):2526-38.
    [114] CHEN,CHEN W-Y,TSAI P-J,et al. Rapid Enrichment of Phosphopeptides and Phosphoproteinsfrom Complex Samples Using Magnetic Particles Coated with Alumina as the Concentrating Probes forMALDI MS Analysis [J]. Journal of Proteome Research,2006,6(1):316-325.
    [115] JING T,DU H,DAI Q,et al. Magnetic molecularly imprinted nanoparticles for recognition oflysozyme [J]. Biosensors and Bioelectronics,2010,26(2):301-306.
    [116] TAKEDA K,KUWAHARA A,OHMORI K,et al. Molecularly Imprinted Tunable Binding SitesBased on Conjugated Prosthetic Groups and Ion-Paired Cofactors [J]. Journal of the American ChemicalSociety,2009,131(25):8833-8838.
    [117] YANG K,BERG M M,ZHAO C,et al. One-Pot Synthesis of Hydrophilic Molecularly ImprintedNanoparticles [J]. Macromolecules,2009,42(22):8739-8746.
    [118] QIN L,HE X-W,ZHANG W,et al. Surface-modified polystyrene beads as photograftingimprinted polymer matrix for chromatographic separation of proteins [J]. Journal of Chromatography A,2009,1216(5):807-814.
    [119] WEI X,LI X,HUSSON S M. Surface Molecular Imprinting by Atom Transfer RadicalPolymerization [J]. Biomacromolecules,2005,6(2):1113-1121.
    [120] KONG H,GAO C,YAN D. Controlled Functionalization of Multiwalled Carbon Nanotubes byin Situ Atom Transfer Radical Polymerization [J]. Journal of the American Chemical Society,2003,126(2):412-413.
    [121] MATYJASZEWSKI K,PATTEN T E,XIA J. Controlled/“Living” Radical Polymerization.Kinetics of the Homogeneous Atom Transfer Radical Polymerization of Styrene [J]. Journal of theAmerican Chemical Society,1997,119(4):674-680.
    [122] GAI Q-Q,QU F,LIU Z-J,et al. Superparamagnetic lysozyme surface-imprinted polymerprepared by atom transfer radical polymerization and its application for protein separation [J]. Journal ofChromatography A,2010,1217(31):5035-5042.
    [123] LU C-H,WANG Y,LI Y,et al. Bifunctional superparamagnetic surface molecularly imprintedpolymer core-shell nanoparticles [J]. Journal of Materials Chemistry,2009,19(8):1077-1079.
    [124] LI Y,ZHOU W-H,YANG H-H,et al. Grafting of molecularly imprinted polymers from thesurface of silica gel particles via reversible addition-fragmentation chain transfer polymerization: Aselective sorbent for theophylline [J]. Talanta,2009,79(2):141-145.
    [125] WANG G Q,WANG Y Q,CHEN L X,et al. Nanomaterial-assisted aptamers for optical sensing[J]. Biosens Bioelectron,2010,25(8):1859-1868.
    [126] JI Y S,YIN J J,XU Z G,et al. Preparation of magnetic molecularly imprinted polymer for rapiddetermination of bisphenol A in environmental water and milk samples [J]. Anal Bioanal Chem,2009,395(4):1125-1133.
    [127] KARASOV G,LEHOTAY J,S DECK J,et al. Selective extraction of derivates ofp-hydroxy-benzoic acid from plant material by using a molecularly imprinted polymer [J]. Journal ofSeparation Science,2005,28(18):2468-2476.
    [128] BAGGIANI C, BARAVALLE P, GIOVANNOLI C, et al. Molecularly imprintedpolymer/cryogel composites for solid-phase extraction of bisphenol A from river water and wine [J]. AnalBioanal Chem,2010,397(2):815-822.
    [129] THORSTENSEN O,ISBERG B,JORULF H,et al. Detection of small implanted tumors growingduring repeated magnetic resonance imaging of the rabbit liver: Application of an interpretation model [J].Acta Radiol,2004,45(5):547-555.
    [130] FUH C B,TSAI H Y,JIAN S J,et al. Competitive magnetic immunoassay for protein detectionin thin channels [J]. Journal of Chromatography A,2009,1216(44):7493-7496.
    [131] LEE G U,CHANG W S,SHANG H,et al. Rapid detection of dengue virus in serum usingmagnetic separation and fluorescence detection [J]. Analyst,2008,133(2):233-240.
    [132] WEITSCHIES W,AURICH K,NAGEL S,et al. Determination of the magneto-optical relaxationof magnetic nanoparticles as a homogeneous immunoassay [J]. Analytical Chemistry,2007,79(2):580-586.
    [133] SHI C,MA C P,WANG W S,et al. Cocaine detection via rolling circle amplification of shortDNA strand separated by magnetic beads [J]. Biosens Bioelectron,2011,26(7):3309-3312.
    [134] STROMME M,GORANSSON J,DE LA TORRE T Z G,et al. Sensitive Detection of BacterialDNA by Magnetic Nanoparticles [J]. Analytical Chemistry,2010,82(22):9138-9140.
    [135] LI S H,CHEN J F,LI Y,et al. High-Sensitivity Detection of Fruit Tree Viruses Using BacterialMagnetic Particles [J]. J Integr Plant Biol,2009,51(4):409-413.
    [136] JASANOFF A,WESTMEYER G G,DUROCHER Y. A Secreted Enzyme Reporter System forMRI [J]. Angew Chem Int Edit,2010,49(23):3909-3911.
    [137] HATTON T A,MOESER G D,ROACH K A,et al. High-gradient magnetic separation of coatedmagnetic nanoparticles [J]. Aiche J,2004,50(11):2835-2848.
    [138] WANG L B,ZHU Y Y,XU L G,et al. Side-by-Side and End-to-End Gold Nanorod Assembliesfor Environmental Toxin Sensing [J]. Angew Chem Int Edit,2010,49(32):5472-5475.
    [139] XU L G,PENG C F,XU C L,et al. Development of the ELISA for detection of microcystin byusing magnetic nanometer particle enrichment antibody [J]. Toxicol Lett,2008,180:S120-S128.
    [140] LOWERY T J, DEMAS V. Magnetic resonance for in vitro medical diagnostics:superparamagnetic nanoparticle-based magnetic relaxation switches [J]. New J Phys,2011,13:56-61.
    [141] JOSEPHSON L, KOH I, HONG R, et al. Nanoparticle-Target Interactions ParallelAntibody-Protein Interactions [J]. Analytical Chemistry,2009,81(9):3618-3622.
    [142] KONG J L,CAI S Y,LIANG G H,et al. A miniature chip for protein detection based onmagnetic relaxation switches [J]. Biosens Bioelectron,2011,26(5):2258-2263.
    [143] LIU H,WEBSTER T J. Nanomedicine for implants: A review of studies and necessaryexperimental tools [J]. Biomaterials,2007,28(2):354-369.
    [144] LAERA S,CECCONE G,ROSSI F,et al. Measuring Protein Structure and Stability ofProtein-Nanoparticle Systems with Synchrotron Radiation Circular Dichroism [J]. Nano Lett,2011,11(10):4480-4484.
    [145] SLOCIK J M, GOVOROV A O, NAIK R R. Plasmonic Circular Dichroism ofPeptide-Functionalized Gold Nanoparticles [J]. Nano Lett,2011,11(2):701-705.
    [146] ZOLGHADRI S, SABOURY A A, GOLESTANI A, et al. Interaction between silvernanoparticle and bovine hemoglobin at different temperatures [J]. J Nanopart Res,2009,11(7):1751-1758.
    [147] CAMINADE A M,LAURENT R,MAJORAL J P. Characterization of dendrimers [J]. Adv DrugDeliver Rev,2005,57(15):2130-46.
    [148] JAGANATHAN H,KINSELLA J M,IVANISEVIC A. Circular Dichroism Study of theMechanism of Formation of DNA Templated Nanowires [J]. Chemphyschem,2008,9(15):2203-2206.
    [149] LI Z,ZHU Z,LIU W,et al. Reversible Plasmonic Circular Dichroism of Au Nanorod and DNAAssemblies [J]. Journal of the American Chemical Society,2012,DOI:10.1021/ja209981n.
    [150] ZHAO Y,XU L,KUANG H,et al. Asymmetric and symmetric PCR of gold nanoparticles: Apathway to scaled-up self-assembly with tunable chirality [J]. Journal of Materials Chemistry,2012,DOI:10.1039/c2jm15800k.
    [151] FAN Z,GOVOROV A O. Plasmonic circular dichroism of chiral metal nanoparticle assemblies[J]. Nano Lett,2010,10(7):2580-2587.
    [152] GOVOROV A O,GUN'KO Y K,SLOCIK J M,et al. Chiral nanoparticle assemblies: circulardichroism,plasmonic interactions,and exciton effects [J]. Journal of Materials Chemistry,2011,21(42):16806-16818.
    [153] GUERRERO-MARTINEZ A,ALONSO-GOMEZ J L,AUGUIE B,et al. From individual tocollective chirality in metal nanoparticles [J]. Nano Today,2011,6(4):381-400.
    [154] GUERRERO-MARTINEZ A,AUGUIE B,ALONSO-GOMEZ J L,et al. Intense OpticalActivity from Three-Dimensional Chiral Ordering of Plasmonic Nanoantennas [J]. Angew Chem Int Edit,2011,50(24):5499-5503.
    [155] MASTROIANNI A J,CLARIDGE S A,ALIVISATOS A P. Pyramidal and Chiral Groupings ofGold Nanocrystals Assembled Using DNA Scaffolds [J]. Journal of the American Chemical Society,2009,131(24):8455-8459.
    [156] TORSI L,FARINOLA G M,MARINELLI F,et al. A sensitivity-enhanced field-effect chiralsensor [J]. Nature Materials,2008,7(5):412-417.
    [157] LI B Z,XU Z,ZHUANG W,et al. Characterization of4,4'-biphenylene-silicas and a chiralsensor for silicas [J]. Chem Commun,2011,47(41):11495-11497.
    [158] CHO E N R,LI Y,KIM H J,et al. A Colorimetric Chiral Sensor Based on Chiral Crown Etherfor the Recognition of the Two Enantiomers of Primary Amino Alcohols and Amines [J]. Chirality,2011,23(4):349-353.
    [159] LU M L,ZHANG W G,ZHANG S,et al. Self-Assembly and Chiral Recognition of QuartzCrystal Microbalance Chiral Sensor [J]. Chirality,2010,22(4):411-415.
    [160] NAN J,YAN X P. Facile fabrication of chiral hybrid organic-inorganic nanomaterial with largeoptical activity for selective and sensitive detection of trace Hg(2+)[J]. Chem Commun,2010,46(24):4396-4398.
    [161] XU Z,KUANG H,YAN W,et al. Facile and rapid magnetic relaxation switch immunosensor forendocrine-disrupting chemicals [J]. Biosens Bioelectron,2012,32(1):183-187.
    [162] MUNGE B S,COFFEY A L,DOUCETTE J M,et al. Nanostructured Immunosensor forAttomolar Detection of Cancer Biomarker Interleukin-8Using Massively Labeled SuperparamagneticParticles [J]. Angew Chem Int Edit,2011,50(34):7915-7918.
    [163] LI D J,WANG J P,WANG R H,et al. A nanobeads amplified QCM immunosensor for thedetection of avian influenza virus H5N1[J]. Biosens Bioelectron,2011,26(10):4146-4154.
    [164] MASSAD-IVANIR N,SHTENBERG G,ZEIDMAN T,et al. Construction and Characterizationof Porous SiO(2)/Hydrogel Hybrids as Optical Biosensors for Rapid Detection of Bacteria [J]. Adv FunctMater,2010,20(14):2269-2277.
    [165] MA W W,HAO C L,MA W,et al. Wash-free magnetic oligonucleotide probes-based NMRsensor for detecting the Hg ion [J]. Chem Commun,2011,47(46):12503-12505.
    [166] MUHLSCHLEGEL P,EISLER H J,MARTIN O J F,et al. Resonant optical antennas [J].Science,2005,308(5728):1607-1609.
    [167] GOVOROV A O. Plasmon-Induced Circular Dichroism of a Chiral Molecule in the Vicinity ofMetal Nanocrystals. Application to Various Geometries [J]. J Phys Chem C,2011,115(16):7914-7923.
    [168] XU L,KUANG H,XU C,et al. Regiospecific plasmonic assemblies for in situ Ramanspectroscopy in live cells [J]. J Am Chem Soc,2012,134(3):1699-1709.
    [169] HAISS W,THANH N T K,AVEYARD J,et al. Determination of size and concentration of goldnanoparticles from UV-Vis spectra [J]. Analytical Chemistry,2007,79(11):4215-4221.
    [170] YUAN Y,ZHANG J,ZHANG H C,et al. Label-free colorimetric immunoassay for the simpleand sensitive detection of neurogenin3using gold nanoparticles [J]. Biosens Bioelectron,2011,26(10):4245-4248.
    [171] LI X H,DAI L,LIU Y,et al. Ionic-Liquid-Doped Polyaniline Inverse Opals: Preparation,Characterization,and Application for the Electrochemical Impedance Immunoassay of Hepatitis B SurfaceAntigen [J]. Adv Funct Mater,2009,19(19):3120-3128.
    [172] SHEN Z H,YAN H P,ZHANG Y,et al. Engineering peptide linkers for scFv immunosensors [J].Analytical Chemistry,2008,80(6):1910-1917.
    [173] MAOZ B M,VAN DER WEEGEN R,FAN Z,et al. Plasmonic chiroptical response of silvernanoparticles interacting with chiral supra-molecular assemblies [J]. Journal of the American ChemicalSociety,2012,3:83-90.
    [174] HELGERT C,PSHENAY-SEVERIN E,FALKNER M,et al. Chiral metamaterial composed ofthree-dimensional plasmonic nanostructures [J]. Nano Lett,2011,11:4400-4404.
    [175] GANSEL J K,THIEL M,RILL M S,et al. Gold helix photonic metamaterial as broadbandcircular polarizer [J]. Science,2009,325(5947):1513-1515.
    [176] WANG L,XU L,KUANG H,et al. Dynamic Nanoparticle Assemblies [J]. Accounts Chem Res,2012,4:799-803.
    [177] LI Z T,ZHU Z N,LIU W J,et al. Reversible Plasmonic Circular Dichroism of Au Nanorod andDNA Assemblies [J]. Journal of the American Chemical Society,2012,134(7):3322-3325.
    [178] HENDRY E,CARPY T,JOHNSTON J,et al. Ultrasensitive detection and characterization ofbiomolecules using superchiral fields [J]. Nat Nanotechnol,2010,5(11):783-787.
    [179] FAN Z Y,GOVOROV A O. Helical Metal Nanoparticle Assemblies with Defects: PlasmonicChirality and Circular Dichroism [J]. J Phys Chem C,2011,115(27):13254-13261.
    [180] HENTSCHEL M,SCHAFERLING M,WEISS T,et al. Three-Dimensional Chiral PlasmonicOligomers [J]. Nano Lett,2012,12(5):2542-2547.
    [181] FAN Z Y,GOVOROV A O. Chiral Nanocrystals: Plasmonic Spectra and Circular Dichroism [J].Nano Lett,2012,12(6):3283-3289.
    [182] REN M,PLUM E,XU J,et al. Giant nonlinear optical activity in a plasmonic metamaterial [J].Nat Commun,2012,3:833-839.
    [183] TOYODA K,MIYAMOTO K,AOKI N,et al. Using Optical Vortex To Control the Chirality ofTwisted Metal Nanostructures [J]. Nano Lett,2012,12(7):3645-3649.
    [184] ZHUKOVSKY S V,KREMERS C,CHIGRIN D N. Plasmonic rod dimers as elementary planarchiral meta-atoms [J]. Opt Lett,2011,36(12):2278-80.
    [185] FUNSTON A M,NOVO C,DAVIS T J,et al. Plasmon Coupling of Gold Nanorods at ShortDistances and in Different Geometries [J]. Nano Lett,2009,9(4):1651-1658.
    [186] NORDLANDER P,OUBRE C,PRODAN E,et al. Plasmon hybridization in nanoparticle dimers[J]. Nano Lett,2004,4(5):899-903.
    [187] ABDULRAHMAN N A, FAN Z, TONOOKA T, et al. Induced Chirality throughElectromagnetic Coupling between Chiral Molecular Layers and Plasmonic Nanostructures [J]. Nano Lett,2012,12(2):977-983.
    [188] SHEN X,SONG C,WANG J,et al. Rolling up gold nanoparticle-dressed DNA origami intothree-dimensional plasmonic chiral nanostructures [J]. Journal of the American Chemical Society,2012,4:56-59.
    [189] KUZYK A,SCHREIBER R,FAN Z Y,et al. DNA-based self-assembly of chiral plasmonicnanostructures with tailored optical response [J]. Nature,2012,483(7389):311-314.
    [190] CHEN W,BIAN A,AGARWAL A,et al. Nanoparticle Superstructures Made by PolymeraseChain Reaction: Collective Interactions of Nanoparticles and a New Principle for Chiral Materials [J].Nano Lett,2009,9(5):2153-2159.
    [191] YAN W,XU L,XU C,et al. Self-assembly of chiral nanoparticle pyramids with strong r/s opticalactivity [J]. Journal of the American Chemical Society,2012,134(36):15114-15121.
    [192] ZOOK J M,RASTOGI V,MACCUSPIE R I,et al. Measuring Agglomerate Size Distributionand Dependence of Localized Surface Plasmon Resonance Absorbance on Gold Nanoparticle AgglomerateSize Using Analytical Ultracentrifugation [J]. Acs Nano,2011,5(10):8070-8079.
    [193] XU L,KUANG H,XU C,et al. Regiospecific plasmonic assemblies for in situ Ramanspectroscopy in live cells [J]. Journal of the American Chemical Society,2012,134(3):1699-1709.
    [194] WEN Y,XING F,HE S,et al. A graphene-based fluorescent nanoprobe for silver (I) ionsdetection by using graphene oxide and a silver-specific oligonucleotide [J]. Chem Commun,2010,46(15):2596-2598.
    [195] FREEMAN R,FINDER T,WILLNER I. Multiplexed analysis of Hg2+and Ag+ions by nucleicacid functionalized CdSe/ZnS quantum dots and their use for logic gate operations [J]. AngewandteChemie International Edition,2009,48(42):7818-7821.
    [196] ONO A,CAO S,TOGASHI H,et al. Specific interactions between silver (I) ions andcytosine–cytosine pairs in DNA duplexes [J]. Chem Commun,2008,39):4825-4827.
    [197] TOMIKAWA A,KOHGO S,IKEZAWA H,et al. Chiral Discrimination of2'-Deoxy--cytidineand-Nucleotides by Mouse Deoxycytidine Kinase: Low Stereospecificities for Substrates and Effectors [J].Biochem Bioph Res Co,1997,239(1):329-333.
    [198] JOHANNSEN S,MEGGER N,BOHME D,et al. Solution structure of a DNA double helix withconsecutive metal-mediated base pairs [J]. Nat Chem,2010,2(3):229-34.
    [199] MAEDA K,YASHIMA E. Dynamic helical structures: Detection and amplification of chirality[J]. Top Curr Chem,2006,265:47-88.
    [200] GOVOROV A O. Plasmon-Induced Circular Dichroism of a Chiral Molecule in the Vicinity ofMetal Nanocrystals. Application to Various Geometries [J]. The Journal of Physical Chemistry C,2011,33:145-149.
    [201] GOVOROV A O,FAN Z Y,HERNANDEZ P,et al. Theory of Circular Dichroism ofNanomaterials Comprising Chiral Molecules and Nanocrystals: Plasmon Enhancement, DipoleInteractions,and Dielectric Effects [J]. Nano Lett,2010,10(4):1374-1382.
    [202] GERARD V A,GUN'KO Y K,DEFRANCQ E,et al. Plasmon-induced CD response ofoligonucleotide-conjugated metal nanoparticles [J]. Chem Commun,2011,47(26):7383-7385.
    [203] FAN Z Y,GOVOROV A O. Plasmonic Circular Dichroism of Chiral Metal NanoparticleAssemblies [J]. Nano Lett,2010,10(7):2580-2587.
    [204] XU Z,XU L,ZHU Y,et al. Chirality based sensor for bisphenol A detection [J]. Chem Commun(Camb),2012,48(46):5760-5762.
    [205] ZHAO Z,JACOVETTY E L,LIU Y,et al. Encapsulation of Gold Nanoparticles in a DNAOrigami Cage [J]. Angew Chem Int Edit,2011,50(9):2041-2044.
    [206] FAN J A,HE Y,BAO K,et al. DNA-Enabled Self-Assembly of Plasmonic Nanoclusters [J].Nano Lett,2011,11(11):4859-4864.
    [207] LAI C Z,FIERKE M A,COSTA R C,et al. Highly Selective Detection of Silver in the Low pptRange with Ion-Selective Electrodes Based on Ionophore-Doped Fluorous Membranes [J]. AnalyticalChemistry,2010,82(18):7634-7640.
    [208] TANG C X,BU N N,HE X W,et al. Functional nucleic acid-based electrochemiluminescentbiosensor for interaction study and detection of Ag+ions and cysteine [J]. Chem Commun,2011,47(45):12304-12306.
    [209] ZHAO J,FAN Q,ZHU S,et al. Ultra-sensitive detection of Ag+ ions based on Ag+-assisted isothermal exponential degradation reaction [J]. Biosensors and Bioelectronics,2012,2:769-775.
    [210] LIANG P,ZHANG L,ZHAO E. Displacement-dispersive liquid–liquid microextraction coupledwith graphite furnace atomic absorption spectrometry for the selective determination of trace silver inenvironmental and geological samples [J]. Talanta,2010,82(3):993-996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700