钢表面凹坑纹理的制备及摩擦学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摩擦副表面纹理形貌的合理设计和制备,将有效提高摩擦副的摩擦、润滑和抗磨损性能。本课题在广泛查阅文献资料的基础上,设计合理的试验方案,结合数值分析的手段,着重就摩擦副表面凹坑纹理的制备、表征及摩擦与润滑性能的几个关键问题进行了探讨。
     首先,探讨表面纹理结构的摩擦磨损性能,一般广泛采用面-面接触的滑动摩擦试验形式,而上、下试样组成的摩擦副端面调整一直是比较困难的问题。本文通过设计一种自适应夹头装置,可以带动被固定的试样实现任意方向的自由微动,使滑动摩擦过程中摩擦副保持全面接触并自动适应接触区表面状况的变化。与普通夹头装置的对比试验数据表明,可以显著提高摩擦试验数据的稳定性和重复性,从而更加准确地反映摩擦副间的最初表面状态,使摩擦磨损数据更加准确,为接下来研究摩擦副表面形貌结构对于摩擦磨损性能的影响提供了试验保障。
     其次,本文探讨了两种简单实用的表面凹坑纹理结构制备工艺方法,一种是压丸表面凹坑纹理制备工艺方法,该工艺方法可以方便快捷地通过变换压丸力而可获得深度尺寸和截面(口径)尺寸同时变化且二者的比值即深径比也随之变化的一系列规则凹坑,获得毫米至亚毫米级的表面规则压丸凹坑纹理结构;另一种是喷砂表面纹理制备工艺方法,该工艺方法可以方便快捷地通过变换砂粒大小、喷砂距离、喷射压力、喷射角度等喷砂工艺参数调节喷砂表面的粗糙度,获得微米至亚微米级的表面非规则喷砂凹坑纹理结构。这两种简单实用的表面纹理结构制备工艺方法经济实用,操作简单,在深入研究其几何表征及对于摩擦与润滑性能影响机制的基础上便于向工业应用推广使用。
     对于毫米至亚毫米级的大尺度规则压丸凹坑纹理,其口径尺寸的大小一方面决定着整个表面粗糙度的增大程度,另一方面也决定着扑捉磨屑和磨粒的容易程度,而凹坑深度尺寸则决定着流体润滑状态下的润滑膜的厚度及润滑膜动压力。因此,应该使用深径比这一参数来综合考虑两个几何参数对于摩擦磨损的影响。在流体润滑状态下,深径比相对较大的凹坑纹理更容易使试样表面获得较大的动压力和承载力,具有相对较大的临界载荷。而最低的摩擦系数值,则要根据所施加的载荷大小来确定,一般而言,低载时,深径比相对较小的压丸试样具有更小的摩擦系数值,而重载时,深径比相对较大的压丸试样具有更小的摩擦系数值。
     对于微米至亚微米级尺度的非规则喷砂凹坑纹理,可以用粗糙度来进行几何表征。粗糙度值决定着最低的摩擦系数和最高承载能力。合适的粗糙度值(本文Ra为3.92μm左右)可以使润滑介质具有相对较小的表观润湿角和成膜性,此时摩擦副间容易取得相对最低的摩擦系数;而粗糙度值不在一个合适的范围内(本文Ra大于或小于3.92μm的范围)润滑介质具有相对较高表观润湿角,在液固结合处容易夹杂更多含量的气相,且机油润滑膜更厚,或机油液滴的曲率半径更大,此时摩擦副间具有更高的承载能力。
     再次,本文通过各项脉冲激光的工艺参数的匹配,制备了四种类型的激光表面纹理形貌,丰富了激光与物质相互作用机理的理论。
     激光表面纹理的制备过程是一个复杂的激光与物质相互作用的冶金物理化学过程。通过脉冲波形(高斯波形)、脉冲宽度、脉冲能量、离焦量及激光扫描速度等各项脉冲激光的工艺参数的匹配,可以分别得到乳突结构的表面纹理结构凹坑结构的表面纹理结构。采用超快激光还可以得到周期性波纹结构和包含有微米级乳突、亚微米级凹坑和短小波纹的多尺度复合结构。其中,乳突结构处于组织梯度分布的多尺度的复合结构状态,从结构和组织方面有了优异的摩擦、磨损和润湿性等表面性能的保证;本文试验条件下所得的激光凹坑结构尺度在200μm口径和100μm深度下,在较低的Hersey数时,凹坑纹理的引入不利于摩擦系数的降低,而只有在较大的Hersey数时,凹坑纹理的引入才有利于摩擦副的润滑与摩擦学性能的提高。且此时,网格状的凹坑纹理试样具有最低的摩擦系数和最低的磨损量,但从磨损痕迹来看,网格状的凹坑纹理试样始终没有进入完全的流体润滑状态。采用超快激光且在低于材料损伤阈值的较低辐照能量下,可以在材料表面得到比较规则的周期性的波纹结构,在超过材料损伤阈值的较高辐照能量下,可以在材料表面获得包含有微米级乳突、亚微米级凹坑和短小波纹的多尺度复合结构。上述两种典型的表面结构都表现出疏水性,且多尺度复合结构较规则的周期性波纹结构具有更大的表观润湿角度,表现出超疏水的性能。
     本文最后采用数值模拟方法研究了矩形微坑纹理表面润滑膜形成的机理以及几何参数对纹理表面润滑性能的影响,模拟结果显示:空化和惯性力是纹理表面润滑膜形成的两种重要机理,而且当纹理的深径比较小时,空化占主导,深径比较大时,惯性力占主导,惯性力的作用同时使得空化的发生减弱,有利于纹理表面承载能力的提高;纹理的几何参数对其润滑性能有重要的影响,微坑的深度、长度、纹理的面积占有率、入口区域、出口区域的长度等对纹理表面的承载能力都有一定的影响规律。
     本文有图88幅,表12个,公式14个,参考文献150篇。
Rational design and fabrication of surface structure in friction pairs will effectively enhance the pairs’frictional, lubricating and wear-resistant properties. This paper, based on extensive literature documentations, the rational experimental program design and numerical analysis combination, mainly in order to discuss on the following key issues: the fabrication and characterization of friction pairs as well as frictional and lubricating properties.
     First, this paper designed a self-adapted holder, which can make fixed samples swing in any direction, can keep friction pairs full contact and adapt the change of the contacting surface in the process of sliding friction. Compared with the ordinary holder, it showed test data become more stable and repeatable. This can exactly reflect the original surface state between friction pairs and make the data more accurate. What’s more, this helps the following research on how friction pairs’surface structure effect friction and wear properties.
     Second, this paper discussed two simple and practical methods to fabricate surface structure. One is surface dimple-textured by pellet-pressing, which is a convenient and economical way of getting millimeter or sub-millimeter scale dimple-textured surface structure , and another is surface texturing by sandblast, which is a convenient and economical way of getting micron or submicron scale irregular surface structure which had no fixed geometry but a certain roughness. These two methods are economical, practical and easy-operated so that they can be promoted to industrial applications after deep research on their geometric representation and influence to frictional and lubricating properties.
     Third, this paper fabricated four kinds of laser surface structures. Protuberance surface structure and concave surface structure were prepared by common laser respectively. Using ultrafast laser we can also find periodic corrugated structure and micro-mastoid, submicron-pits and short corrugated multi-scale composite structure. With metallographic microstructures gradient distribution complex structure, protuberance surface structure had excellent tribology, wear and wettability properties. Concave surface structure could get excellent tribology and lubrication properties when the Hersey number is bigger.
     Finally, this paper simulated how different micro-pit parameters under test conditions affect the load capacity. Simulation results which are basically consistent with experimental results show that there is an optimum depth to diameter ratio that is 0.025.
     In this paper, there are 88 figures, 12 tables, 14 formulas and 150 reference articles.
引文
[1]周仲荣.摩擦学发展前沿[M].北京:科学出版社,2006.
    [2]陈建敏,周惠娣,磨损失效与摩擦学新材料的研究与发展,ICME2000, 2000年,邀请报告.
    [3]张绪寿,余来贵,陈建敏.表面工程摩擦学研究进展.摩擦学学报,2000,20(2):157-160.
    [4] Wong H C, Umehara N, Kato K. The effect of surface roughness on friction of ceramics sliding in water[J]. Wear, 2001, 218:237-243.
    [5] Etsion I. Improving tribological performance of mechanical components by laser surface texturing[J]. Tribology Letters, 2004, 17(4): 733-737.
    [6]万秩,熊党生.激光纹理化改善不锈钢摩擦性能的研究[J].哈尔滨工业大学学报, 2006,38(7):137-139.
    [7] Xiaolei W, Kato K. Improving the Anti-SeizureAbility of SiC Seal in Water with RIE Texturing [J]. Tribol Let,t 2003,14 (4): 275-280.
    [8]束德林.工程材料力学性能.北京:机械工业出版社,2003.7.
    [9] Etsion I. State of the Art in Laser Surface Texturing [J].ASME JTribo,l 2005, 127: 248-252..
    [10] http://www.qhdvtc.com/jpk/sj1/jxja2.htm.
    [11] http://baike.baidu.com/view/761958.htm?fr=ala0_1_1.
    [12] http://baike.baidu.com/view/542585.htm?fr=ala0_1_1.
    [13] http://baike.baidu.com/view/556943.htm?fr=ala0_1.
    [14] http://baike.baidu.com/view/542591.htm?fr=ala0_1.
    [15] http://baike.baidu.com/view/293115.htm.
    [16] H.L.Costa1, I.M. Hutchings. Effects of die surface patterning on lubrication in strip drawing. Journal of materials processing technology, 2009, 209:1175–1180.
    [17] P. L. Menezesa, Kishorea and S. V. Kailas, Studies on friction and transfer layer using inclined scratch, Tribology International , 2006,39: 175–183.
    [18]孙久荣,戴振东.非光滑表面仿生学(Ⅱ) .自然科学进展, 2008,18(7): 21-25.
    [19]彭旭东,杜东波,盛颂恩等.端面微形体对液体润滑机械密封性能的影响[J].摩擦学学报, 2007,27(4): 352-356.
    [20]吕文斐,方亮.润滑条件下激光加工纹理的摩擦磨损[J].摩擦学学报, 2009, 29(1): 1-4.
    [21] Miki Nakano, Atsuko Korenaga, Atsushi Korenaga, et al. Applying micro-texture to cast iron surfaces to reduce the friction coefficient under lubricated conditions[J]. Tribol lett,2007, 28:131-137.
    [22]宋起飞,周宏,李跃等.仿生非光滑表面铸铁材料的常温摩擦磨损性能[J].摩擦学学报, 2006,26(1):24-26.
    [23] Manabu Wakuda.Effect of surface texturing on friction reduction between ceramicand steel materials under lubricated sliding contact. Wear,2003,254:356–363.
    [24] Wang, X., Adachi, K., Otsuka, K., Kato, K. Optimization of the surface texture for silicon carbide sliding in water [J]. Applied Surface Science, 2006, 253: 1282–1286.
    [25] Wakuda, M., Yamauchi, Y., Shuzo Kanzaki. Surface Finishing of Alumina Ceramics by Means of Abrasive Jet Machining [J]. Journal of the American Ceramic Society, 2002, 85(5): 1306–1308.
    [26] Toshikazu Nanbu, Ning Ren, Yoshiteru Yasuda, Dong Zhu, Q. Jane Wang. Micro-textures in concentrated conformal-contact lubrication: effects of texture bottom shape and surface relative motion [J]. Tribology Letters, 2008, 29: 241-252.
    [27] Yu, T.H., Sadeghi, F.Thermal effects in thrust washer lubrication [J]. ASME Journal of Tribology, 2002,124(1): 166–177.
    [28] Hoppermann, A., Kordt, M. Tribological optimization using laser-structured contact surfaces [J].O+P‘‘Oelhydraulik und Pneumatik,’’2002, 46(4), Vereinigte Fachverlage Mainz, ISSN 0341-2660.
    [29] U.Pettersson and S.Jacobson, Frction and properties of micro textured DLC coated surfaces in boundary lubricated sliding[J], Tribology letters, 2004,17:233-240.
    [30] Kovalchenko.A, Ajayi, Erdemir, fenske, Etsion.I, The effect of laser surface texturing on transitions in lubrication regimes during unidirectional sliding contact[J], Tribology Internatinal,2005,38:219-228.
    [31] Ronen, A. and Etsion, I. Friction-reducing Surface-texturing in Reciprocating automotive components[J]. Tribology Transactions, 2001,44(3):359-366.
    [32]韩志武,任露泉,刘祖斌.激光织构仿生非光滑表面抗磨性能研究[J].摩擦学学报, 2004,24(4):289-293.
    [33]任露泉,杨卓娟,韩志武,生物光滑耐磨性表面仿生应用研究展望[J],农业机械学报, 2005,36(7):144-147.
    [34]韩志武,许小侠,任露泉.凹坑形非光滑表面微观摩擦磨损实验回归分析[J].摩擦学学报, 2005,25(6):578-582 .
    [35] Xiaolei Wang , Koji Kato , Koshi Adachi , Kohji Aizawa.The effect of laser texturing of SiC surface on the critical load for the transition of water lubrication mode from hydrodynamic to mixed. Tribology International, 2001,34:703-711.
    [36] Etsion I. State of the Art in Laser Surface Texturing [J].ASME Tribology Letters, 2005, 127: 248-252.
    [37] Etsion I, Halperin G, Technion. A laser surface textured hydrostaticmechanical seal[J]. SealingTechnology, 2003,3: 6-10.
    [38]符永宏,叶云霞,张永康,蔡兰.用于显著改善摩擦副润滑状态的激光珩磨技术[J].机械工程学报, 2002, 38(8): 115-117.
    [39]孟小霞.规则表面微造型的激光加工和摩擦特性研究[D].江苏大学机械制造及其自动化, 2007.
    [40] L. Rapoport, A. Moshkovich, V. Perfilyev, I. Lapsker, et al. Friction and wear of MoS2 films on laser textured steel surfaces[J]. Surface & Coatings Technology,2008,202:3332-3340.
    [41]高东海,刘焜,袁根福.激光微加工凹坑表面形貌摩擦特性的试验研究[J].合肥工业大学学报(自然科学版), 2008, 31(10):1581-1584.
    [42] Andersson, JKoskinen, SVarjus, etal. Microlubrication effect by laser-textured steel surface[J]. Wear,2007,262:369-379.
    [43]汪家道,陈大融,孔宪梅.规则凹坑表面形貌润滑研究[J].摩擦学学报, 2003, 23(1):52-55.
    [44]汪家道,陈大融,孔宪梅等.面接触规则凹坑表面流体润滑计算[J].清华大学学报(自然科学版), 2003,41(2):42-45.
    [45] Du D, HeY F, SuiB,etal. Laser texturing of rollers by pulsed Nd:YAG laser[J]. Journal of Materials Processing Technology,2005, 161: 456-461.
    [46] L.M. Vilhena, M. Sedla?ek, B. Podgornik. Surface texturing by pulsed Nd:YAG laser[J]. Tribology International,2009,42(10):1496-1504.
    [47] Douglas S. Ruby, Saleem Zaidi, S. Narayanan, etc.. RIE-Texturing of Industrial Multicrystalline Silicon Solar Cells. Journal of Solar Energy Engineering,2005,127(1): 146-149.
    [48] Yukie Yokotaa, Kosei Uenoa, b, Saulius Juodkazis, etc. Nano-textured metallic surfaces for optical sensing and detection applications. Journal of Photochemistry and Photobiology A: Chemistry,2009,207(1): 126-134.
    [49]张敬民,廖志敏,尤力平,叶恒强,俞大鹏.超精细纳米结构加工技术.电子显微学报,2007,26(3):167-170.
    [50]余祖元,郭东明,贾振元.微细电火花加工技术.中国科技论文在线,2007,2(3):214-220.
    [51] YU Z Y, MASUZAWA T, FUJINO M. 3D micro-EDM with simply shaped electrode[J].Annals of CIRP,1997,46(1):1-8.
    [52] YU Z Y, MASUZAWA T, FUJINO M. Micro-EDM for three-dimensional cavities[J].Annals ofthe CIRP,1998,47(1):169-172.
    [53] TONG H,LI Y,WANG Y,et al. Servo scanning 3D micro-EDM based on macro/micro-dual-feedspindle[J].International Journal of MachineTools &Manufacture,2008,48:858-869.
    [54]李勇,佟浩,郁鼎文,等.三维微细电火花伺服扫描加工工艺[J].纳米技术与精密工程,2008,6(4):307-311.
    [55] TAKAHATA K, SHIBAIKE N, GUCKEL H.High-aspect-ratio WC-Co Microstructure Produced by the Combination of LIGA and Micro-EDM[J]. Microsystem Technologies,2000,6:175-178.
    [56] ZOU LY,ZHANG Y C,PENG L Q,et al.. Opti-mal process of micro-EDM based on LIGA technique[J].Electromachining &Mould,2004:39-41.
    [57]杜立群,莫顺培,张余升,刘冲. UV-LIGA和微细电火花加工技术组合制作三维金属微结构.光学精密工程,2010,18(2):363-368.
    [58]吴广峰,胡鸿胜,朱文坚.LIGA工艺基础及其发展趋势.机电工程技术,2007,36(12):89-92.
    [59]刘晓明,朱仲金.微机电系统设计与制造[M].北京:国防工业大学出版社,2006.
    [60] StephensL S, Siripuram R, HaydenM, et al. Deterministic Micro A sperities on Bearings and Seals Using a Modified LIGA Process [J]. Transactions of the ASME, Journal of Engineering for Gas Turbines and Power, 2004, 126 (1): 147-54.
    [61]章吉良,杨春生.微机电系统及其相关技术[M].上海:上海交通大学出版社,1999.
    [62] T.M.Bloomstein,D.J.Laser chemical three-dimensional writing of multimaterial structures for microelectromechanics[A].Proc.MEMS'91:202.
    [63]张云电.蜂窝状微坑设计和制造技术[M].北京:科学出版社, 2004.
    [64] Xi-Qing Sun1, a, T. Masuzawaa and M. Fujino. Micro ultrasonic machining and its applications in MEMS. Sensors and Actuators A: Physical,1996,57(2):159-164.
    [65]张兴权,戴亚春,杜为民等.金属零件表面改性的喷丸强化技术[J].电加工与模具, 2005, 2:30-32.
    [66] Slikkerveer P.J.,Bouten,P.C.P.and de Haas,F.C.M.,High quality mechanical etching of brittle materials by powder blasting,Sensors and Actuators A,2000,85:296-303.
    [67] Wakuda M.,Yamauchi Y.,Kanzaki S.Effect of workpiece properties on machinability in abrasive jet machining of ceramic aterials[J].Precision Engineering Journal of the International Societies for Precision Engineering and Nanotechnology,2002,26:193-198.
    [68] Pawlowski A.G.Belloy E.Sayah A.Gijs M.A.M.powder blasting patterning technology for microfabrication of complex suspended structures in glass[J].Microedectronic Engineering.2003,67-68:57-565.
    [69] Belloy E,Thurre S et al.,The introduction of powder blasting for sensor and microsystem applications[J].Sensors and Actuators A,2000,84:330-337.
    [70] Achtsnick M,Holtsmark A,Hoogstrate A.M,Karpuschewski B,Design and testing of a lavalnozzle for micro-abrasive-air-jetting.The exchange materials of Delft University of Technology,Netherlands,2003.5.
    [71] U.Pettersson and S.Jacobson, Frction and properties of micro textured DLC coated surfaces in boundary lubricated sliding[J], Tribology letters, 2004,17:1232-1237.
    [72]马晨波.织构化表面的润滑计算模型及减摩特性研究[D].徐州:中国矿业大学机电学院,2010.
    [73] S. Schreck, K.-H. Zum Gahr. Laser-assisted structuring of ceramic and steel surfaces for improving tribological properties[J]. Applied surface science,2005, 247:616-622.
    [74] Brizmer.V, Kligerman.Y, and Etision.I. A laser surface textured parallel thrust bearing[J]. Tribology Transaction, 2003,46(3): 397-403,.
    [75] Kovalchenko.A, Ajayi, Erdemir, fenske, Etsion.I, The effect of laser surface texturing on transitions in lubrication regimes during unidirectional sliding contact[J],Tribology Internatinal,2005,38:219-228.
    [76]林子光,谢辉,改善机械零件表面形貌的试验研究[J],机械设计, 1995,11(1):8-11.
    [77]林子光,铸铁表面激光微精处理的摩擦学特性[J],表面工程杂志, 1996,2:12-15.
    [78]林子光,郭炎,表面形貌对抗擦伤能力影响的试验研究[J],机械设计, 1999,11(1):8-11.
    [79]宋起飞,周宏,李跃等.仿生非光滑表面铸铁材料的常温摩擦磨损性能[J].摩擦学学报, 2006,26(1):24-27.
    [80] SuhAY, Lee SC, Polycarpou A A. Adhension and friction evaluation of textured slider surfaces in ultra-low head-disk interface [J]. Trobology Letter, 2004, 17(4): 739-749.
    [81] K. Wagner.Tool life enhancement in cold forging by locally optimized surfaces. Journal of Materials Processing Technology, 2008,201:2-8.
    [82]杨卓娟,韩志武,任露泉.激光处理凹坑形仿生非光滑表面试件的高温摩擦磨损特性研究.摩擦学学报,2005,(4):23-27.
    [83] Bharat Bhushan, Yong Chae Jung. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Progress in Materials Science, Available online 12 May 2010:1-6.
    [84] Z.J. Wei, W.L. Liu, D. Tian, C.L. Xiao, X.Q. Wang. Preparation of lotus-like superhydrophobic fluoropolymer films. Applied Surface Science, 2010, 256(12): 3972-3976.
    [85]崔晓松,姚希,刘海华,方国平,李文,江雷.超疏水表面微纳结构设计与制备及润湿行为调控(Ⅰ).中国材料进展,2009(12):9-13.
    [86]王霄,张广海,陈卫等.不同微细造型几何形貌对润滑性能影响的数值模拟[J].润滑与密封, 2007,8(32):66-68.
    [87]王顺,胡元中,王文中,王慧.润滑点接触粗糙表面滑动摩擦摩擦因数的实验研究[J].润滑与密封,2006(7):107-109.
    [88]王文中,王顺,胡元中,王慧.全膜润滑到边界润滑的过度研究[J].润滑与密封,2006(9):32-35.
    [89]王顺,王文中,胡元中,王慧.点接触润滑粗糙表面滑动摩擦力的预测研究[J].摩擦学学报,2007,27(2):152-155.
    [90] U.pettersson ,S.Jacobson. Tribological texturing of steel surfaces with a novel diamond embossing tool technique. Tribology letters, 2006, 39(7):695-700.
    [91] Pettersson U., Jacobson, S.: Textured surfaces for improved lubrication at high pressure and low sliding speed of roller/piston in hydraulic motors. Tribol. Int,2007 ,40:355–359 .
    [92] Burstein, L., Ingman, D.: Pore ensemble statistics in application to lubrication under reciprocating motion. Tribol. Trans,2000,43:205-212.
    [93]朱定一,乔卫,王连登.仿荷叶微凹凸表面的疏水机理与判据[ J].科学通报,2010年16期
    [94] Myers D,吴大诚等译.表面、界面和胶体原理及应用[M].北京:化学工业出版社, 2005.
    [95]郑黎俊等.表面微细结构制备超疏水表面[ J].科学通报,2004, 49: 1691-1699.
    [96]温诗铸.微纳米摩擦学[M].清华大学出版社, 1998.
    [97] Zhang X J, Dong Y K, Liu Y H, Schaefer JA. Effect of contact geometry on capillary pull-off force and friction force of silicon sur-face[A].Proceedings of 33rd Leeds-Lyon Symposium on Tribology[C], Leeds, 2006.
    [98]张向军,孟永钢,温诗铸.微机电系统中的微观粘滑、粘附与控制[J].纳米技术与精密工, 2005, 3(2): 97-100.
    [99] Bo Wu, Ming Zhou, Jian Li, Xia Ye, Gang Li and Lan Cai.Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser[J].Applied Surface Science, 2009, 256(1):61-66.
    [100]代汉达,曲建俊.水润滑下偶件表面粗糙度对PTFE复合材料摩擦学性能的影响.润滑与密封,2009,(2):8-10.
    [101]程帅,董云开,张向军.规则粗糙固体表面液体浸润性对表观接触角影响的研究.机械科学与技术,2007,26(7):822-827.
    [102] Feng X. J., Jiang L.Design and creation of superwetting/antiwetting surface[J].Advanced Materials , 2006,18: 3063-3078.
    [103] Guo C. W., Feng L., Zhai J.,etal. Large-area fabrication of a nanostructure induced hydrophobic surface from a hydrophilic polymer[J]. Chem. Phys. Chem, 2004,5: 750-753.
    [104] Sun M. H., Luo C. X., Xu L. P.,etal. Articial lotus leaf by nanocasting[J]. Langmuir, 2005,21: 8978-8981.
    [105] JIN Mei-Hua(金美花), FENG Lin(冯琳), FENG Xin-Jian(封新建),et al.. Super-hydrophobicity of Aligned Polymer Nanopole Films[J].Chem. J. Chinese Universities(高等学校化学学报), 2004,25(7): 1375-1377.
    [106] Lee S. M., Kwon T. H. Mass-producible replication of heghly hydrophobic surface from plant leaves[J]. Nanotechnology, 2006,17: 3189-3196.
    [107] Sun T. L., WangG. J., FengL.,etal. Reversible switching between superhydrophilicity and superhydrophobicity[J]. Angew. Chem. Int. Ed, 2004,43: 357-360.
    [108] OenerD., McCarthyT. J. Ultrahydrophobic surface.Effects of topography length scals on wettability[J]. Langmuir,2000,16:7777-7782.
    [109] Bico J., Marzolin C., QuéréD. Fabricate the super-hydrophobic film by polymer materials[J]. Europhys. Lett. , 1999,47: 220-22.
    [110] FengX., FengL., JinM.,etal. Reversible surper-hydrophobicity ro super-hydrophilicity transition of aligned ZNO nanorod films[J]. J. Am. Chem. Soc, 2004,126: 62-63.
    [111] Genzer J., EfimenkoK. On desiging and creating long-lived superhydrophobic surface through mechanically assembled[J]. Science, 2000,290: 2130-2133.
    [112] HozumiA., TakaiO. Preparation of ultra water repellent films by microwave plasma-enhanced CVD[J]. Thin solid films, 1997,303: 222-225.
    [113] LIHuan-Jun(李欢军), WANG Xian-Bao(王贤宝), SONG Yan-Lin(宋延林),et al. Porpus aligned carbon nanotube films for Ultrhydrophobic surface[J]. Chem. J. ChineseUniversities(高等学校化学学报), 2001,22(5): 759-76.
    [114] ErbrilH. Y., DemireA. L., AvciY.,etal.Underwater superhydrophobiciry theoretical feasibilty[J]. Science, 2003,299: 1377-1380.
    [115] ShirtcliffeN. J., McHaleG., NewtonM. I.,etal. Intrinsically superhydrophobic otgansdilica sol-gel foams[J]. Langmuir, 2003,19: 5626-5631.
    [116] XieQ. D., Fan G. Q., ZhaoN.,etal. Facile creation of bionic super-hydrophobic block copolymer surface[J]. Adva. Mater, 2004,16: 1830-1833.
    [117] Jiang L., ZhaoY., Zhai J. H.,etal.A lotus leaf like superhydrophobic surface:a porous superhydrophobic microsphere/nanofiber composite film prepared bu elecrohydrofynamics[J]. Angew. Chem. Int. Ed, 2003,43: 4338-4341.
    [118]曹丰,管自生,李东旭.类荷叶表面疏水结构的材料表面制备[J].材料科学与工程学报, 2007,25(4):11-14.
    [119]丁阳喜,周立志.激光表面处理技术的现状及发展[J].材料热处理,2007,36(6): 69-72.
    [120]王振龙等.微细电火花加工技术研究进展[J].中国机械工程, 2000, 5:894-898.
    [121]尹强.激光精密刻划技术的研究[D].中国科学院光电技术研究所, 2001.
    [122]肖爱红,邱长军,李学兵.激光表面改性技术及其应用综述[J].机械制造, 2006, 44(4):59-61.
    [123]何云峰,都东,岁波,熊丽娟,张烨.轧辊表面球冠状微凸形貌的激光加工[J].应用激光, 2002, 22(3): 327-330.
    [124]刘莹,陈大融,杨文言.轧辊表面微凸体形貌激光毛化技术的试验研究[J].机械工程学报, 2003, 39(3): 107-110.
    [125]程灿军,钟如涛,汪连运.激光加工技术在冶金行业的应用[J].武钢技术,2010,48(3): 58-61.
    [126]符永宏,李成冬,华希俊,米涛,倪健.激光毛化微凸形模具钢表面摩擦磨损性能研究[J].摩擦学学报,2009, 29(9): 475-480.
    [127]段军.激光微加工磁盘-激光毛化技术现状与发展[J].激光技术,2006, 30(5): 490-493.
    [128]何云峰,都东,刘莹,岁波,熊丽娟.轧辊表面脉冲激光三维微改形过程参数分析[J].激光技术,2003, 27(1): 8-13.
    [129]刘红斌,万大平,胡德金.激光毛化表面温度与应力的数值模拟与实验研究[J].材料热处理学报,2008,29(4):181-183.
    [130]王霄,张广海,陈卫等.不同微细造型几何形貌对润滑性能影响的数值模拟[J].润滑与密封, 2007,8(32):66-68.
    [131]吕文斐,方亮.润滑条件下激光加工纹理的摩擦磨损[J].摩擦学学报,2009,29(1):1-3.
    [132] K H Zum Gahr, M Mathieu, B Brylka. Friction control by surface engineering of ceramic sliding pairs in water [J], Wear, 2007, 263:920-929.
    [133] PAndersson, JKoskinen, SVarjus, etal. Micro lubrication effect by laser-textured steel surface [J], Wear, 2007, 262:369-379.
    [134] Peng XD, Du DB, Li JY. Effect of different section profile micro-pores on seal performance of a laser surface textured mechanical seal [J], Tribology, 2006, 26(4):367-371.
    [135] Hammerstr?m L and Jacobson S, Designed high-friction surfaces-Influence of roughness and deformation of the counter surface [J], Wear,2008,264:807-814.
    [136] Neinhuis C and Barthlott W. Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces [J], Annals of Botany1997,79:667-677.
    [137] Roach P, Shirtcliffe NJ and Newton MI. Progress in super hydrophobic surface development [J], Soft Matter, 2008,4:224–240.
    [138] Shafiei M and Alpas AT. Fabrication of biotextured nanocrystalline nickel films for the reduction and control of friction [J], Materials Science and Engineering C,2008,28: 1340-1346.
    [139] Singh AV, Pham DC, Kim J, Yang S and Yoon ES. Bio-inspired dual surface modification to improve tribological properties at small-scale [J], Applied Surface Science, 2009 ,Available Online.
    [140] Ahmed SIU, Bregliozzi G and Haefke H, Microtribology of silicon, oxide, and carbide surfaces, Tribotest, 2006,12:175-184.
    [141] Wang XL, Adachi K, Otsuka K and Kato K, Optimization of the surface texture for silicon carbide sliding in water, Applied Surface Science,2006,253:1282-1286.
    [142] Kovalchenko, A., Ajayi, O., Erdemir, A., Fenske, G., Etsion, I. The effect of laser texturing of steel surfaces and speed-load parameters on the transition of lubrication regime from boundary to hydrodynamic, Tribol. Trans,2004,47:299–307.
    [143] Pettersson U., Jacobson, S.: Textured surfaces for improved lubrication at high pressure and low sliding speed of roller/piston in hydraulic motors, Tribol. Int,2007,40:355–359.
    [144] Arghir, M., Roucou, N., Helene, M., and Frene, J., 2003,“Theoretical Analysis of the Incompressible Laminar Flow in a Macro-Roughness Cell,”ASME J. Tribol., 125(2):309–318.
    [145] Sahlin, F., Glavatskih, S. B., Almqvist, T., and Larsson, R..Two-Dimensional CFD-Analysis of Micro-Patterned Surfaces in Hydrodynamic Lubrication.Trans. ASME, J. Tribol., 2005,127(1):96-102.
    [146] Etsion, I., Kligerman, Y., and Halperin, G.. Analytical and Experimental Investigation of Laser-Textured Mechanical Seal Faces.Tribol. Trans,1999,42(3):511–516.
    [147] Yu, T. H., and Sadeghi, F.Groove Effects on Thrust Washer Lubrication.ASME J. Tribol., 2001,123(2):295-304.
    [148] Ronen, A., Etsion, I., and Kligerman, I.Friction-Reducing Surface Texturing in Reciprocating Automotive Components. STLE Paper,2001:1-14.
    [149] Brizmer, V., Kligerman, Y., and Etsion, I. A Laser Surface Textured Parallel Thrust Bearing.Tribol. Trans., 2003,46(3):397-403.
    [150] Miki Nakano, Atsuko Korenaga, Atsushi Korenaga, et al. Applying micro-texture to castiron surfaces to reduce the friction coefficient under lubricated conditions[J]. Tribol lett,2007, 28:131-137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700