翠绿针毛蕨化学成分及其抗肿瘤活性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
翠绿针毛蕨Macrothelypteris viridifrons (Tagawa) Ching是金星蕨科针毛蕨属植物,广泛分布于长江流域以南各省区,具有清热解毒,利尿,止血等功效。目前,国内外有关其化学成分和生物活性的报道很少,为了开发翠绿针毛蕨的药用价值和研究其生物活性,我们对翠绿针毛蕨总黄酮活性部位的纯化工艺、化学成分及抗肿瘤作用进行了研究,同时,对新化合物DHEC抗肿瘤作用机制进行了探讨,并建立了翠绿针毛蕨药材的质量标准。
     在对总黄酮纯化工艺的研究中,采用碱溶酸沉法结合大孔树脂纯化法,建立了翠绿针毛蕨总黄酮的纯化工艺,最终得到转移率不低于59.52%,纯度不低于54.85%的翠绿针毛蕨总黄酮。最佳提取工艺为:以70%乙醇为溶剂,料液比1:20,80℃下回流提取2次,每次60min;最佳纯化工艺为:碱溶酸沉法(碱液溶解最佳PH值为7,酸液沉淀最佳PH值为1-2);大孔树脂法(选用HPD500树脂,上样液PH值为5,上样液浓度为4.0mg/mL,吸附流速为2.0BV/h,洗脱剂为70%乙醇,洗脱剂体积为3.0BV,洗脱流速为2.0BV/h)。
     通过体内外抗肿瘤活性的对比研究,结果显示翠绿针毛蕨总黄酮可显著抑制多种肿瘤细胞的增殖以及小鼠S180肉瘤模型肿瘤的生长,其活性明显优于总提取物。另外,以HepG2人肝癌细胞为模型,采用MTT法评价细胞增殖,PI染色法检测细胞周期,Annexin V-FITC/PI双染法和Hoechst33258荧光染色法检测细胞凋亡等手段来进一步研究总黄酮的体外抗肿瘤作用,结果显示翠绿针毛蕨总黄酮可诱导HepG2细胞凋亡,且能使细胞周期停滞于G2/M期。同时,在小鼠H22肝癌模型中,采用抑瘤率,生化指标检测,HE染色,免疫组化等方法来深入分析翠绿针毛蕨总黄酮的抗肿瘤作用,结果显示翠绿针毛蕨总黄酮可以显著抑制肿瘤的生长,且对血管形成具有一定的抑制作用,提示其作用机制可能与抑制肿瘤组织血管生成和诱导肿瘤细胞凋亡有关。
     在总黄酮化学成分研究中,采用现代色谱和光谱技术,从翠绿针毛蕨总黄酮中分离得到19个化合物,其中9个是结构新颖罕见的B环非苯环的黄酮类化合物,包括1个新化合物8,分别为5,7-二羟基色原酮(1);5,7-二羟基-2-(1-羟基-2,6-二甲氧基-4-酮-环己烷)-色原酮(2);5,7-二羟基-2-(1,2-异丙二氧基-4-酮-环己-5-烯)-色原酮(3);原芹菜素(4);芹菜素(5);柚皮素(6);山奈酚(7);2-(顺-1,2-二羟基-4酮-环己-5-烯)-5-羟基-7-乙氧基色原酮(8);2-(顺-1,2-二羟基-4-酮-环己-5-烯)-5,7-二羟基-色原酮(9);槲皮素(10);2-(反-1,4-二二羟基环己烷)-5,7-二羟基-色原酮(11);5,7-二羟基-2-(1,4-二羟基-环己-2,5-二烯)-色原酮(12);芹菜素-4'-葡萄糖苷(13);柚皮素-4'-葡萄糖苷(14);山奈酚-3-葡萄糖苷(15);5,7-二羟基-2-(1,4-二二羟基环己烷)-色原酮-4'-O-葡萄糖苷(16);4'-羟基原芹菜素-4'-葡萄糖苷(17);山奈酚-3-芦丁糖苷(18);槲皮素-3-芦丁糖苷(19)。所有化合物均为首次从该植物中分离得到。
     同时,采用MTT法、流式细胞术、荧光显微镜、免疫印迹实验等方法对新化合物2-(顺-1,2-二羟基-4酮-环己-5-烯)-5-羟基-7-乙氧基色原酮(DHEC)诱导HT-29人结肠癌细胞凋亡的机制进行了深入探讨,结果显示DHEC能显著抑制HT-29细胞增殖和诱导其凋亡,并能引起线粒体内膜电位(MMP)显著降低,细胞内活性氧(ROS)的异常升高,细胞色素C的大量释放,PARP、procaspase-3、-8、-9的活化裂解,促凋亡蛋白Bax和Bad蛋白表达显著增加,抗凋亡蛋白Bcl-2、 Bcl-xl表达显著降低;同时,引起MAPK信号传导通路的3个成员(ERK、JNK、 P38MAPK)发生磷酸化激活;所有结果表明DHEC可经凋亡途径抑制HT-29人结肠癌细胞生长增殖,其中ROS介导的,Bcl-2家族蛋白调控的,Caspase途径依赖的线粒体功能紊乱是DHEC诱导HT-29细胞凋亡的重要机制,而且MAPK信号传导通路也参与了该过程。
     另外,参照2010年版药典,对其性状、鉴别方法、指标成分含量测定、浸出物、灰分及水分进行研究,建立了翠绿针毛蕨药材的质量标准。
Macrothelypteris viridifrons (Tagawa) Ching is widely distributed in south of China, which belongs to the genus Macrothelypteris and has been frequently used as a folk medicine for the effects of heat-cleaning and detoxification, the treatment of diseases such as hydropsy and traumatic bleeding. Up to now, there was little report about the chemical constituents and bioactivity of M. viridifrons. In order to explore this folk medicinal resource and research its bioactivity, we did the investigation on the extraction and purification technology, chemical constituents, anti-tumor activity in vitro and in vivo of the crude flavonoids from M. viridifrons. Moreover, the effect on inducing apoptosis of a novel non-aromatic B-ring flavonoid (DHEC) and its putative molecular mechanism of action were evaluated. Meanwhile, the quality standard of M. viridifrons was established.
     We investigated the extraction and purification technology of the crude flavonoids from M. viridifrons and established its preparation method via the merge alkali-soluble and acid-isolation with macroporous resin, so that the final flavonoids yield was not less than56.57%, the content of flavonoids was not less than53.37%. The best extraction process:using70%ethanol,1:20solid-liquid ratio, reflux extraction60min with twice at80℃; The best purification process:alkali-soluble and acid-isolation method (the best alkali-soluble PH=7, the best acid-isolation PH=1-2), macroporous resin method (the best resin: HPD500, the best PH of sample solution:5, the best concentration of sample solution:4.0mg/mL, the best adsorption velocity:2.0BV/h, the best eluent:70%ethanol; the best elution volume:3.0BV, the best elution velocity:2.0BV/h)
     We comparatively studied the anti-tumor activities of total extract and crude flavonoids from M. viridifron by MTT colorimetric method in vitro and S180sarcoma mouse model in vivo. Research results showed the better anti-tumor activity of crude flavonoids from M. viridifrons. Furthermore, we deeply analyzed the in vitro anti-tumor activity of crude flavonoids from M. viridifrons with MTT method for detecting cell proliferation, PI method for detecting cell cycle, Annexin V-FITC/PI method and Hoechst33258method for detecting cell apoptosis in human hepatoma HepG2cell, and its in vivo anti-tumor effect with the inhibiting ratio of tumor growth, the detection of biochemical indicators, HE dyeing method, immunohistochemical method in H22hepatoma mouse model. Research results showed that crude flavonoids from M. viridifrons could induce apoptosis and G2/M phase arrest in HepG2cell, and could block the growth of tumor and inhibit the formation of blood vessels in H22hepatoma mouse model. All together, crude flavonoids from M. viridifrons exhibits potential anti-tumor activity in vitro and in vivo, which may highly be associated with the effect on induction of apoptosis and its anti-angiogenic activity.
     On the basis of normal and reverse phase silica gel and Sephadex LH-20gel column chromatography, nineteen flavonoids (containing nine non-aromatic B-ring flavonoids and one new compound) were isolated from the rhizomes of M. viridifrons and identified as5,7-dihydroxychromone(1);5,7-dihydroxy-2-(1-hydroxy-2,6-dimethoxy-4-oxo-cyclohex)-chromen-4-one(2);5,7-dihydroxy-2-(1,2-isopropyldioxy-4-oxocyclohex-5-enyl)-chromen-4-one(3); protoapigenone(4); apigenin(5); narigenin (6); kaempferol(7);2-(cis-1,2-dihydroxy-4-oxo-cyclohex-5-enyl)-5-hydroxy-7-ethoxy-chromone(8);2-(cis-1,2-dihydroxy-4-oxo-cyclohex-5-enyl)-5,7-dihydroxy-chromone (9); quercetin(10);2-(trans-1,4-dihydroxy-cyclohexyl)-5,7-dihydroxy-chromone(11); protoapigenin(12); apigenin-4'-O-glucoside(13); narigenin-4'-O-glucoside(14); kaempferol-3-O-glucoside(15);5,7-dihydroxy-2-(1,2-dihydroxy-4-oxo-cyclohex-5-enyl)-chromone-4'-O-glucoside(16); protoapigenin-4'-O-glucoside(17); kaempferol-3-O-rutinose(18); quercetin-3-O-rutinose(19). All compounds were firstly obtained from this plant.
     Moreover, on the basis of MTT assay, flow cytometry, microscope and Western blot methods, the effect of2-(cis-1,2-dihydroxy-4-oxo-cyclohex-5-enyl)-5-hydroxy-7-ethoxy-chromone (DHEC) on induction of apoptosis and its putative molecular mechanism of action in human colon HT-29cancer cell were evaluated. After treatment of HT-29cell with DHEC, we observed the inhibition of proliferation, the happen of apoptosis, the loss of MMP, the accumulation of intracellular ROS, the releasing of cytochrome c, the cleavage of PARP, the activation of caspase-3,-8and-9, the increase of expression of Bax and Bad, the decrease of expression of Bcl-2、 Bcl-xl, and the phosphorylation of MAPK members (ERK, JNK, P38MAPK). All results suggest that DHEC exhibits potential anti-tumor activity in HT-29cell through induction of apoptosis, which may highly be associated with ROS-mitochondrial dysfunction and involving of caspases family, as well as activation of MAPK signaling pathway.
     Besides, on the basis of2010China Pharmacopoeia, we analyzed the traits and microscopic characteristics, the identification method, the content determination, the extract, total ash and moisture content. Thus, the quality standard of M. viridifrons was established.
引文
[1]韩锐.肿瘤化学预防及药物治疗[M].北京医科大学中国协和医科大学联合出版社,1991:16-37.
    [2]Fauzi AN, Norazmi MN, Yaacob NS. Tualang honey induces apoptosis and disrupts the mitochondrial membrane potential of human breast and cervical cancer cell lines. Food Chem Toxicol,2011, DOI:10.1016/j.fct.2010.12.010.
    [3]Hsu HF, Houng JY, Kuo CF, Tsao N, Wua YC. Glossogin, a novel phenylpropanoid from Glossogyne tenuifolia, induced apoptosis in A549 lung cancer cells. Food Chem Toxicol, 2008,46:3785-3791.
    [4]黄华艺,查锡良.黄酮类化合物抗肿瘤作用研究进展.中国新药与临床杂志,2002,21:428-433.
    [5]周铜水.蕨类植物的黄酮类成分及其系统学意义.武汉植物学研究,1989,4:377-389.
    [6]中国植物志编辑委员会.中国植物志[M]第2卷科学出版社,1959:78-79.
    [7]中华本草编委会.中华本草[M]第2卷上海科技出版社,1999:162.
    [8]Liu HB, Xiao YL, Xiong CM, Wei AH, Ruan JL. Apoptosis induced by a new flavonoid in human hepatoma Hep G2 cells involves reactive oxygen species-mediated mitochondrial dysfunction and MAPK activation. Eur JPharmacol,2011,654:209-216.
    [9]Chang HL, Su JH, Yeh YT, Lee YC, Chen HM, Wu YC, Yuan SS. Protoapigenone, a novel flavonoid, inhibits ovarian cancer cell growth in vitro and in vivo. Cancer Lett,2008,267: 85-95.
    [10]Chang HL, Wu YC, Su JH, Yeh YT, Yuan SS. Protoapigenone, a novel flavonoid, induces apoptosis in human prostate cancer cells through activation of p38 mitogen-activated protein kinase and c-jun NH2-terminal kinase 1/2. J Pharmacol Exp Ther,2008,325:841-849.
    [11]Chen WY, Hsieh YA, Tsai CI, Kang YF, Chang FR, Wu YC, Wu CC. Protoapigenone, a natural derivative of apigenin, induces mitogen-activated protein kinase-dependent apoptosis in human breast cancer cells associated with induction of oxidative stress and inhibition of glutathione S-transferase π. Invest New Drugs,2010, DOI:10.1007/s 10637-010-9497-0.
    [12]国家药典委员会.中华人民共和国药典[M]化学工业出版社,2010.
    [13]王鑫.黄酮类化合物提取方法的应用.天津药学,2007,5:61-66.
    [14]史作清,施荣富.吸附分离树脂在医药工业中的应用[M]化学工业出版社,2008.
    [15]宋小妹.中药化学成分提取分离与制备[M]人民卫生出版社,2009.
    [16]田永利,许志宇,葛林,刘娜.总黄酮化合物含量测定方法和药理作用研究进展.河北医药,2010,15:2094-2096.
    [17]Foongladda S, Roengsanthia D, Arjrattanakool W, et al. Rapid and simple MTT method for rifampicin and isoniazid susceptibility testing of mycohacterium tubercutosis. Int J Tuberc Lung Dis,2002,6:1118-1122.
    [18]薛庆善.体外培养的原理和技术[M]科学出版社,2001:30-38.
    [19]司徒镇强,吴军正.细胞培养[M]世界图书出版西安公司,1996:186-187.
    [20]陈奇.中药药理研究方法学[M]人民卫生出版社,2006:1006-1010.
    [21]徐叔云,卞如濂,陈修.药理实验方法学[M]人民卫生出版社,2002:1766-1770.
    [22]胡建华,姚明,崔淑芳.实验动物学教程[M]上海科学技术出版社,2009:544-550.
    [23]Zhao YY, Shen X, Chao X, Ho CC, Cheng XL, Zhang YR, Lin C, Du KJ, Luo WJ, Chen JY, Sun WJ. Ergosta-4,6,8(14),22-tetraen-3-one induces G2/M cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells. Biochim Biophys Avta,2011,1810:384-390.
    [24]Su YT, Chang HL, Shyue SK, et al. Emodin induces apoptosis in human lung adenocarcinoma cells through a ROS-dependent mitochondrial signaling pathway. Biochem Pharmacol,2005,70:229-241.
    [25]郑从义,屈三甫.血液肿瘤细胞凋亡形态学观察的改良荧光染色法.肿瘤防治研究,1998,25:432-433.
    [26]陆长德.细胞周期研究进展.生命科学,1995,7:1-10.
    [27]Spugnini EP, Campioni M, DAvino A, et al. Cell-cycle molecules in mesothelioma:an overview. JExp Clin Cancer Res,2007,26:443-449.
    [28]Wu DD, Gao YF, Chen LX, Qi YM, Kang QZ, Wang HL, Zhu LY, Ye Y, Zhai MX. Anti-tumor effects of a novel chimeric peptide on S180 and H22 xenografts bearing nude mice. Peptides,2010,31:850-864.
    [29]Chandru H, Sharada AC, Bettadaiah BK, Ananda Kumar CS, Rangappa KS, Sunila Jayashree K. In vivo growth inhibitory and anti-angiogenic effects of synthetic novel dienone cyclopropoxy curcumin analogs on mouse Ehrlich ascites tumor. Bioorg Med Chem Lett, 2007,15:7696-7703.
    [30]吴秋玲,孔庆志.中药抗肿瘤血管生成的研究进展.世界中西医结合杂志,2010,5:87-89.
    [31]Fan TP, Yeh JC, Leung KW, et al. Angiogenesis:from plants to blood vessels. Trends Pharmacol Sci,2006,27:297-309.
    [32]唐求,袁昌劲,聂彬.中药抗肿瘤血管生成研究进展.肿瘤学杂志,2010,16:155-157.
    [33]Jung HJ, Jeon HJ, Lim EJ, Ahn EK, Song YS, Lee S, Shin KH, Lim CJ, Park EH. Anti-angiogenic activity of the methanol extract and its fractions of Ulmus davidiana var. japonica. J. Ethnopharmacoly,2007,112:406-409.
    [34]Alex D, Lama IK, Lin ZX, Lee SM. Indirubin shows anti-angiogenic activity in an in vivo zebrafish model and an in vitro HUVEC model. J Ethnopharmacol,2010,131:242-247.
    [35]王思锋,刘可春,王希敏,何秋霞,王雪,陈锡强,袁延强.西黄丸对斑马鱼胚胎血管生成的影响.中国医院药学杂志,2010,10:821-823.
    [36]陈锡强,侯海荣,刘可春,王希敏,王思锋,何秋霞.天然产物抗血管生成的研究进展.山东科学,2010,6:34-38.
    [37]Huang ST, Yang RC, Lee PN, Yang SH, Liao SK, Chen, TY, Pang JH. Anti-tumor and anti-angiogenic effects of Phyllanthus urinaria in mice bearing lewis lung carcinoma. Int Immunopharmacol,2006,6:870-879.
    [38]Dooley K, Zon L. Zebrafish:a model system for the study of human disease, Curr Opin Genet Dev,2000,10:252-256.
    [39]Rubinstein AL. Zebrafish:from disease modeling to drug discovery. Curr Opin Drug Disc, 2003,6:218-223.
    [40]Fang W, Ruan JL, Cai YL, et al. Flavonoids from the aerial of Macrothelypteris torresiana. Nat Prod Res,2011,25:36-39.
    [41]Zhou DN, Ruan JL, Cai YL. Flavonoids from aerial parts of Arachniodes exilis. Chin Pharm J,2008,43:1218-1220.
    [42]Tang Y, Xiong CM, Zhou DN, et al. A new flavonoid from Macrothelypteris Torresiana. Chem Nat Compd,2010,46:209.
    [43]Tang Y, Fang W, Ma YT, et al. A novel flavonoid from the root of Macrothelypteris torresiana (Gaud.) Ching. Chin Chem Lett,2009,20:815.
    [44]Lin AS, Chang FR, Wu CC, et al. New cytotoxic flavonoids from Thelypteris torresiana. Planta Med,2005,71:867.
    [45]Zhang YJ, Li LQ, Yang PQ, et al. Studies on flavonoids of Erigeron multiradiatus. Chin Tradit Herb Drugs,1998,20:798-800.
    [46]邵鹏,张雪,李畅,宋莹,王乃利,姚新生.东方荚果蕨的化学成分研究.中草药,2011,8:1481-1484.
    [47]Huang MF, Li N, Ni H, et al. Studies on chemical constituents from Rhaponticum carthamoides (Willd.) Iljin. Chin Pharm J,2009,44:1287-1290.
    [48]Jia Z, Zhang PF, Tao BQ, et al. Study on flavones of the flower of juglans regia. Chin Pharm J,2009,44:496-497.
    [49]Oyama KI, Kondo T. Total synthesis of apigenin 7,4'-di-O-β-D-glucopyranoside, a component of blue flower pigment of Salvia patens, and seven chiral analogs. Tetrahedron 2004,60:2025-2034.
    [50]Zhang SJ, Wang YW, Liu JY, et al. Studies on chemical constituents of Herba Cynomorii. Chin Pharm J,2007,42:975-977.
    [51]Tang YP, Wang Y, Lou FC, et al. Flavonol glycosides from the leaves of Ginkgo biloba. Acta Pharmaceutica Sinica,2000,35:363-366.
    [52]An SL, Fang RC, Hsin FY, et al. Novel flavonoids of Thelypteris torresiana. Chem Pham Bull,2007,55:635-637.
    [53]王晓梅,曹稳根.黄酮类化合物药理作用的研究进展.宿州学院学报,2007,22:105-108.
    [54]黄河胜,马传庚,陈志武.黄酮类化合物药理研究进展.中国中药杂志,2000,25:589-592.
    [55]Wang SR, Wang QL, Wang Y, Liu L, Weng XC, Li GR, Zhang XL, Zhou X. Novel anthraquinone derivatives:Synthesis via click chemistry approach and their induction of apoptosis in BGC gastric cancer cells via reactive oxygen species (ROS)-dependent mitochondrial pathway. Bioorg Med Chem Lett,2008,18:6505-6508.
    [56]Su YT, Chang HL, Shyue SK, et al. Emodin induces apoptosis in human lung adenocarcinoma cells through a ROS-dependent mitochondrial signaling pathway. Biochem. Pharmacol,2005,70:229-241.
    [57]Klampfer L. Signal transducers and activators of transcription (STATs):Novel targets of chemopreventive and chemotherapeutic durgs. Curr Cancer Drug Targets,2006,6:107-121.
    [58]Ghobrial IM, Witzig TE, Adjei AA. Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin,2005,55:178-194.
    [59]Cory S, Adams JM. The bcl-2 family:regulators of the cellular life-or-death switch. Nat Rev Cancer,2002,2:647-656.
    [60]Green DR, Reed JC. Mitochondria and apoptosis. Science,1998,281:1309-1312.
    [61]Kyosseva SV, Owens SM, Elbein AD, et al. Mitogen-activated protein kinase signaling. Int Rev Neurobiol,2004,59:201-220.
    [62]Gupta S. Molecular signaling in death receptor and mitochondrial pathways of apoptosis (review). Int J Oncol,2003,22:15-20.
    [63]Chen C, Shen C, Chow M, et al. Flavone inhibition of tumor growth via apoptosis in vitro and in vivo. Int J Oncol,2004,25:661-670.
    [64]Antonsson B, Martinou JC. The Bcl-2 protein family. Exp. Cell Res.,2000,256(1):50-57.
    [65]Fang J, Nakamura H, Iyer AK. Tumor-targeted induction of oxystress for cancer therapy. J. Drug Target,2007,15:475-486.
    [66]Slater AF, Nobel CS, Orrenius S. The role of intracellular oxidants in apoptosis. Biochim BiophyActa,1995,1271:59-62.
    [67]章必成,张巍.TNF, p38 MAPK与细胞凋亡.国外医学:生理病理科学与临床分册,2001,21:464-465.
    [1]朱荣鑫,张赛龙,金永生.黄酮类化合物抗肿瘤作用研究进展.现代药物与临床,2010,1:5-10.
    [2]Simons AL, Renouf M, Hendrich S, Murphy PA. Human gut microbial degradation of flavonoids:structure-function relationships. J Agric Food Chem,2005,53:4258-4263.
    [3]Kim D, Park J, Kim J, et al. Flavonoids as mushroom tyrosinase inhibitors:a fluorescence quenching study. J Agric Food Chem,2006,54:935-941.
    [4]杨宏健.天然药物化学[M]郑州:河南科学技术出版社,2007:82-89.
    [5]王晓梅,曹稳根.黄酮类化合物药理作用的研究进展.宿州学院学报,2007,22:105-108.
    [6]周新,李宏杰.黄酮类化合物的生物活性及临床应用进展.中国新药杂志,2007,16:350-355.
    [7]刘寒强.大豆异黄酮抗肿瘤作用机制研究进展.国外医学卫生学分册.2005,6:329-332.
    [8]曾靖,钟星明.大豆异黄酮抗肿瘤作用研究进展.时珍国医国药,2005,8:779-780.
    [9]Notoya M, Tsukamoto Y, Nishimura H, et al. Quercetin, a flavonoid, inhibits the proliferation, differentiation, and mineralization of osteoblasts in vitro. Eur J Pharmaeo,2004,485:89-96.
    [10]黄华艺,查锡良.黄酮类化合物抗肿瘤作用研究进展.中国新药与临床杂志,2002,21:428-433.
    [11]陆长德.细胞周期研究进展.生命科学,1995,7:1-10.
    [12]Spugnini EP, Campioni M, DAvino A, et al. Cell-cycle molecules in mesothelioma:an overview. J Exp Clin Cancer Res,2007,26:443-449.
    [13]Wei P, Gaarber ME, Fang SM, et al. A novel CDK9 associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, Loop-specific bind to YARRNA. Cell,1998, 92:451-462.
    [14]Jonathon P. Cyclins, CDKs and cancer, Cancer Biology,1995,6:63-72.
    [15]Singh RP, Agrawal P, Yim D, et al. Acacetin inhibits cell growth and cell cycle progression and induces apoptosis in human prostate cancer cells:structure-activity relationship with linarin and linarin acetate. Carcinogenesis,2005,26:845-854.
    [16]宋悦,沈铿.新型小分子细胞周期素抑制剂flavopiridol在肿瘤治疗中的应用.中华医学杂志,2005,85:862-864.
    [17]Hu Y, Yang Y, You QD. Oroxylin A induced apoptosis of human hepatocellular carcinoma cell line HepG2 was involved in its anti tumor activity. Biochem Biophys Res Commun, 2006,3:521-527.
    [18]Shukla S, Gupta S. Molecular mechanisms for apigenin-induced cell-cycle arrest and apoptosis of hormone refractory human prostate carcinoma DU145 cells. Mol Carcinogen, 2004,39:114-126.
    [19]Shukla S, Gupta S. Molecular targets for apigenin-induced cell cycle arrest and apoptosis in prostate cancer cell xenograft. Mol Cancer Ther,2006,5:843-852.
    [20]Gupta S, Afaq F, Mukhtar H. Involvement of nuclear factor-kappa B, Bax and Bcl-2 in induction of cell cycle arrest and apoptosis by apigenin in human prostate carcinoma cells. Oncogene,2002,21:3727-3738.
    [21]Wang W, Vanalstyne PC, Irons KA, et al. Individual and interactive effects of apigenin analogs on G2/M cell-cycle arrest in human colon carcinoma cell lines. Nutr Cancer,2004, 48:106-114.
    [22]Zi X, Grasso AW, Kung HJ, Agarwal R. A flavonoid antioxidant, silymarin, inhibits activation of erbB1 signaling and induces cyclin-dependent kinase inhibitors, G1 arrest, and anticarcinogenic effects in human prostate carcinoma DU145 cells. Cancer Res,1998,58: 1920-1929.
    [23]Hickman JA, Beere HM, Wood AC, et al. Mechanisms of cytotoxicity caused by anti tumor drugs. Toxicol Lett,1992,64:553-561.
    [24]Kerr JF, Wyllie AH, Currie AR. Apoptosis, a basic biological, phenomenon with wider implications in tissue kinetics. Br J Cancer,1972,26:239-257.
    [25]Erhart LM, Lankat-Buttgereit B, Schmidt H, Menzel U. Flavone initiates a hierarchical activation of the caspase-cascade in colon cancer cells. Apoptosis,2005,10:611-617.
    [26]Farhana L, Dawson MI, Fontana JA. Apoptosis induction by a novel retinoid-related molecule requires nuclear factor-Kb activation, Cancer Res,2005,65:4909-4917.
    [27]Zheng PW, Chiang LC, Lin CC. Apigenin induced apoptosis through p53-dependent pathway in human cervical carcinoma cells. Life Sci,2005,76:1367-1379.
    [28]洪卫,张近平,郭勇.中药诱导肿瘤细胞凋亡研究进展.浙江中西医结合杂志,2009,7:451-453.
    [29]Cory S, Huang DC, Adams JM. The Bcl-2 family:roles in cell survival and oncogenesis. Oncogene,2003,22:8590-8607.
    [30]Hou Q, Cymbalyuk E, Hsu SC, et al. Apoptosis modulatory activities of transiently expressed Bcl-2:roles in cytochrome c release and Bax regulation. Apoptosis,2003,8:617-629.
    [31]Degli Esposti M, Dive C. Mitochondrial membrane permeabilisation by Bax/Bak. Biochem Biophys Res Commun,2003,304:455-461.
    [32]Takahashi T, Suzuki H. The p53 gene is very frequently mutated in small-cell lung cancer with a distinct nucleotide substitution patern. Oncogene,1991,6:1775.
    [33]Linzer DL, Levine AJ. Characterization of a 54K survive cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell,1979,17: 43-45.
    [34]霍兴华,闫长虹.P53与肿瘤关系的研究进展.齐齐哈尔医学院学报,2011,12:1973-1974.
    [35]Mousses S, Gokgoz N, wunder JS, et al. P53 missense but not truncation mutations are associated with low levels of p21CIPl/WAFI mRNA expression in primary human sarcomas, Br J Cancer,2001,84:1635-1639.
    [36]戴昕,李占全,冀林华.凋亡相关蛋白Caspase研究进展.中国现代医药杂志,2010,4:130-132.
    [37]Green D R, Reed J C. Mitochondria and apoptosis. Science,1998,281:1309-1312.
    [38]Sheikh MS, Huang Y. Death receptors as targets of cancer therapeutics. Curr Cancer Drug Tar, 2004,4:97-104.
    [39]Takahashi T, Kobori M, Shinmoto H, et al. Structure-activity relationships of flavonoids and the induction of granulocytic-or monocytic-differentiation in HL60 human myeloid leukemia cells. Biosci Biotechnol Biochem,1998,62:2199-2204.
    [40]Kawaii S, Tomono Y, Katase E, et al.1999. Effect of citrus flavonoids on HL-60 cell differentiation. Anticancer Res.19:1261-1269.
    [41]Michael D, Shiva P. Trapping of growth factors by catechins: a possible therapeutic target for prevention of proliferative diseases. J Nutr Biochem,2005,16:259-266.
    [42]Weldon B, McKee A, Collinsburow M, et al. PKC mediated survival signaling in breast carcinoma cells:a role for MEK1-AP1 signaling. Int J Oncol,2005,26:763-768.
    [43]Martinez S, Gutierrez B, Sanchez S, et al. Quercetin attenuates nuclear factor-kappa B activation and nitric oxide production in interleukin-1β activated rat hepatocytes. J Nutr, 2005,135:1359-1365.
    [44]Nakahata N, Kyo R, Kutsuwa M, et al. Inhibition of mitogen-activated protein kinase cascade by baicalein, a flavonoid of natural origin. Nippon Yakurigaku Zasshi,1999,114Supp1: 215p-219p.
    [45]Ostling O, Johanson KJ. Microelectrophoretic study of dariation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Comun,1984,123:291-298.
    [46]鲁小梅,王盛,刘瑞江,范如霖,宋勤华.水飞蓟素抗肿瘤作用及其机制研究进展.中国药理学与毒理学杂志,2009,23:320-324.
    [47]Thanos D, Maniatis T. NF-KappaB:A lesson in family values. Cell,1995,80:529-532.
    [48]Perkins NK. The Rel/NF-kappa B family:friend and foe. Trends Biochem Sci,2000,25: 434.440.
    [49]Kyosseva SV, Owens SM, Elbein AD, et al. Mitogen-activated protein kinase signaling. Int Rev Neurobiol,2004,59:201-220.
    [50]Taro M, Ingela T, Majlis B, et al. P38 MAPK kinase negatively regulates endothelial cell survival, proliferation, and differentiation in FGF-2-stimulated angiogenesis. J Cell Biology, 2002,156:149-160.
    [51]Ketam S, John F, Brion N, et al. Inhibition of p38 mitigen-activated protein kinase increases LPS induced inhibition of apoptosis in neutrophils by activating extracellular signal regulated kinase. Surgery,2001,130:242-247.
    [52]王华祖,龚兴国.蛋白激酶B的研究进展.中国病理生理杂志,2003,19:1521-1526.
    [53]Hanada M, Feng J, Hemmings BA. Structure, regulation and function of PKB/AKT-a major therapeutic target. Biochim Biophys Acta,2004,1697:3-16.
    [54]陈锡强,侯海荣,刘可春,王希敏,王思锋,何秋霞.天然产物抗血管生成的研究进展.山东科学,2010,6:34-38.
    [55]杨娅.染料木黄酮抗肿瘤血管生成机制的研究进展.国外医学口腔医学分册,2005,3:210-211.
    [56]Yi T, Yi Z, Cho SG, et al. Gambogic acid inhibits angiogenesis and prostate tumor growth by suppressing vascular endothelial growth factor receptor 2 signaling. Cancer Res,2008,68: 1843-1850.
    [57]Liu JJ, Huang TS, Cheng WF, et al. Baicalein and baicalin are potent inhibitors of angiogenesis:inhibition of endothelial cell proliferation, migration and differentiation. J Cancer,2003,106:559-565.
    [58]张黎,胡燕华.黄芩黄素抑制兔角膜新生血管的形成.眼科研究,2006,4:364-366.
    [59]Yang SH, Lin JK, Huang CJ, et al. Silibinin inhibits angiogenesis via Flt-1, but not KDR, receptor up-regulationv. Journal of Surgical Research,2005,128:140-146.
    [60]张秀莉,王春明,雷旭东.黄酮类化合物抗肿瘤活性及其机制研究进展.甘肃医药,2011,4:205-207.
    [61]Zhang H, Chen SH, Li Y. Epidemiological investigation of esophageal carcinoma. World J Gastroenterol,2004,10:1834-1835.
    [62]Versantvoort CH, Rhodes T, Twentyman PR. Acceleration of MRP-associated efflux of rhodamine 123 by genistein and related compounds. Br J Cancer,1996,74:1949-1954.
    [63]Scambia G., Ranelletti FO, Panici PB, et al. Quercetin potentiates the effect of adriamycin in a multidrug-resistant MCF-7 human breast-cancer cell line:P-glycoprotein as a possible target. Cancer Chemother Pharmacol,1994,34:459-464.
    [64]Imai Y, Tsukahara S, Asada S, et al. Phytoestrogens/flavonoids reverse breast cancer resistance protein/ABCG2-mediated multidrug resistance. Cancer Res,2004,64:4346-4352.
    [65]Karawajew L, Rhein P, Czerwony G, et al. Stress-induced activation of the p53 tumor suppressor in leukemia cells and normal lymphocytes requires mitochondrial activity and reactive oxygen species. Blood,2005,105:4767-4775.
    [66]周新,李宏杰.黄酮类化合物的生物活性及临床应用进展.中国新药杂志,2007,16:350-355.
    [67]Kim YC, Jun M, Jeong, WS, Chung SK. Antioxidant properties of flavone C-glycosides from atraetylodes japonica leaves in human low-density lipoprotein oxidation. Journal of food science,2005,70,5575-5580.
    [68]龙春,高志强,陈凤鸣.黄酮类化合物的结构—抗氧化活性关系研究.重庆文理学院学报(自然科学版),2006,5:13-17.
    [69]Nicco C, Laurent A, Chereau C, et al. Differential modulation of normal and tumor cell proliferation by reactive oxygen species. Biomed Pharmacother,2005,59:169-174.
    [70]饶澄,黄显.黄酮类化合物抗炎和抗肿瘤共同作用机制的研究进展.海峡药学,2010,6:8-11.
    [71]钟飞,蒋韵,吴芬芬.沙棘总黄酮对小鼠细胞免疫功能的影响.中草药,1989,20:43-45.
    [72]孙英,孙奕,骆永珍.淫羊蕾总黄酮促进免疫功能低下小鼠IL-2和NK活性的实验研究.中草药,2002,33:635-637.
    [73]王亚平,丁献义,彭慧敏.槲皮素对细胞免疫功能的调节.河北医科大学学报,1998,19:143-145.
    [74]曹明富,林植华,虞研原,杨贤强.茶多酚对细胞免疫功能的影响及抑瘤作用.中国现代应用药学,1994,5:3-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700