外源性褪黑素对豚鼠形觉剥夺性近视中褪黑素受体、iNOS、c-fos表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近视是一种常见的屈光不正,并有引发病理性改变的风险。包括人在内的大多数动物出生时是处于远视状态的,在生长过程中逐渐形成正视。这个过程是需要依赖视觉的。如果此过程中缺乏早期的视觉经历,则很可能会导致眼球的发育异常,最终导致近视的形成。形觉剥夺性近视(form deprivation myopia, FDM)是指用人为的方法比如缝合眼睑、戴弥散镜片或半透明眼罩来改变实验动物的视觉经历,造成实验动物屈光度及眼轴长度发生改变从而引起近视的一种实验方法。Wiesel于1977年用缝合恒河猴眼睑的方法首次成功诱导出形觉剥夺性近视,此后近视动物模型建立的方法在不断的发展与完善。已有的研究表明,形觉剥夺性近视是一种涉及多种介质与因子改变的复杂的过程。新近的研究将重点越来越聚焦于视网膜上各种神经介质的功能和变化,这些神经介质中,褪黑素(melatonin, MLT)逐渐受到人们的关注。
     褪黑素是一种神经内分泌激素,化学名为N-乙酰-5-甲氧色胺,由5-羟色胺转化而来。因发现进入蛙黑色素细胞后会使蛙全身的肽色变浅而得名。在生理状况下,人及其它哺乳动物、鸟类体内褪黑素主要来源于松果体。但有些松果体外组织也能合成少量,例如视网膜、肠、副泪腺等。松果体内分泌褪黑素呈24小时规律性波动,表现为夜间分泌增加而白天分泌减少,其分泌节律由交叉上核团(SCN)根据昼夜节律来控制。
     褪黑素在动物体内发挥各种生理作用需要通过褪黑素受体的介导来完成。二十世纪末召开了国际药理学联合会会议,在此次会议上MLT受体被分为3种亚型,分别为MT1、MT2、MT3;人眼部视网膜及其外大部分眼部组织中存在MT1、MT2。MLT不仅具有清除氢氧自由基的能力,而且可以抑制体内一氧化氮(NO)过度生成,对损伤和炎症有保护作用。c-fos是一种原癌基因,属于即刻-早期基因类。本实验在建立豚鼠形觉剥夺性近视模型的同时,给予不同剂量外源性MLT干预。观察各组眼屈光度、眼轴长度、及视网膜MT1、iNOS及c-fos的变化,推测外源性MLT在FDM形成中的作用。
     材料与方法
     选用出生后7天的雄性健康花色豚鼠40只,复方托品酰胺眼液滴眼后检影验光,排除先天性近视及其它眼疾。用半透明眼罩遮盖豚鼠右眼,左眼为对照眼,建立FDM模型。将40只豚鼠随机分为4组,每组10只。A组为对照组,经腹腔注射生理盐水5 ml·kg-1,B、C、D组分别经腹腔注射外源性MLT5 mg·kg-1、10 mg-kg-1、20 mg·kg-1,隔日一次,连续注射8周。实验进行8周后,用A超测量豚鼠双眼眼轴长度,用检影验光法检测双眼屈光度数,用免疫组织化学染色法检测豚鼠双眼视网膜上褪黑素受体MT1、诱导型一氧化氮合酶(iNOS)和c-fos的表达水平。采集相应的视网膜切片图像,用Image-Pro Plus 6.0图像分析软件进行分析,用平均光密度值来表示以上指标的表达强度。
     所有的实验数据用x±s表示,数据的统计学分析采用SPSS 17.0统计软件包,首先进行方差齐性检验,然后再行单因素方差分析及LSD-t检验,以α=0.05作为检验水准。P<0.05为差异有统计学意义。
     结果
     1.A组遮盖眼屈光度数、眼轴长度、视网膜中iNOS、MT1、c-fos平均光密度值表达分别为:(-7.86±0.26)D、(8.51±0.16)mm、(0.4836±0.0247)、(0.3179±0.0344)、(0.2282±0.0246),与对照眼相比遮盖眼近视屈光度增加,眼轴增长,视网膜中iNOS免疫活性增加而MT1、c-fos活性降低(P<0.05)。FDM模型建立成功。
     2.不同剂量MLT作用于FDM,随外源性MLT剂量的增加,与A组相比,以上指标变化被明显抑制甚至逆转:C组和D组FDM眼的屈光度数、眼轴长度、视网膜中iNOS、MT1、c-fos平均光密度值表达分别为:(-4.30±0.59)和(-3.41±0.88)D、(8.04±0.24)和(7.43±0.39)mm、(0.3733±0.0427)和(0.3079±0.1261)、(0.3743±0.0447)和(0.4055±0.0919)、(0.3713±0.0786)和(0.4458±0.0974)。C组和D组与A组比较有显著性差异(P<0.05),差异有统计学意义;但B组与A组之间的差异无显著性(P>0.05)。
     结论
     1.8周后遮盖眼近视屈光度数增加,眼轴延长,成功建立FDM模型。
     2.豚鼠遮盖眼视网膜中iNOS表达明显增多,MT1、c-fos表达明显减少,提示iNOS、MT1及c-fos可能参与了近视的形成。
     3.外源性MLT能抑制甚至逆转FDM中屈光度、眼轴长度、iNOS、MT1、c-fos免疫活性。
     4.外源性MLT高剂量组上述检测结果的抑制趋势较低剂量组明显。据此可推测外源性MLT对FDM的形成有抑制作用。
Myopia is a common refractive error, and posing a risk of pathological changes. Most animals including humans are born with hyperopia. In the growth process formed emmetropia gradually. This process relies on vision. If this process lack of early visual experience, are eventually leading to myopia. Form deprivation myopia (FDM) is employing methods, such as suturing the eyelids, wearing translucent goggles dispersion lenses or to change the visual experience delete, changes in refraction and axial length of the experimental animals, then myopia happened. Since Wiesel built up form deprivation myopia successfully by sewing the eyelids of rhesus monkey in 1977 for the first time, the method to establish animal models of myopia in constant development and improvement. Previous studies showed that form deprivation myopia is a complex process of change that involved in variety of media and factors. Recent studies more and more focus on the function and changes of neurotransmitter in retinal. In these neurotransmitters, people gradually pay attention to the melatonin (MLT).
     Melatonin is a neuroendocrine hormone, the chemical known as N-acetyl -5-methoxy tryptamine, and it transformed from 5-hydroxytryptamine. Melatonin enter the frog melanoma cells can make the frog's skin color lighter, so called melatonin. In physiological conditions, the melatonin of human and other mammals and birds mainly from the pineal. But some other organizations can also synthesize a small amount of melatonin, such as the retina, intestine, vice lacrimal gland and so on. Pineal melatonin secretion was regular fluctuations in 24-hour, it means secretion increases during the night and reduce during the day. Circadian rhythms control the secretion rhythm by the suprachiasmatic nucleus rhythm (SCN).
     Melatonin receptors play a role mainly through melatonin receptors. At the end of the twentieth century, the International Union of Pharmacology meeting was held, in this meeting MLT receptors were divided into 3 subtypes, namely MT1, MT2, MT3; Human retina and most of the eye tissues have MT1, MT2. MLT not only has the ability to remove hydroxyl radicals, but also can inhibit the body nitric oxide (NO) over-production, protect of injury and inflammation. C-fos is a proto-oncogene, belong to the immediate-early gene class. In this study, we establish the guinea pig model of form deprivation myopia and inject different doses of exogenous MLT, and observe every group guinea pig's refractive error, axial length, and retinal MT1, iNOS and c-fos changes. Speculat the formation of exogenous MLT's role in the FDM.
     Material and Methods
     To forty seven-days-old healthy male multicolor guinea pigs. Defore the cycloplegic retinoscopy guinea pigs to exclude congenital myopia and other eye diseases. Covering guinea pig's right eye with semi-transparent goggle to establish FDM model, the left eye as the control eye. The 40 guinea pigs were randomly divided into 4 groups of 10 each. Group A:The control group, by intraperitoneal injection of saline 5 ml·kg-1; B, C, D groups were treated with intraperitoneal injection of exogenous MLT 5 mg·kg-1、10 mg·kg-1、20 mg·kg-1, every other day, continuous infusion for 8 weeks. After 8 weeks of the experiment, the axial length was measured with A-mode ultrasound, the eyes refractive state was determined by streak retinoscopy, melatonin receptor MT1、iNOS and c-fos were analysed with immunohistochemistry. Imaging the retinal slice acquisition, analyze the protein expression by Image-Pro Plus 6.0 image analysis software, expressed of these indicators'intensity with the average optical density.
     All experimental data are denoted by x±s, using the SPSS 17.0 statistical package for data statistical analysis. First we test homogeneity of variance, then compar with univariate analysis of variance and LSD-t test, andα= 0.05 as the test standard. P<0.05 was considered statistically significant.
     Results
     1. In the FDM eyes of group A,the diopter、axial length、iNOS、MT1 and c-fos were (-7.86±0.26) D、(8.51±0.16) mm、(0.4836±0.0247)、(0.3179±0.0344) and(0.2282±0.0246). Covered eye compared with the control eyes increased myopia, axial length growth, the immune activity of iNOS in the retina increased MT1, c-fos activity decreased (P<0.05).The FDM model was successfully established.
     2. Intra-peritoneal injection of different doses MLT, as compared with group A, these indexes were significantly inhibited or even reversed changes with doses of exogenous melatonin increased. In the FDM eyes of group C and D, the diopter、axial length、iNOS、MT1 and c-fos were (-4.30±0.59)and(-3.41±0.88)D、(8.04±0.24) and (7.43±0.39) mm、(0.3733±0.0427) and (0.3079±0.1261)、(0.3743±0.0447) and (0.4055±0.0919)、(0.3713±0.0786) and (0.4458±0.0974) respectively;Group C and Group D covered with the control group A have significant difference (P<0.05), the difference was statistically significant. Covered with group B and group A, the difference was not significant (P> 0.05).
     Conclusion
     1. Myopia of covered eye was increased and axial length was growthed after 8 weeks, the guinea pigs form deprivation myopia model has been successfully established.
     2. INOS expression in the retina of guinea pigs covered eye increased significantly, MT1, c-fos expression was significantly reduced, suggesting that iNOS, MT1 and c-fos may be involved in the formation of myopia.
     3. Exogenous melatonin can inhibit or even reverse the changes of refractive error, axial length and immunoreactivity of iNOS, MT1, c-fos in the FDM.
     4. The high dose melatonin groups were more significant than the low dose group. Inferred on the basis, the exogenous melatonin may inhibited the formation of FDA.
引文
[1]Wildsoet C, Wallman J. Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks[J]. Vision Res,1995,35:1175-1194
    [2]Schaeffel F, Bartmann M, Hagel G, et al. Studies of the retinal dopamine melatonin system in experimental refractive errors in chickens[J]. Vision Res,1995,35:1247-1264
    [3]Wiesel TN, Raviola E. Myopia and eye enlargement after neonatal lid fusion in monkeys[J]. Nature,1977,266(5597):66-68
    [4]许思思,陈悦.豚鼠形觉剥夺性近视视网膜组织中褪黑素受体表达及眼压的变化[J].郑州大学学报(医学版),2009,44(3):636~638
    [5]Jody A, Allan F, Wiechmann, et al. Circadian rhythms in the eye:The physiological significance of melatonin receptors in ocular tissues[J]. Progress in Retinal and Eye Research,2008,3(27):137-160
    [6]Tokoro T. Mechanism of axial elongation and chorioretinal atrophy in high myopia [J]. Nippon Ganka Gakkai Zasshi,1994,98(12):1213-1237
    [7]Fujii S, Honda S, Sekiya Y, et al. Differential expression of nitric oxide synthase isoforms in form-deprived chick eyes[J]. Curr Eye Res,1998,17(6):586-593
    [8]Jaworski J, Biedemann IW, Lapinska J, et al. Neuronal excitation driven and AP-1-dependent activation of tissue inhibitor of metalloproteinases-1 gene expression in rodent hippocampus[J]. J Biol Chem,1999,274(40):28106-28112
    [9]Kumi Nagamoto-Combs, Kristen M. Piech, Joseph A Best, et al. Evidence for cyclic amp-responsive element binding protein-independent regulation[J]. J Biol Chem,1997,272(28): 6051-6058
    [10]Stone RA, Richard A. Retinal dopamine and form-deprivation myopia[J]. Proc Natl Acad Sci USA,1989,86(2):704-706
    [11]Luvone PM, Tiggers M, Stone RA, et al. Effects of apomorphire, a dopamine receptor agonist on ocular refraction and axial elongation in a primate model of myopia [J]. Invest Ophthalmol Vis Sci,1991,32(5):1674-1677
    [12]Guggenheim JA, McBrien NA. Form-deprivation myopia induces activation of sclera matrix metalloproteinase-2 in tree shrew[J]. Invest Ophthalmol Vis Sci,1996,37(7): 1380-1395
    [13]Rada JA, Perry CA, Slover ML, et al. Gelatinase A and TIMP-2 expression in the fibrous sclera of myopia and recovering chick eyes[J]. Invest Ophthalmol Vis Sci,1999,40(13): 3091-3099
    [14]吴文灿,刘双珍,王剑峰,等.小鸡形觉剥夺性近视眼巩膜TIMP-2m-RNA表达的时间动态变化[J].眼科研究,2003,21(5):461-464
    [15]吴文灿,刘双珍,王剑峰,等.小鸡形觉剥夺性近视眼后极部巩膜MMP-2与TIMP-2 m-RNA表达的动态变化[J].眼科新进展,2004,24(3):173~177
    [16]王保贞,陈悦.褪黑素及iNOS在豚鼠形觉剥夺性近视眼的表达及作用[J].中国实用医刊,2010,37(7):29~31
    [17]Tokoro T. Mechanism of axial elongation and chorioretinal atrophy in high myopia [J]. Nippon Ganka Gakkai Zasshi,1994,98(12):1213-1237
    [18]Wallman J, Gottlieb MD, Rajaram V, et al. Local retinal regions control local eye growth and myopia [J]. Science,1987,237(4810):73-77
    [19]Marsh-Tootle WL, TT Norton. Refractive and structural measures of lid-suture myopia in tree shrew [J]. Invest Opthalmol Vis Sci,1989,30(11):2245-2257
    [20]McFadden SA, Howlett MH, Mertz JR. Retinoic acid signals the direction of ocular elongation in the guinea pig eye[J]. Vision Res,2004,44(7):643-653
    [21]Vo TD, Coleman DJ, Iwamoto T, et al. An animal model for myopia:increased axial length of rabbit eye by ultrasonically induced[J]. Invest Ophthalmol Vis Sci (ARVO Suppl),1987, 28(2):217
    [22]Troilo D, Judge SJ, Ridley R, et al. Myopia induced by brief visual deprivation in a new world primate-the common marmoset[J]. Invest Opthalmol Vis Sci,1990,31(2):254
    [23]Zhou G, Williams RW. Mouse models for the analysis of myopia:an analysis of variation in eye size of adult mice[J]. Optom Vis Sci,1999,76(6):408-418
    [24]Wallman J, Gottlieb MD, Rajaram V, et al. Local retinal regions control local eye growth and myopia[J]. Science,1987,237(4810):73-77
    [25]Marsh-Tootle WL, TT Norton. Refractive and structural measures of lid-suture myopia in tree shrew[J]. Invest Opthalmol Vis Sci,1989,30(11):2245-2257
    [26]McFadden SA, Howlett MH, Mertz JR. Retinoic acid signals the direction of ocular elongation in the guinea pig eye[J]. Vision Res,2004,44(7):643-653
    [27]V TD, Coleman DJ, Iwamoto T, et al. An animal model for myopia:increased axial length of rabbit eye by ultrasonically induced[J]. Invest Ophthalmol Vis Sci, 1987,28 (2):217
    [28]Troilo D, Judge SJ, Ridley R, et al. Myopia induced by brief visual deprivation in a new world primate-the common marmoset[J]. Invest Opthalmol Vis Sci (ARVO Suppl),1990,31(2):254
    [29]Zhou G, Williams RW. Mouse models for the analysis of myopia:an analysis of variation in eye size of adult mice[J]. Optom Vis Sci,1999,76(6):408-418
    [30]胡磊,李军,汪芳润.实验性近视眼研究进展[J].中国斜视与小儿眼科杂志,1996,4:92
    [31]Troilo D, Wallman J. The regulation of eye and refraction state:An experimental study of emmetropzation[J]. Vision Res,1991,31(7):1237
    [32]Jesus Pintor, eresa Pelaez, Charles H V Hoyle,and Assumpta Peral, Ocular hypotensive effects of melatonin receptor agonists in the rabbit:further evidence for an MT3 receptor[J]. Br J Pharmacol,2003 March,138(5):831-836
    [33]Jody A. Summers Rada and Allan F. Wiechmann Melatonin Receptors in Chick Ocular Tissues:Implications for a Role of Melatonin in Ocular Growth Regulation [J]. Investigative Ophthalmology and Visual Science.2006,47:25-33
    [34]曹亚菲,吕勇,闫磐石.豚鼠形觉剥夺性近视模型眼压昼夜节律的变化[J].医药论坛杂志,2007,2(28):36-38
    [35]Rada JA, Nickla DL, Troilo D. Decreased proteoglycan synthesis associated with form deprivation myopia in mature primate eyes [J]. Invest Ophthalmol Vis Sci,2000,41(8): 2050-2058
    [36]刘丽,周跃华.视网膜对形觉剥夺性近视鸡巩膜MMP-2的调控[J].眼科新进展,2006,26(11):831~835
    [37]Morgan IG. The biological basis of myopic refractive error [J]. Clin Exp Optom,2003, 86(5):276-288
    [38]Nickla DL, Wilken E, Lytle G, et al, Inhibiting the transient choroidal thickening response using the nitric oxide synthase inhibitor 1-NAME prevents the ameliorative effects of visual experience on ocular growth in two different visual paradigms [J]. Exp Eye Res. 2006,83(2):456-464
    [39]Wu J, Liu Q, Yang X, et al. Time-course of changes to nitric oxide signaling pathways in form-deprivation myopia in guinea pigs [J]. Brain Research,2007,1186:155-163
    [40]Koistinaho J, Swanson RA, De Vente, et al. NADPH-diaphorase (nitric oxide synthase)-reactive amacrine cells of rabbit retina:putative target cells and stimulation by light [J]. Neuroscience,1993,57:587-597
    [41]Lentile R, Malecka B, Picciurro V, et al. Nitric oxide synthase in chick embryo retina during development [J]. FEBS Lett,1996,379:82-84
    [42]Koch K.W, Lambrecht HG, Haberecht M, et al. Functional coupling of a Ca2+/calmodulin-dependent nitric oxide synthase and a soluble guanylyl cyclase in vertebrate photoreceptor cells [J]. EMBOJ,1994,13:3312-3320
    [43]韩济生.神经病学原理[M].第2版.北京医科大学出版社,1999:23-24
    [44]Michaela Bitaer, Frank Schaeffel. Defocus-induced changes in ZENK expression in the chicken retina[J]. Invest Ophthalmol Vis Sci,2002,43(1):246-252
    [45]Marta P, Feldkaemper, Hong-Yan Wang, et al. Changes in retinal and choroidal gene expression during development of refraction errors in chicks[J]. Invest Ophthalmol Vis Sci, 2000,41(7):1623-1628
    [46]Jaworski J, Biedermann IW, Lapinska J, et al. Neuronal excitation driven and AP-1 depe-ndent activation of tissue inhibitor of metalloproteinases-1 gene expression in rodent hippocampus[J]. J Biol Chem,1999,274(40):28106-28112
    [47]Kumi Nagamoto-Combs, Kristen M, Piech, et al. Evidence for cyclic amp-responsive element binding protein-independent regulation[J]. J Biol Chem,1997,272(28):6051-6058
    [48]Stone RA, Richard A. Retinal dopamine and form-deprivation myopia[J]. Proc Natl Acad Sci USA,1989,86(2):704-706
    [49]Luvone PM, Tigges M, Stone RA, et al. Effects of apomorphire, adopamine receptor agonist on ocular refraction and axial elongation in a primate model of myopia[J]. Invest Ophthalmol Vis Sci,1991,32(5):1674-1677
    [50]毛俊峰,刘双珍,文丹等.Caspase-3在形觉剥夺性近视视网膜中的表达意义[J].国际眼科杂志,2005,5(2):66~69
    [51]魏欣,刘双珍,王杰月,等.豚鼠形觉剥夺性近视视网膜早基因c-fos的动态表达[J].眼视光学杂,2006,8(4):206~208
    [52]Nose K, Shibanuma M, Kikuchi K, et al. Transcriptional actiation of early-response genes by hydrogen peroxide in a mouse osteoblasric cell line[J]. Biochem,1991,201(1):99-106
    [53]Maki A, Berezesky IK, Fargnoli J, et al. Role of [Ca2+] in induction of c-fos, c-jun, and c-myc mRNA in rat PTE after oxidative stress[J]. FASEB,1992,6(3):919-924
    [54]Foulkes NS, Borjigin J, Snyder SH, et al. Rhythmic transcription:the molecular basis of circadian melatonin synthesis[J]. TINS,1997,20:487-492
    [55]Dubocovich ML, Benloucif S, Masana MI. Melatonin reception in the mammalian suprachiasmatic nucleus[J]. Bechavioral Brain Res,1996,73:141-147
    [1]Russel JR, Jo Ronbinson. Melatonin- Your body's natural worrder durg:Bantam Books[M]. USA New York,1995,17
    [2]Meusy DN, Tillet Y. Immunohistochemical demonstration of melartonin in the female mink harderian gland[J]. Anat Rec,1992,234:549
    [3]Menedez PA, Reiter RJ. Distribution of melatonin in mammalian tissuse:The relative importance of nuclear versus cytosolic localization[J]. J Pineal Res,1993,15:59
    [4]Poeggeler B, Balzar I, Hardeland R, et al. Pineal horm one melartonin oscillates also in the dinoflgellate gonyaular polyedra[M]. Naturwissench aften,1991,78:268
    [5]Sugden D. Melatonin biosynthesis in the mammalian pineal gland[J]. Experientia,1989,45: 922
    [6]Moore RY. The innervation of the mammalian pineal gland[J]. Prog Reprod Biol,1978,4: 1
    [7]Kanematsu N, Honma S, Katsuno Y, et al. Immediate response to light of rat pineal melatonin rhythm:analysis by vivo microdialysis[J]. Am J Physical,1994,266(6):R1849
    [8]Roseboom PH, Coon SL, Baler R, et al. Melatonin synthesis:analysis of the more than 150-fold nocturnal in crease in serotonin in N-acetyltransferase messenger ribonucleic acid in the rat pineal gland[J]. Endocrinology,1996,137(7):3033
    [9]Iuvone PM, Tosini G, Pozdeyev N, et al.Circadian clocks, clock networks, arylalkyamine N-acetyltransferase, and melatonin in the retina[J]. Prog Retin Eye Res,2005,24(4):433-456
    [10]Cardinali DP. Control of the rat pineal gland by light spectra[J]. Proc Nat Acad Sci USA, 1972,69:2003
    [11]Champney TH, Holtorf AP, Steger RW, et al. Concurrent determination of enzymatic activities and substrate consentrations in the melatonin synthetic pathway within the same rat pineal gland[J]. Neurosci Res,1984,11(1):59
    [12]Guenther AL, Schmidt SI, Laatsch H, et al. Reactions of the melatonin metabolite AMK (N1-acetyl-5-methoxykynuramine) with reactive nitrogen species:formation of novel compounds,3-acetamidomethyl-6-methoxycinnolinone and 3-nitro-AMK[J]. Pineal Res, 2005,39(3):251-260
    [13]Claustrat B, Brun J, Chazot G. The basic physiology and pathophysiology of melatonin[J]. Sleep Med Rev,2005,9(1):11-24
    [14]Vanecek J. Cellular mechanisms of melatonin in action[J]. Physiol Rev,1998,78(3):687-721
    [15]Lundmark PO, Pandi-Perumal SR, Srinivasan V, Cardinali DP. Role of melatonin in the eye and ocular dysfunctions[J]. Vis Neurosci,2006,23(6):853-862
    [16]Alarma Estrany P, Pintor J. Melatonin in receptors in the eye location second messengers and role in ocular physiology[J]. Pharmacol Ther,2007,113(3):507-522
    [17]Rada JA, Wiechmann AF. Melatonin receptors in chick ocular tissues implications for a role of melatonin in ocular growth regulation[J]. Invest Ophtharlnol Vis Sci,2006,47(1): 25-33
    [18]Von Gall C, Stehel JH, Weaver DR. Mammalian melatonin in receptors molecular biology and signal transduction[J]. Cell Tissue Res,2002,309(1):151-162
    [19]Wiechmann AF, Wirsig-Wiechmann CR. Multiple cell targets for melatonin action in Xenopus laevis retina:distribution of melatonin receptor immunoreactivity[J]. Vis Neurosci,2001,18(5):695-702
    [20]Wiechmann AF, Rada JA. Melatonin receptor expression in the cornea and sclera[J]. Exp Eye Res,2003,77(2):219-225
    [21]Dubocovich ML, Markowska M. Functional MT1 and MT2 melatonin receptors in mammals[J]. Endocrine,2005,27(2):101-110
    [22]Baltaci AK, Mogulkoc R, Bediz CS, et al. Effect of zinc deficiency and pinealectomy on cellular immunity in rats infected with Toxoplasma gondii[J]. Biol Trace Elem Res,2005, 104(1):47-56
    [23]Guerrero JM, Reiter RJ. Melatonin-immune system relationships[J]. Curr Top Med Chem, 2002,2(2):167-179
    [24]Labunets IF, Butenko GM, Khavinson VK.H, et al. Regulating effect of pineal gland peptides on development of T-lymphocytes in CBA aging mice:role of microenvironment of immune system organs and neuroendocrine factors[J]. Adv Gerontol,2003,12:111-120
    [25]Moore CB, Siopes TD. Melatonin enhances cellular and humoral immune responses in the Japanese quail(Cotumix coturnix japonica) via an opiatergic mechanism[J]. Gen Conp Endocrinol,2003,131(3):258-263
    [26]Silva SO, Rodrigues MR, Xinenes VF, et al. Neutrophils as a specific target for melatonin and kynuramines effects on cytokine release[J]. Neuroimmunol,2004,156(1-2):146-152
    [27]Fjaerli O, Lund T, Osterud B. The effect of melatonin on cellular activation processes in human blood[J]. Pineal Res,1999,26(1):50-55
    [28]Sacco S, Aquilin L, Ghezzi P, et al. Mechanism of the inhibitory effect of melatonin on tumor necrosis factor production in vivo and in vitro[J]. Eur J Pharmacol,1998,343(2-3): 249-255
    [29]Barriga C, Martin MI, Ortega E, et al. Mechanism of the inhibitory effect of melatonin and corticosterone in stress and their relationship with phagocytic activity[J]. Neuroendcrinol, 2002,14(9):691-695
    [30]Reiter RJ, Acuna Castroviejo D, Tan DX, et al. Free radical-mediarted molecular damage mechanisms for the protective actions of melatonin in the central nervous system. Ann N Y Acad Sci,2001,939,200-215
    [31]Tan DX, Manchester LC, Reiter RJ, et al. Melatonin directly scavenges hydrogen peroxide apotentially new metabolic pathway of melatonin biotransformation[J]. Free Radic Biol Med,2000,29(11):1177-1185
    [32]Reiter RJ, Guerrero JM, Escames G, et al. Prophylactions of melatonin in oxidative neurotoxicity[J]. Ann N Y Acad Sci,1997,825(2):70-78
    [33]Tamura EK, Silva CL, Markus RP. Melatonin inhibits endothelialnitric oxide production in vitro[J]. Pineal Res,2006,41(3):267-274
    [34]Storr M, Koppitz P, Sibaev A, et al. Melatonin reduces non-adrenergic, non-cholinergic relaxant neurotransm ission by inhibition of nitric oxide synthase activity in the gastrorointestinal tract of rodents in vitro[J]. Pineal Res,2002,33(2):101-108
    [35]Jou MJ, Peng TI, Rerter RJ, et al. Visualization of the antioxidative effects of melatonin at the mitochondrial level during oxidative stress irrduced apoptosis of rat brain astrocytes[J]. Pineal Res,2004,37(1):55-70
    [36]Kin SH, Lee SM. Cytoprotective effects of melatonin againstnecrosis and apoptosis induced by ischemia/reperfusion injury in rat liver[J]. Pineal Res,2008,44(2):165-171
    [37]Szablocs A, Reiter C, Letoha T, et al. Effect of melatonin on the severity of L-arginine-induc-ed experimental acute pancreatitis in rats[J]. World J Gastroenterol,2006, 12(2):251-258
    [38]Gitto E, Karbownik M, Reiter RJ, et al. Effects of melatonin treatment in sepic newborns[J]. Pediatr Res,2001,50:756-760
    [39]许长春,滕亚娟,王黎荔,等.褪黑素对海马神经元保护作用的机制[J].前卫医药杂志,2001,18(3):178~179
    [40]Kilic E, Kilic U, Yulug B, et al. Melatonin reduces disseminate neuronal death after mild focal ischemia in mice via inhibition of caspase-3 and is suitable as an add-on treatment to tissue-plasminogen activator[J]. Pineal Res,2004,36(3):171-176
    [41]Toru F, Takafumi N, Takashi I, et al. Potent protective effects of melatonin on experimental spinal cord injury[J]. Spine,2000,25(7):769-775
    [42]Hansen J. Increased breast cancer risk among women who work predominantly at night[J]. Epidemiology,2001,12:74-77
    [43]方华蓥,许春芳.褪黑素抗肿瘤作用及其机制的研究进展[J].国际消化病杂志,2010,30(1):44~46
    [44]Weinreb O, Mandel S, Yondim MB. cDNA gene expression ptfdehomology of antioxidants and their antiapoptotic and proapaptotic activitties in human neumblastoma ceils[J]. FASEB J,2003,17:935-937
    [45]Tanaka T, Yasui Y, Tanaka M, et al. Melatonin suppresses AOM/DSS induced bowel on cogenesis in rats[J]. Chem Biol Interact,2009,177:128-136
    [46]Mills E, Wu P, Seely D, et al. Melatonin in the treatment of cancer:a systematic review of randomized controlled trials and meta-analysis[J]. Pineal Res,2005,39(4):360-366
    [47]Hoyle CH, Peral A, Pintor J. Melatonin potentiates tear secretion induced by diadenosine tetraphosphate in the rabbit[J]. Eur J Pharmacol,2006,552(1-3):159-161
    [48]Ciuffi M, Pisanello M, Pagliai G, Raimondi L, Franchi-Micheli S, Cantore M, et al. Antioxidant protection in cultured corneal cells and whole corneas submitted to UV-B exposure[J]. Photochem Photobiol,2003,71(1-3):59-68
    [49]Salganik RI. The benefits and hazards of antioxidants:controlling apoptosis and other protective mechanism in cancer patients and the human population[J]. J Am Coll Nutr 2001,20(5):464-472
    [50]Truscott RJ. Age-related nuclear cataract:a lens transport problem[J]. Ophthalmic Res, 2000,32(5):185-194
    [51]Head KA. Natural therapies for ocular dis orders part two cataracts and glaucoma[J]. Altern Med Rev,2001,6(2):141-166
    [52]Moon S, Femando MR, Lou MF. Induction of thiotransferase and thioredoxin/thioredoxin reductase systems in cultured porcine lenses under oxidative stress[J]. Invest Ophthalmol Vis Sci,2005,46(10):3783-3789
    [53]Karslioglu I, Ertekin MV, Taysi S. Kocer I. Sezen O, Gepdiremen A, et al. Radioprotective effects of melatinon radiation-in-duced cataract[J]. Radiat Res(Tokyo),2005,46(2):277-282
    [54]Anwar MM, Moustafa MA. The effect of melatinon on eye lens of rats exposed to ultraviole tradiation[J]. Comp Biochem Physiol Toxicol Pharmacol,2001,129(1):57-63
    [55]Bardak Y. Effect of melatonin on lenticular calcium and magnesium in rats exposed to ultraviolet radiation [J]. Ophthalmologica,2000,214 (5):350-353
    [56]Yildirim N, Ozer A, Inal M, Angin K, Yurdakul S. The effect of Nacetyl serotonin on ultraviolet-radiation-induced cataracts in rats[J]. Ophthalmologica,2003,217(2):148-153
    [57]Yagci R, Aydin B, Erdurmus M, Karadag R, Gurel A, Durmus M, et al. Use of me latonin to prevent selenite-induced catract for mation in rat eyes[J]. Curr Eye Res,2006,31(10): 845-850
    [58]杨一涛,唐罗生,董晓光,曾祥云,李学喜.褪黑素在眼科应用的最新进展[J].眼科新进展,2009,29(2):146-151
    [59]Quigley HA, Nickells RW, Kerrigan LA, et al. Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis[J]. Invest ophthalmol Vis Sci,1995,36 (5):774-786
    [60]王平宝,蒋幼芹,黄佩刚,等.兔实验性急性高眼压模型视网膜谷氨酸的变化[J].中华眼科杂志,2000,36(5):378~380
    [61]Sucher NJ, Lei SZ, Lpton SA. Calcium Channel antagonists attenuate NMDA receptor-mediated neurotoxicity of retinal ganglian cells in culture[J]. Brain Res,1991,551: 297-302
    [62]iliprandi R, Canella R, Carmignoto G, et al. N-menlyl-D-aspartate induced neurotoxicity in the adult rat retina[J]. Vis Neuro Sci,1992,8(6):567-573
    [63]Lipton S. Excitatory amino acids as a ginal pathway for neurologic disorders [J]. N Engl J Med,1994,330:613-622.
    [64]曾明兵,王宁利.细胞凋亡与眼科疾病[J].眼科新进展,2000,20(3):232~234
    [65]Moreno MC, Campanelli J, Sande P, Sanez DA, Keller Sarmiento MI, Rosenstein RE. Retinal oxidative stress induced by high intraocular pressure[J]. Free Radic Biol Med,2004, 37(6):803-812
    [66]Mozaffarieh M, Flammer J. A novelperspective on natural therapeutic approaches in glaucom a therapy[J]. Expert Op in Emerg Drugs,2007,12(2):195-198
    [67]Saenz DA, Turjanski AG, Sacca GB, et al. Physiological concentra tions of melatonin inhibit the nitridergic pathway in the Syrian hamster retina[J]. Pineal Res,2002,33(1): 31-36
    [68]Siu AW, Maldonado M, Sanchez-Hidalgo M, et al. Protective effects of melatonin in experimental free radical-related ocular diseases[J]. Pineal Res,2006,40(2):101-109
    [69]桑延智,刘心,柳林,等.神经生长因子对糖尿病大鼠神经视网膜超微结构的影响[J].国际眼科杂志,2008,8(6):1117-1121
    [70]孙文涛,张小玲,高嵩.糖尿病性视网膜病变发生发展的相关因素[J].国际眼科杂志.2005,5(4):755-759
    [71]Anderson RE, Rapp LM, Wiegand RD, et al. Lipid peroxidation and retinal degeneration[J]. Curr Eye Res,1984,3(1):223-227
    [72]Kowluru RA, Abbas SN. Diabetes-induced mitochondrial dysfunction in the retinal[J]. Invest Ophthalmol,2003,44(12):5327-5334
    [73]Du Y, Miller CM, Kern TS. Hyperglycemia increases mitochondrial superoxide in retinal and retinal cells[J]. Free Radic Biol Med,2003,35(11):1491-1499
    [74]Cui Y, Xu X, Bi H, et al. Expression modification of uncoupling proteins and MnSOD in retinal endothelial cells and pericytes induced by high glucose:the role of reactive oxygen species in diabetic retinopathy[J]. Exp Eye Res,2006,83(4):807-816
    [75]Kowluru RA. Diabetes-induced elevations in retinal oxidative stress, protein kinase C and nitric oxide are interrelated[J]. Acta Diabetol,2001,38(4):179-185
    [76]Kowluru RA, Koppolu P. Termination of experimental galactosemia in rats, and progression of retinal metabolic abnormalities[J]. Invest Ophthalmol Vis Sci,2002,43(10): 3287-3291
    [77]Kowluru RA, Tang J, Kern TS. Abnormalities of retinal metabolism in diabetes and experimental galactosemia VII effect of long-term administration of antioxidants on the development of retinopathy[J]. Diabetes,2001,50(8):1938-1942
    [78]崔彦,许迅,毕宏生.高糖对牛视网膜微血管内皮细胞和周细胞线粒体活性氧的影响[J].中华眼科杂志,2006,42(2):131~138
    [79]Baydas G, Tuzcu M, Yasar A, et al. Early changes in glial reactivity and lipid peroxidation in diabetic rat retina effects of melatonin[J]. Acta Diabetol,2004,4(1):123-128
    [80]曹鎏,洪瑾,帅捷,等.褪黑素对高糖刺激人视网膜上皮细胞诱导型一氧化氮合酶表达的影响[J].眼科新进展,2007,27(7):492-495
    [81]Hardeland R, Pandi-Perumal SR, Cardinali DP. Melatonin[J]. Int J Biochem Cell Biol, 2006,38(3):313-316
    [82]Petrosillo G, Di Venosa N, Pistolese M, et al. Protective effect of melatonin against mitochon- drial dysfunction assiociated with cardic ischemia reperfusion:role of cardiolipin[J]. FASEB J,2006,20(2):269-276
    [83]Acuna-Castroviejo D, Escames G, Rodriguez MI, et al. Melatonin role in the mitochondrial function[J]. Front Biosci,2007,1(12):947-963
    [84]Liang FQ, Godley BF. oxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells:a possible mechanism for RPE aging and age-related macular degeneration[J]. Exp Eye Res,2003,76 (4):397-403
    [85]樊莹,唐敏,傅扬,等.褪黑激素在视网膜色素上皮细胞氧化应激中对线粒体DNA保护作用的研究[J].眼科新进展,2006,26(12):911-915
    [86]Yi C, Pan X, Yan H, et al. Effects of melatonin in age-related macular degeneration[J]. Ann N Y Acad Sci,2005,1057:384-392
    [87]许思思,陈悦.豚鼠形觉剥夺性近视网膜组织中褪黑素受体表达及眼压的变化[J].郑州大学报(医学版),2009,44(3):636-638
    [88]王保贞,陈悦.褪黑素及iNOS在豚鼠形觉剥夺性近视眼的表达及作用[J].中国实用医刊,2010,37(7):29-31
    [89]Kiratli H, Gedik S, Us D, Bilgic S. Serum melatonin levels following enucleation and transpupillary thermotherapy in patients with choroidal melanoma[J]. Clin Experiment Ophthalmol,2003,31(6):505-508

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700