褪黑素受体、iNOS、c-fos在豚鼠FDM的表达及作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的发展,近距离工作的要求在增多,全世界范围内近视的发病率也在逐年增高,近视已经严重影响着患者的学习、工作、生活,因而近视也成为了全球共同关注的问题。虽然近二百年来对近视的研究在不断进行,各项可能影响因素也在不断地被发现,但是其病因及发病机制仍没有确切的结论,因此对近视的研究依然是世界眼科学家研究的重要课题。
     自从1977年Wiesel首次用缝合恒河猴眼睑的方法成功诱导出形觉剥夺性近视(form deprivation myopia, FDM)以来,近视动物模型的建立方法也在不断发展完善。目前,基本确立了两种近视的动物实验模型,即形觉剥夺性近视(form deprivation myopia, FDM)和离焦性近视(defocus myopia)。形觉剥夺性近视是指用缝合眼睑或戴弥散镜片或半透明眼罩来严重破坏动物的形体视觉所引起的近视。离焦性近视是指强迫动物视近或给动物配戴负球镜片使物体聚焦于视网膜的后方,从而引起调节的发生,使眼轴延长,所造成的近视。这两种近视动物模型的建立使得人们对近视的发生、发展及转归有了更加深入的认识,也使眼科学家对近视有了更加深入的研究。目前的研究表明:形觉剥夺可导致视网膜上的多种神经递质与生长因子的水平发生改变,而在这些研究中发现:诱导近视发生的物质主要来自视网膜的神经上皮层。其大致产生过程如下:视网膜神经上皮产生的一级信使首先作用于视网膜色素上皮(retinal pigment epithelium,RPE)和脉络膜,使之产生下一级的生化物质也称为二级信使,二级信使再作用于巩膜,调控巩膜生长从而使巩膜重塑,引起眼轴的过度延长,从而形成近视。其他一些自分泌或旁分泌环路涉及的细胞因子、生长因子及其酪氨酸激酶受体可能也对RPE细胞的病理改变起着至关重要的作用。但是这些因素对近视的影响机制有待于进一步研究。
     褪黑素(melatonin, MLT)它进入蛙黑色素细胞后会使蛙全身的肤色变浅,因此被称为褪黑素,是松果体在生理条件下夜间分泌的一种甲氧吲哚,化学名为N-乙酰-5-甲氧色胺,是由5-羟色胺转化而来的,其分泌节律由交叉上核团来根据昼夜节律来控制。长期以来,人们认为褪黑素的生物作用主要是调节昼夜节律、中心温度、造血、糖代谢节律以及睡眠-觉醒生物节律相位转换,改善睡眠。但随着研究的深入,人们还发现褪黑素还具有(1)直接清除自由基;(2)增强抗氧化酶的活力及其基因表达;(3)抑制一氧化氮合酶(NOS)的活性;(4)具有强大的线粒体保护功能。近年来已有研究表明NO与视网膜的发育、视觉兴奋和视觉信息的传导有关,提示其可能参与近视的形成。在Jaworski等及Kumi等的研究中发现,早基因c-fos可通过AP-1位点调控多巴胺限速酶-酪氨酸羟化酶(tyrosine hydroxylase,TH)及金属蛋白酶组织抑制剂(tissue inhibitor of metalloproteinases,MMPs),也已被证明对近视的发生及发展具有重要作用,另外,c-fos具有的抗细胞凋亡等功能也可能对近视的发展具有一定影响,并且褪黑素通过对视交叉上核内c-fos基因的调节,来实现光周期信号的传递。
     本实验拟建立豚鼠FDM模型,观察褪黑素和iNOS、c-fos在豚鼠FDM视网膜中的表达及作用。
     材料与方法
     选用出生7天龄的健康花色豚鼠30只,用半透明眼罩遮盖豚鼠右眼,左眼为对照眼。实验前对豚鼠进行散瞳检影验光,排除先天性近视及其它眼疾,用形觉剥夺的方法建立近视眼动物模型。形觉剥夺8周后,分别检测双眼屈光度及眼轴长度。HE染色光学显微镜下观察视网膜巩膜病理变化,免疫组织化学染色法检测视网膜褪黑素受体、iNOS和c-fos的表达水平。应用Image-Pro Plus 6.0对蛋白表达进行图像分析,表达强度用平均光密度值表示。
     实验数据均用x±s表示,采用SPSS 13.0统计软件包进行方差齐性检验,双眼之间比较采用配对t检验,在此基础上进行单因素方差分析及相关性检验,以a=0.05作为检验水准。
     结果
     1.形觉剥夺前遮盖眼屈光度(3.85±0.80D)与对照眼屈光度(3.75±1.20D)无明显差异(P>0.05),形觉剥夺8周后遮盖眼屈光度(—7.25±2.60D),对照眼屈光度(2.85±0.96D)(P<0.05);形觉剥夺前遮盖眼眼轴长度(6.78±0.18mm)与对照眼眼轴长度(6.86±0.22mm)无明显差异(P>0.05),形觉剥夺8周后,遮盖眼眼轴长度(8.54±0.20mm),对照眼眼轴长度(7.12±0.17mm),有显著差异(P<0.05)。
     2.免疫组化检测形觉剥夺前褪黑素的表达遮盖眼(0.3650±0.0518A)和对照眼(0.4142±0.0778A)无明显差异(P>0.05),iNOS的表达遮盖眼(0.3321±0.0476A)和对照眼(0.3431±0.0354A)无明显差异(P>0.05),c-fos的表达遮盖眼(0.3752±0.0560A)和对照眼(0.3756±0.0822A)无明显差异(P>0.05);形觉剥夺8周后褪黑素的表达遮盖眼(0.3199±0.0279A)和对照眼(0.3960±0.0932A)有显著差异(P<0.05),iNOS的表达遮盖眼(0.4005±0.0605A)和对照眼(0.3326±0.1071A)有显著差异(P<0.05),c-fos的表达遮盖眼(0.2083±0.0604A)和对照眼(0.3654±0.0733A)有显著差异(P<0.05),也就是遮盖眼较对照眼视网膜中褪黑素受体的表达减少,iNOS表达增多,c-fos表达减少。
     3.遮盖眼中褪黑素受体与iNOS的表达(r=—0.8132,P=0.026<0.05),呈负相关,而与c-fos的表达(r=0.7085,P=0.075>0.05)呈正相关。
     结论
     1.单眼半透明眼罩遮盖8周后明显形成近视,动物形觉剥夺模型成功建立。
     2.遮盖眼视网膜中褪黑素受体表达明显减少,提示褪黑素可能参与了近视的形成。
     3.遮盖眼视网膜中iNOS表达明显增多,提示iNOS可能参与了近视的形成。
     4.遮盖眼视网膜中c-fos表达明显减少,提示c-fos可能参与了近视的形成。
     5.遮盖眼视网膜中褪黑素和iNOS的表达呈明显的负相关,褪黑素和c-fos呈明显的正相关。可以推测在形觉剥夺性近视的形成过程中褪黑素影响了iNOS、c-fos的表达和活性,导致了近视的形成。
With the technology development, the near work demands are increasing, worldwide incidence of myopia has also increased year by year, myopia serious impact on the patient's study, work, life, so short-sighted global issues of common concern. Although for the last two hundred years of myopia in the ongoing study of the various factors that may affect the continuous discovery, but its etiology and pathogenesis is still no definite conclusion, so the study of myopia is an important scientific research of the world's Ophthalmology experts.
     Since Wiesel built up form deprivation myopia (FDM) on rhesus monkey in 1977 for the first time, the method to establish animal models of myopia has also been developed. At present, basically two kinds of animal model of myopia were established:form deprivation myopia (form deprivation myopia, FDM), myopic defocus (defocus myopia). Form deprivation myopia refers to stitching the eyelids or wearing translucent goggles dispersion lenses or serious damage to the visual shape of animals, then myopia happened. Defocus myopia is forced animals to see close, or depending on wearing a negative lens so that objects focus on behind the retina, causing adjustment occurs, so that axial extension caused by myopia. Both animal models of myopia make the occurrence of myopia, development and prognosis have a better understanding, but also Ophthalmology experts have a more indepth study.
     Current research shows that:form-deprived retina can lead to a variety of neurotransmitter and growth factor levels change, and these studies found that induced myopia, the material mainly from the neurosensory retina. General generating process as follows:retinal neuroepithelial generated by a first messenger acting on the retinal pigment epithelium (retinal pigment epithelium, RPE) and choroid, thus producing lower levels of biochemical substances, also known as the secondary messenger, acting on the two messenger sclera, scleral growth control so that sclera remodeling, causing excessive axial extension of the formation of short-sighted. A number of other autocrine or paracrine loops involving cytokines, growth factor and its tyrosine kinase receptor may be pathological changes in RPE cells play a crucial role. The impact of the mechanism of these factors needs to be further studied.
     Melatonin (melatonin, MLT) will enter the frog after frog melanocytes lighter body color, so called melatonin. Under physiological conditions the pineal gland at night a methoxy indole secretion, chemical, called N-acetyl-5-methoxy tryptamine, is a 5-HT transformation comes from the cross on their secretion rhythm nuclei to be controlled under the circadian rhythm. For a long time, people think melatonin is mainly regulate the biological role of the circadian rhythm, center temperature, blood sugar metabolism, as well as rhythm sleep-wake circadian rhythm phase-change and improve sleep. However, with the in-depth study of melatonin, Melatonin is also found to have (1) direct free radical scavenging; (2) to enhance the vitality of antioxidant enzymes and gene expression; (3) inhibit the activity of nitric oxide synthase; (4) a powerful mitochondrial protection. In recent years, studies have shown that NO has been the development of retinal, visual excitement and visual information transduction, suggesting its possible participation in the formation of myopia. And, in Jaworski, etc, and Kumi study found that early gene c-fos via regulation of AP-1 sites of dopamine rate-limiting enzyme-tyrosine hydroxylase (tyrosine hydroxylase, TH) and tissue inhibitor of metallopro-teinase (tissue inhibitor of metalloproteinases, MMPs), have also been proved have an important role in the occurrence and development of myopia, in addition, c-fos with the anti-apoptotic features on the development of myopia, and melatonin by suprachiasmatic nucleus c-fos gene regulation, to achieve photoperiod signals.
     In this study, the proposed FDM model of guinea pig, to observe the expression and effects of melatonin and iNOS, c-fos in guinea pig retina FDM.
     Material and Methods
     Use thirty seven-days-old healthy multicolor guinea pigs, covering their right eye with semi-transparent goggle, the left eyeas the control eye. Experiments carried out before the cycloplegic retinoscopy guinea pigs to exclude congenital myopia and other eye diseases, the methods of form deprivation myopia model used to establish. After form-deprived 8 weeks, to detect eye refraction and axial length. HE staining was observed under optical microscope, the sclera retina pathological changes detected by immunohistochemical staining of retinal melatonin receptor, iNOS and c-fos expression. Application of Image-Pro Plus 6.0 image to analysis of protein expression, expression intensity with the average optical density value expressed.
     Experimental data are available, said use of SPSS 13.0 statistical software package homogeneity of variance test, Paired-Samples T test were used to analyze the difference between the experimental and control groups. In this based on single-factor analysis of variance and correlation tests. Withα=0.05 as the test standard.
     Results
     1. Before covered, form-deprived eyes were (3.85±0.80D) and the control eyes were (3.75±1.20D), there is no significant difference (P>0.05), covered after 8 weeks form-deprived eyes were (-7.25±2.60D), the control eye refraction (2.85±0.96D) (P<0.05); before form deprivation the covered eye axial length (6.78±0.18mm) and the control eye axial length (6.86±0.22mm), there is no significant difference (P>0.05),8 weeks after form deprivation, covering eye axial length (8.54±0.20mm), control eye axial length (7.12±0.17mm), were significantly different (P <0.05). Before covering refraction, form-deprived eyes and control eyes's axial length was no significant difference (P>0.05), form-deprived for 8 weeks, form-deprived eyes and control eyes's axial length were significantly different (P<0.05).
     2. Immunohistochemistry Before covered the expression of form-deprived eyes melatonin (0.3650±0.0518A) and the control eyes (0.4142±0.0778A) were no significant difference (P>0.05), iNOS expression in the deprived eyes (0.3321± 0.0476A) and the control eyes (0.3431±0.0354A) were no significant difference (P >0.05), c-fos expression in the deprived eyes (0.3752±0.0560A) and the control eyes (0.3756±0.0822A) were no significant difference (P>0.05); form deprivation for 8 weeks cover the eye after the expression of melatonin (0.3199±0.0279A) and the control eyes (0.3960±0.0932A) were significantly different (P<0.05), the expression of iNOS in the deprived eyes (0.4005±0.0605A) and the control eyes (0.3326±0.1071 A) were significantly different (P<0.05), c-fos expression in the deprived eyes (0.2083±0.0604A) and the control eyes (0.3654±0.0733A) were significantly different (P<0.05), which is covered than in the control eye retina reduction in the expression of melatonin receptor, the expression of iNOS increased, the expression of c-fos decreased.
     3. Cover the eyes of the melatonin receptor and iNOS expression (r=-0.8132, P= 0.026<0.05), negative correlation with c-fos expression (r=0.7085, P=0.075>0.05) were positively correlated.
     Conclusion
     1. Covered with monocular translucent goggles after 8 weeks the myopia was formed, animal form deprivation myopia model has been successfully established.
     2. In the expression of monocular retinal melatonin receptors in covered significan-tly reduced, suggesting that melatonin may be involved in the formation of myopia.
     3. Covering group the expression of monocular retinal iNOS was significantly increased, suggesting that iNOS may be involved in the formation of myopia.
     4. Covering group the expression of monocular retinal c-fos was significantly reduced, suggesting that c-fos may be involved in the formation of short-sighted.
     5. Covering group of retinal melatonin and the expression of iNOS were significantly negative related to melatonin and c-fos showed significant positive correlation. Presumably in form deprivation myopia in the formation of melatonin affected the iNOS, c-fos expression and activity, leading to the formation of myopia.
引文
[1] Wildsoet C, Wallman J. Choroidal and scleral mechanisms of compensation for spectac
    lenses in chicks[J]. Vision Res,1995,35:1175-1194
    [2] Schaeffel F, Bartmann M, Hagel G, et al. Studies of the retinal dopamine melatonin system
    experimental refractive errors in chickens[J]. Vision Res,1995,35: 1247-1264
    [3] Wiesel TN, Raviola E. Myopia and eye enlargement after neonatal lid fusii
    monkeys[J]. Nature, 1977,266(5597): 66-68
    [4]许思思,陈悦.豚鼠形觉剥夺性近视视网膜组织中褪黑素受体表达及眼压的变
    化[J].郑州大学学报(医学版),2009,44(3):636-635
    [5] Jody A, Allan F, Wiechmann, et al. Orcadian rhythms in the eye: The physiological
    significance of melatonin receptors in ocular tissues[J]. Progress in Retinal and Eye Research,
    2008;3(27): 137-160
    [6] Fujii S, Honda S, Sekiya Y, et al. Differential expression of nitric oxide synthase isoforms in
    form-deprived chick eyes[J]. Curr Eye Res 1998;17(6): 586-593
    [7] Jaworski J, Biedemann IW, Lapinska J, et al. Neuronal excitation driven and AP-1-dependent
    activation of tissue inhibitor of metalloproteinases-1 gene expression in rodent hippocampus[J].
    J Biol Chem,1999,274(40): 28106-28112
    [8] Kumi Nagamoto-Combs, Kristen M. Piech, Joseph A Best, et al. Evidence for cyclic ampresponsive
    element binding protein-independent regulation[J]. J Biol Chem, 1997,272(28):
    6051-6058
    [9] Stone RA, Richard A. Retinal dopamine and form-deprivation myopia[J]. Proc Natl Acad Sci
     USA, 1989,86(2): 704-706
    [10] Luvone PM, Tiggers M, Stone RA, et al. Effects of apomorphire, a dopamine receptor
    agonist on ocular refraction and axial elongation in a primate model of myopia [J]. Invest
    Ophthalmol Vis Sci,1991,32(5): 1674-1677
    [11] Guggenheim JA, McBrien NA. Form-deprivation myopia induces activation of sclera matrix
    metalloproteinase-2 in tree shrew[J]. Invest Ophthalmol Vis Sci,1996,37(7): 1380-1395
    [12] Rada JA, Perry CA, Slover ML, et al. Gelatinase A and TIMP-2 expression in the fibrous
    sclera of myopia and recovering chick eyes[J]. Invest Ophthalmol Vis Sci, 1999,40(13):
    3091-3099
    [13]吴文灿,刘双珍,王剑峰,等.小鸡形觉剥夺性近视眼巩膜TIMP-2m-RNA表达的时间动态
    变化[J].眼科研究,2003,21(5):461一464
    [14]吴文灿,刘双珍,王剑峰,等.小鸡形觉剥夺性近视眼后极部巩膜MMP-2与TIMP-2
    m-NRA表达的动态变化[J].眼科新进展,2004,24(3):173-177
    [15] Wiesel TN, Raviola E. Myopia and eye enlargement after neonatal lid fusion in
    monkeys[J]. Nature, 1977,266 (5597): 66-68
    [16] Wallman J, Gottlieb MD, Rajaram V, et al. Local retinal regions control local eye growth and
    myopia [J]. Science, 1987,237(4810): 73-77
    [17] Marsh-Tootle WL, TT Norton. Retractive and structural measures of lid-suture myopia in
    tree shrew [J]. Invest Opthalmol Vis Sci,1989,30(11): 2245-2257
    [18] McFadden SA, Howlett MH, Mertz JR. Retinoic acid signals the direction of ocular
    elongation in the guinea pig eye[J]. Vision Res,2004,44(7): 643-653
    [19] Vo TD, Coleman DJ, Iwamoto T, et al. An animal model for myopia: increased axial length
    of rabbit eye by ultrasonically induced[J]. Invest Ophthalmol Vis Sci (ARVO Suppl),1987,
    28(2):217
    [20] Troilo D, Judge SJ, Ridley R, et al. Myopia induced by brief visual deprivation in a new
    world primate-the common marmoset[J]. hivest Opthalmol Vis Sci, 1990,31(2):254
    [21] Zhou G, Williams RW. Mouse models for the analysis of myopia: an analysis of variation in
    eye size of adult mice[J]. Optom Vis Sci, 1999,76(6): 408-418
    [22] Wallman J, Gottlieb MD, Rajaram V, et al. Local retinal regions control local eye
    growth and myopia[J]. Science, 1987,237(4810): 73-77
    [23] Marsh-Tootle WL, TT Norton. Refractive and structural measures of lid-suture
    myopia in tree shrew[J]. Invest Opthalmol Vis Sci,1989,30(ll): 2245-2257
    [24] McFadden SA, Howlett MH, Mertz JR. Retinoic acid signals the direction of ocular
    elongation in the guinea pig eye[J]. Vision Res,2004,44(7): 643-653.
    [25] V TD, Coleman DJ, Iwamoto T, et al. An animal model for myopia:increased axial
    length of rabbit eye by ultrasonically induced [J]. Invest Ophthalmol Vis Sci, 1987,28
    (2):217
    [26] Troilo D, Judge SJ, Ridley R, et al. Myopia induced by brief visual deprivation in a
    new world primate-the common marmoset[J]. Invest Opthalmol Vis Sci (ARVO
    Suppl),1990,31(2):254
    [27] Zhou G, Williams RW. Mouse models for the analysis of myopia: an analysis of
    variation in eye size of adult mice[J]. Optom Vis Sci,1999,76(6):408-418
    [28]胡磊,李军,汪芳润.实验性近视眼研究进展!J].中国斜视与小儿眼科杂志,
    1996,4:92
    [29] Troilo D, Wallman J. The regulation of eye and refraction state: An experimental study of
    emmetropzation[J] .Vision Res, 1991,31(7): 1237
    [30] Jesus Pintor, eresa Pelaez, Charles H V Hoyle,and Assumpta Peral, Ocular hypotensive
    effects of melatonin receptor agonists in the rabbit: further evidence for an MT3 receptor[J].
    Br J Pharmacol, 2003 March, 138 (5): 831-836
    [31] Jody A. Summers Rada and Allan F. Wiechmann Melatonin Receptors in Chick Ocular
    Tissues: Implications for a Role of Melatonin in Ocular Growth Regulation [J]. Investigative
    Ophthalmology and Visual Science. 2006,47: 25-33
    [32]曹亚菲,吕勇,闫磐石,豚鼠形觉剥夺性近视模型眼压昼夜节律的变化J][.医药论坛杂志
    2007,2(28):36-38
    [33] Fujii S , Honda S , Sekiya Y,et al'. Differential expression of nitric oxide synthase isoforms
    in form deprived chick eyes[J]. Curr Eye Res, 1998,17(6): 586-593
    [34] Michaela Bitaer, Frank Schaeffel. Defocus-induced changes in ZENK expression in the
    chicken retina[J]. Invest Ophthalmol Vis Sci,2002,43(1): 246-252
    [35] Marta P, Feldkaemper, Hong-Yan Wang, et al. Changes in retinal and choroidal gene
    expression dining development of refraction errors in chicks[J]. Invest Ophthalmol Vis
    Sci,2000,41(7): 1623-1628
    [36] Stone RA, Richard A. Retinal dopamine and form-deprivation myopia[J]. Proc Natl Acad Sci
    USA,1989,86(2): 704-706
    [37] Luvone PM, Tigges M, Stone RA, et al. Effects of apomorphire, adopamine receptor agonist
    on ocular refraction and axial elongation in a primate model of myopia[J]. Invest Ophthalmol
    Vis Sci,1991,32(5): 1674-1677
    [38] Jaworski J, Biedermann IW, Lapinska J, et al. Neuronal excitation driven and AP-1 dependent
    activation of tissue inhibitor of metalloproteinases-1 gene expression in rodent
    hippocampus[J]. J Biol Chem,1999,274(40): 28106-28112
    [39] Kumi Nagamoto-Combs, Kristen M, Piech,et al. Evidence for cyclic amp-responsive element
    binding protein-independent regulation[J]. J Biol Chem, 1997,272(28): 6051-6058
    [40]毛俊峰,刘双珍,文丹等.CsaPaes-3在形觉剥夺性近视视网膜中的表达意义[J].国际眼科
    杂志2005,5(2):66-69
    [41]魏欣,刘双珍,王杰月,等.豚鼠形觉剥夺性近视视网膜早基因c-fos的动态表达[J].眼视
    光学杂志2006,8(4):206-205
    [1]Iuvone PM, Tosini G, Pozdeyev N, et al.Circadian clocks, clock networks, arylalkyamine N-acetyltransferase, and melatonin in the retina[J]. Prog Retin Eye Res 2005,24(4):433~ 456
    [2]Guenther AL, Schmidt SI, Laatsch H, et al. Reactions of the melatonin metabolite AMK (N1-acetyl-5-methoxykynuramine) with reactive nitrogen species:formation of novel compounds,3-acetamidomethyl-6-methoxycinnolinone and 3-nitro-AMK[J]. J Pineal Res 2005,39(3):251-260
    [3]Claustrat B, Brun J, Chazot G. The basic physiology and pathophysiology of melatonin[J]. Sleep Med Rev,2005,9(1):11-24
    [4]Natesan AK, Cassone VM. Melaton in receptor mRNA localization and rhythm-icity in the retina of the domestic chick, Gallus domesticus[J]. Vis Neuro sci 2002,19(3):265~274.
    [5]Wiechmann AF, Rada JA. Melatonin receptor expression in the cornea and sclera [J]. Exp Eye Res 2003,77(2):219~225.
    [6]Boguszewska A, Pasternak K. Melatonin and its biological significance[J]. Pol Merkuriusz Lek,2004,17(101):523-527
    [7]Pevet P. Melatonin:from seasonal to circadian signal[J]. J Neuroendocrinal,2003,15(4): 422~426
    [8]Baltaci AK, Mogulkoc R, Bediz CS, et al. Effect of zinc deficiency and pinealectomy on cellular immunity in rats infected with Toxoplasma gondii[J]. Biol Trace Elem Res,2005, 104(1):47~56
    [9]Guerrero JM, Reiter RJ. Melatonin-immune system relationships [J]. Curr Top Med Chem, 2002,2(2):167~179
    [10]Labunets IF, Butenko GM, Khavinson VKH, et al. Regulating effect of pineal gland peptides on development of T-lymphocytes in CBA aging mice:role of microenvironment of immune system organs and neuroendocrine factors[J]. Adv Gerontol,2003,12:111~120
    [11]Silva SO, Rodrigues MR,Ximenes VF. Neutrophils as a specific target for melatonin and kynuramines:effects on cytokine release[J]. J Neuroimmunol,2004,156(1-2):146~152
    [12]Fjaerli O, Lund T, Osterud B. The effect of melatonin on cellular activation processes in human blood[J]. J Pineal Res,1999,26(1):50~55
    [13]Sacco S, Aquilin L, Ghezzi P, et al. Mechanism of the inhibitory effect of melatonin on tumor necrosis factor production in vivo and in vitro[J]. Eur J Pharmacol,1998,343(2-3):249~255
    [14]Barriga C, Martin MI, Ortega E, et al. Mechanism of the inhibitory effect of melatonin and corticosterone in stress and their relationship with phagocytic activity [J]. J Neuroendcrinol, 2002,14(9):691-695
    [15]Silva SO. Rodrigues MR. Ximenes VF, et al. Neutrophils as a specific target for melatonin and kynuramines:effects on cytokine release[J]. J Neuroimmunol,2004,156(1-2):146~152
    [16]Szablocs A, Reiter C, Letoha T, et al. Effect of melatonin on the severity of L-arginine-induc-ed experimental acute pancreatitis in rats[J]. World J Gastroenterol,2006,12(2):251~258
    [17]Gitto E, Karbownik M, Reiter RJ, et al. Effects of melatonin treatment in sepic newborns[J]. Pediatr Res,2001,50:756~760
    [18]Lahiri DK, Chen DM, Lahiri P, et al. Amyloid, cholincaterase, melatonin, and metals and their roles in aging and neurodegenerative disease[J]. Ann N Y Acad Sci.2005,1056:430~ 449
    [19]Kilic E, Kilic U, Yulug B, et al. Melatonin reduces disseminate neuronal death after mild focal ischemia in mice via inhibition of caspase-3 and is suitable as an add-on treatment to tissue-plasminogen activator[J]. J Pineal Res,2004,36(3):171~176
    [20]Toru F, Takafumi N, Takashi I, et al. Potent protective effects of melatonin on experimental spinal cord injury[J]. Spine,2000,25(7):769~775
    [21]Mills E, Wu P, Seely D, et al. Melatonin in the treatment of cancer:a systematic review of randomized controlled trials and meta-analysis[J]. Pineal Res,2005,39(4):360~366
    [22]桑延智,刘心,柳林,等.神经生长因子对糖尿病大鼠神经视网膜超微结构的影响[J].国际眼科杂志2008,8(6):1117-1121
    [23]孙文涛,张小玲,高嵩.糖尿病性视网膜病变发生发展的相关因素[J].国际眼科杂志2005,5(4):755~759
    [24]Anderson RE, Rapp LM, Wiegand RD, et al. Lipid peroxidation and retinal degeneration [J]. Curr Eye Res 1984,3(1):223~227
    [25]Kowluru RA, Abbas SN. Diabetes-induced mitochondrial dysfunction in the retinal[J]. Invest Ophthalmol 2003,44(12):5327~5334
    [26]Du Y, Miller CM, Kern TS. Hyperglycemia increases mitochondrial superoxide in retinal and retinal cells[J]. Free Radic Biol Med 2003,35(11):1491~1499
    [27]Cui Y, Xu X, Bi H, et al. Expression modification of uncoupling proteins and MnSOD in retinal endothelial cells and pericytes induced by high glucose:the role of reactive oxygen species in diabetic retinopathy[J]. Exp Eye Res 2006,83(4):807~816
    [28]Kowluru RA, Diabetes-induced elevations in retinal oxidative stress, protein kinase C and nitric oxide are interrelated[J]. Acta Diabetol 2001,38(4):179~185
    [29]Kowluru RA, Koppolu P. Termination of experimental galactosemia in rats, and progression of retinal metabolic abnormalities[J]. Invest Ophthalmol Vis Sci 2002,43(10):3287~3291
    [30]Kowluru RA, Tang J, Kern TS. Abnormalities of retinal metabolism in diabetes and experimental galactosemia Ⅶ effect of long-term administration of antioxidants on the development of retinopathy[J]. Diabetes 2001,50(8):1938~1942
    [31]何剑峰,鲍连云,仇宜解.糖尿病视网膜组织中自由基防御机能变化的实验研究[J].中国糖尿病杂志1997,5:160~163.
    [32]Winiarska K, Fraczyk T, Malinska D, et al. Melatonin attenuates diabetes-induced oxidative stress in rabbits[J]. J Pineal Res 2006,40(2):168~176
    [33]Carmo A, Cunha-Vaz JG, Carvalho AP, et al. Nitric oxide synthase activity in retinas from noninsulin-dependent diabetic Goto-Kakizaki rats:correlation with blood-retinal barrier permeability. Nitric Oxide,2000,4:590~596.
    [34]Takeda M, Mori F, Yoshida A, et al. Constitutive nitric oxide synthase is associated with retinal vascular permeability in early diabetic rats[J]. Diabetologia 2001,44:1043~1050.
    [35]曹鎏,洪瑾,帅捷,等.褪黑素对高糖刺激人视网膜上皮细胞诱导型一氧化氮合酶表达的影响[J].眼科新进展2007,27(7):492-495
    [36]Jou MJ, Peng TI, Reiter RJ, et al. Visualization of the antioxidative effects of melatonin at the mitochondrial level during oxidative stress-induced apoptosis of rat brain astrocytes[J]. J Pineal Res 2004,37(1):55~70
    [37]Kin SH, Lee SM. Cytoprotective effects of melatonin against necrosis and apoptosis induced by ischemia/reperfusion injury in rat liver[J]. J Pineal Res 2008,44(2):165~171
    [38]Hardeland R, Pandi-Perumal SR, Cardinali DP. Melatonin[J]. Int J Biochem Cell Biol 2006, 38(3):313-316
    [39]Petrosillo G, Di Venosa N, Pistolese M, et al. Protective effect of melatonin against mitochon-drial dysfunction assiociated with cardic ischemia reperfusion:role of cardiolipin[J]. FASEB J 2006,20(2):269-276
    [40]Acuna-Castroviejo D, Escames G, Rodriguez MI, et al. Melatonin role in the mitochondrial function[J]. Front Biosci 2007,1(12):947-963
    [41]Klein BE, Klein R. Cataracts and macular degeneration in older Americans [J]. Arch Ophthalmol 1982,100(4):571~573
    [42]Liang FQ, Godley BF. oxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells:a possible mechanism for RPE aging and age-related macular degeneration[J]. Exp Eye Res 2003,76 (4):397~403
    [43]Strunnikova N, Zhang C, Teichberg D, et al. Survial of retinal pigment epithelium after exposure to prolonged oxidative injury:A detailed gene expression and cellular analysis [J]. Invest Ophthalmol Vis Sci 2004,45(10):3767~3777
    [44]Liang FQ, Green L, Wang C, et al. Melatonin protects human retinal pigment epithelial(RPE) cells against oxidativestress[J]. Exp Eye Res 2004,78(6):1069~1075
    [45]樊莹,唐敏,傅扬,等.褪黑激素在视网膜色素上皮细胞氧化应激中对线粒体DNA保护作用的研究[J].眼科新进展2006,26(12):911-915
    [46]Siu AW, Reiter RJ, To CH. Pineal indoleamines and vitamin E reduce nitric oxide-induced lipid peroxidation in rat retinal homogenates[J]. J Pineal Res 1999,27(2):122~128
    [47]Yi C, Pan X, Yan H, et al. Effects of melatonin in age-related macular degeneration [J]. Ann N Y Acad Sci 2005,1057:384~392
    [48]Quigley HA, Nickells RW, Kerrigan LA, et al. Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis[J]. Invest ophthalmol Vis Sci 1995,36 (5): 774-786
    [49]王平宝,蒋幼芹,黄佩刚,等.兔实验性急性高眼压模型视网膜谷氨酸的变化[J].中华眼科杂志2000,36(5):378~380
    [50]Sucher NJ, Lei SZ, Lpton SA. Calcium Channel antagonists attenuate NMDA receptor-mediated neurotoxicity of retinal ganglian cells in culture[J]. Brain Res 1991,551: 297-302
    [51]Siliprandi R, Canella R, Carmignoto G, et al. N-menlyl-D-aspartate induced neurotoxicity in the adult rat retina[J]. Vis Neuro Sci 1992,8(6):567~573
    [52]Lipton S. Excitatory amino acids as a ginal pathway for neurologic disorders [J]. N Engl J Med 1994,330:613-622.
    [53]曾明兵,王宁利.细胞凋亡与眼科疾病[J].眼科新进展2000,20(3):232-234
    [54]Saenz DA, Turjanski AG, Sacca GB, et al. Physiological concentra tions of melatonin inhibit the nitridergic pathway in the Syrian hamster retina[J]. J Pineal Res 2002,33(1):31~36
    [55]Siu AW, Maldonado M, Sanchez-Hidalgo M, et al. Protective effects of melatonin in experimental free radical-related ocular diseases[J]. Pineal Res 2006,40(2):101~109
    [56]胡义诊,唐琼燕.褪黑素对大鼠视网膜缺血再灌注损伤后神经节细胞的保护作用[J].国际眼科杂志2007,7(3):695~697.
    [57]Head KA. Natural therapies for ocular disorders, parttwo:cataracts and glaucoma [J]. Altern Med Rev 2001,6(2):141~166.
    [58]Mozaffarieh M, Flammer J. Anovel perspective on natural therapeutic approaches in glaucoma therapy [J]. Expert Opin Emerg Drugs 2007,2(2):195~198
    [59]Alarma-Estrany P, Crooke A, Peral A, Pintor J. Requirement of intact sympathe tic transmission for the ocular hypotensive effects of melatonin and 5-MCA-NAT [J]. Auton Neurosci 2007,137(122):63-66.
    [60]Salganik RI. The benefits and hazards of antioxidants:controlling apoptosis and other protective mechanism in cancer patients and the human population[J]. J Am Coll Nutr 2001,20(5Suppl):S464~S472
    [61]Truscott RJ. Age-related nuclear cataract:a lens transport problem [J]. Ophthalmic Res 2000,32(5):185-194
    [62]Moon S, Femando MR, Lou MF. Induction of thiotransferase and thioredoxin/thioredoxin reductase systems in cultured porcine lenses under oxidative stress[J]. Invest Ophthalmol Vis Sci 2005,46(10):3783~3789
    [63]Bardak Y. Effect of melatonin on lenticular calcium and magnesium in rats exposed to ultraviolet radiation [J]. Ophthalmologica 2000,214 (5):350~353.
    [64]Yildirim N, Ozer A, Inal M, Angin K, Yurdakul S. The effect of Nacetyl serotonin on ultraviolet-radiation-induced cataracts in rats[J]. Ophthalmologica 2003,217(2):148~153.
    [65]Yagci R, Aydin B, Erdurmus M, Karadag R, Gurel A, Durmus M, et al. Use of me latonin to prevent selenite-induced catract for mation in rat eyes[J]. Curr Eye Res 2006,31(10):845~ 850.
    [66]Anwar MM, Moustafa MA. The effect of melatonin on eye lens of rats exposed to ultraviolet radiation[J]. Comp Biochem Physiol C Toxicol Pharmacol 2001,129(1):57~63
    [67]曹亚菲,吕勇,闫磐石.豚鼠形觉剥夺性近视模型眼压昼夜节律的变化[J].医药论坛杂志2007,2(28):36-38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700