MPc/TiO_2复合光催化剂的制备与光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TiO2是一种宽禁带(3.2eV)半导体,只能吸收利用太阳光中的紫外线部分,太阳能利用率低;另一方面,光生电子-空穴对易复合,量子效率较低。提高TiO2吸收光谱范围和光催化量子效率成为半导体光催化技研究的中心问题。
    本文选择了具有高稳定性和高催化性能的酞菁配合物(MPc,M=Fe,Mn)作为敏化剂,尝试把MPc在可见光区的强吸收性及催化特性与TiO2光催化特性集为一体,应用溶胶-凝胶方法制备出高催化活性和宽响应范围的新型光催化剂。
    1、制备了具有高催化活性的复合光催化剂。MPc与TiO2之间形成较强的相互作用,可以促进光生电子的转移,降低光生载流子的复合几率,进而提高光催化活性。同时,MPc在可见光区具有较强的吸收光子的能力,可以拓展光催化剂的光谱响应范围。在无外加氧化剂,FePc/ TiO2在紫外光照射下,在10min内可将1×10-5mol/L的罗丹明B降解至无色,降解率达99%;FeClPc/TiO2在太阳光下60min可将同浓度罗丹明B降解至无色;150min将甲基橙(3×10-5mol/L)降解至无色;12h使对氯苯胺溶液的COD值从500 mg/L降到400 mg/L。
    2、研究了复合光催化剂制备过程的影响因素。
    MPc的含量较少时敏化效果不明显,含量过多时又可能成为复合中心,并阻碍TiO2吸收光子;对FePc和FeClPc的最佳含量是1:400,MnPc则是1:1200。
    煅烧温度较低不利用MPc与TiO2形成强相互作用,达不到敏化的效果;温度过高则会使FePc分解,使光催化活性降低,250℃为最佳的煅烧温度。
    溶胶-凝胶过程中,pH值控制钛酸丁酯的水解和团聚,但不同pH值对光催化活性影响不大。
    超临界干燥技术是一种无氧过程,可避免MPc在合成过程中发生分解。
    FeClPc稳定性较强,在合成过程中不易被分解,因此FeClPc/TiO2光催化剂在可见光区具有较强的吸收光子能力和光催化活性。
    3、提出了复合光催化剂在紫外光和可见光区域两种不同的反应机理。在紫外光区是TiO2吸收光子然后激发电子到导带上;在可见光区是MPc吸收光子被激发,然后发生电子转移反应,二者的反应机理不一样,造成MPc/TiO2复合光催化剂在紫外光区和可见光区域的活性顺序不同。
TiO2 is a kind of semiconductor with wide band gap, it can only absorb the ultraviolet ray of sunlight, the harvest of solar light is low. Another disadvantage of photocatalytic systems upon band gap excitation of the semiconductors is the high degree of recombination between the photogenerated charge carriers. As a result of this recombination the photocatalyst efficient is decreased as well as the quantum yield. To improve the quantum yield and broaden the absorbing spectrum range becomes a very important problem in the research field of photocatalysis.
    We chose MPc (M=Fe,Mn) as sensitizied materials, which have high stability and catalytic activity. With taking the advantage of the excellent property of both MPc and TiO2, a novel photocatalyst with high photo-quantum yield and responsibility at widened spectrum range was prepared by sol-gel process
    1、MPc/TiO2 hybrid photocatalysts with higher catalytic activity were prepared by sol-gel method. A strong action could be formed between MPc and TiO2, thus the transfer of photo-excited electron can be accelerated, and the recombination of photo-induced carriers can be reduced. The photocatalytic activity of these hybrid photocatalysts is greatly improved also. At the same time, the sunlight can be absorbed and excited by MPc, thus it broadens the absorbing spectrum range.Without oxidant introdued to the reaction system, the RhB at the concentration of 1×10-5mol/L by FePc/TiO2 was degradated completely within 10 minutes under ultraviolet ray. The degradation efficient is reach to 99%. While the RhB at same concentration within 60 minutes and the methyl orange (3×10-5 mol/L) within 150 minutes were degraded all by FeClPc/TiO2 under sunlight. The chemical oxygen demand of p-chloroaniline was droped from 500 mg/L to 400mg/L by FeClPc/TiO2 in 12 hours under sunlight.
    2、The factors for the catalytic activity of MPc/TiO2 hybrid photocatalysts during the preparation were studied.
    If the content of MPc is too low, the sensitized effect is not obvious, but that of MPc is too high, MPc will become the recombined sites of photogenerated
    
    
    carriers again and absorbing ligh are prevented at the surface of TiO2. The optimal contents for the sensitized MPc are different from MPcs. For FeClPc and FePc, the optimal mol ratio of MPc to TiO2 is 1:400, for MnPc, it is 1:1200.
     Low calcinations temperature is not advantageous to form strong interaction between MPcs and TiO2, and if the temperature is too high, MPcs is discomposed partially due to MPc oxidated by oxygen. The calcinations temperature at 250℃ is the optimal temperature.
    The pH could effect the hydrolysis of Ti(C4H9O)4 during the sol-gel process and the growth of particles, but the influence on the activity of catalysts is not obvious.
    Supercritical fluid drying technology is a process without oxygen, so it can prevent MPc from decomposing or oxidizing at the process.
    FeClPc is stable and not be decomposed during the preparation process, so FeClPc/TiO2 hybrid photocatalyst has a strong light absorption and high activity in visible light region.
     3、Different photocatalytic mechanisms of MPc/TiO2 hybrid photocatalysts under untraviolet ray and visible light are suggested. The photoexcitation with ultraviolet ray yields the electron-hole pair by TiO2. It is MPc at the initial excitation under visible light, so more MPc is in favor of absorbing sunlight. The activity sequence of MPc/TiO2 hybrid photocatalyst under ultraviolet ray varies from that under visible light.
引文
[1] Fujishima, A., Honda, K. Electrochemical photolysis of water at semiconductor electrode, Nature,1972, 37:238
    [2] Fujishima A. TiO2 Photocatalysis Fundamentals and Applications, May,1999,P129.
    [3] Michael R. Hoffmann, Scot T. Martin, Wonyong Choi, et al, Environmental application of semiconductor photocatalysis, Chem. Rev., 1995,95:69-96
    [4] Fox M A.; Dulay M T. Heterogeneous photocatalysis, Chem. Rev., 1993,93:341-357
    [5] 马如璋,蒋民华,徐祖雄. 功能材料学概论. 北京:冶金工业出版社,1999.231-233
    [6] 李名復. 半导体物理学. 北京:科学出版社,1991.208
    [7] Martin S. T., Hartmut herrmann, Wonyong Chol et al.. Times-ressolved microwave conductivity. Part 1. –TiO2 photoreactivity and size quantization, Trans. Faraday Soc., 1994, 90: 3315-3330
    [8] 吴越,《催化化学》(第二版),科学出版社,1998,P1341
    [9] AUGUSTYNSKI. .Characterization of electrodeposited TiO2 films,J Electrochim Acta, 1993,38:43-47.
    [10] Scalafan I. A., Hermann J.M. Comparison of the phtotelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions, [J].JPhys. Chem.,1996,100:13655-13661.
    [11] 高濂,郑珊,张青红, 纳米氧化钛光催化材料及应用.北京:化学工业出版社,2002.34.
    [12] 范崇政,肖建平 ,丁延伟. 纳米TiO2的制备与光催化反应研究进展 科学通报,2001,46 (4):265-273
    [13] 高伟,吴凤清,罗臻,等 TiO2 晶型与光催化活性关系的研究,高等学校化学学报,2001,22(4):660-662
    [14] Nerlov J., Ge Qingfeng, Mouer P.J., Resonant photoemission from TiO2(110) surface : implications on surface bonding and hybirdization, [J].Surface science, 1996,348:28-38.
    [15] Salvador P., Gonzalez M L., Manoz F. Catalytic role of lattice defects in the photoassisted oxidation of water at (001)n-TiO2 rutile. J Phys Chem, 1992, 96 (25) :10349-10353
    [16] 沈伟韧,赵文宽,贺飞等. TiO2光催化反应及其在废水处理中的应用. 化学进展,1998,10:349
    
    
    [17] Bilmes S A., Mandelbaum P., Alvarez F., et al, Surface and electronic structure of titanium dioxide photocatalysts, J. Phys. Chem. B. 2001,104(42):9851-9858
    [18] 孙奉玉 ,吴鸣 ,李文钊等 .二氧化钛的尺寸与光催化活性的关.催化学报, 1998,19(2):121 .
    [19] 王有乐, 张庆芳, 马 炜. 光催化剂TiO2 改性技术的研究进展. 环境科学与技术,2000,25(1):40-43
    [20] 尚静,杜尧国 ,徐自力. TiO2纳米粒子气-固复相光催化氧化VOC_S作用的研究进展,环境污染治理技术与设备, 2001,1:67
    [21 ]李凤生. 超细粉体技术 .北京: 国防工业出版社,2000.
    [22] V. N. Parmon, K. I. Iamarave, IN Photo Catalysis Foundamentals and Applications, N. Serpone, E. Pelizzeyyi, Eds, Wiley Interscience, New York, 1989,P.565
    [23] E. Pelizzetti, M. Schiavello,Eds, Photochemical Conversion and Storage of Solar Engery, Kluwer Academic Publishers, Dordrecht, 1991
    [24] 金振声, 98’全国光催化学术会议论文摘要集, 1998年10月, p1
    [25] Carey J.H., Lawrence J., Tosine H.M., Photodechlorination of PCB’S in the presence of titanium dioxide in aqueous suspension, [J] Bull. Environ.Contam.Toxicol. 1976,16:697-701
    [26] 苏文悦 二氧化钛基固体超强酸高效光催化剂的研究:[博士学位论文]. 福州:福州大学化学系,2001
    [27] 黄汉生, 日本二氧化钛光催化剂环境净化技术开发动向. 现代化工, 1998,18(12):39
    [28] Anders Hagfedt, Michael Gratzel, Chem. Rev., 1995,95:494
    [29] Xianzhi, Fu; Clark, Louis A. Effects of reaction temperature and water vapor content on the heterogeneous photocatalytic oxidation of ethylene Journal of Photochemistry and Photobiology A: Chemistry, 1996,97(3)181-186
    [30] Vindgopal K., Kamat p.v. Electrochemically assisted photocatalysis using nanocrystalline semiconductor thin films , Solar energy material and solar cells, 1995,38:401-410
    [31] 安太成,何 春,朱锡海,三维电极电助光催化降解直接湖蓝水溶液的研究,催化学报,2001,22(2):193-197
    [32] 李旦振 ,郑 宜 ,付贤智,微波场助光催化氧化及其应用,高等学校化学学报2002,23(12):2351-2356
    [33] 王涵慧,俞稼镛,罗南义. 超声对多相光催化光解H2S作用的初步探讨,感光科学与光化学,1998,16(2):182-185
    [34] Wonyong Choi,A Termin, M R Hoffmann. The Role of Metal Ion Dopants in Quantum-Sized TiO2 : Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. J. Phys. Chem. ,1 994,98(51 ):13669-13679
    
    [35] 彭晓春 陈新庚 黄 鹄,n- TiO2光催化机理及其在环境保护中的应用研究进展. 环境污染治理技术与设备,2002,3(3):1-6
    [36] 傅宏刚,王建强,王哲,等. TiO2 光催化剂表面修饰研究进展. 黑龙江大学自然科学学报,2001,18(3):85-89
    [37] Linsebingler A.L., LU G.,Yates J.T. Jr. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results[J]. Chem Rev,1995,95:735-758
    [38] Xianzhi Fu, Walter A. Zeltner, Marc A. Anderson, Applied Catakysis B: Environmental 1995,6: 209-224
    [39] Mario Schiaveuo. Some working principles of heterogeneous phototcatalysis by semiconductors, Electrochemical Acta. 1993,38(1):1056-1062
    [40] 张彭义,余刚,蒋展鹏. 半导体光催化剂及其改性技术进展,环境科学进展,1997,5(3):1-10
    [41] Kamat P. V., Fox M. A., Chem. Phys. Lett., 1983, 102(4)93: 384
    [42] Stathatos E., Tsiourvas D., Lianos P., et al. Titanium dioxide films made from reverse micelles and their use for the photocatalytic degradation of adsorbed dyes, Collides and surfaces A; Physicochemical and Engineering aspects, 1999,149: 49-56
    [43] Stafford Ulick, Gray Kimberly A., Kamat P. V., Photocatalytic Degradation of 4-Chlorophenol: The Effects of Varying TiO2Concentration and Light Wavelength, J Catal 1997,167(1):25-32
    [44] 吴越,《催化化学》(第二版),科学出版社,1998,P1346
    [45] Spanhel L., Well H., Henglein A., Photochemistry of semiconductor collides. 22. Electron injection from illumination CdS into attached TiO2 and ZnO particles, J. Am. Chem. Soc., 1987, 109:6632
    [46] Vogel R et al., Quantum sized PbS, CdS, Ag2S, Sb2S3 and Bi2S3 particles as sensitizers forvarious nanoporous wide bandgap semiconductors J. Phys. Chem 1994, 98:3183
    [47] Kohtani S et al., Spectral sensitization of a TiO2 semiconductor electrode by CdS microcrystals and its photoelectrochemical properties. Chem. Phys Lett., 1993,206:166- 174
    [48] Gopidas K. R.,Maria B., Prashant V. K., et al., Photophysical and photochemical aspects of coupled semiconductors. Charge-transfer process in collidal CdS-TiO2 and CdS-AgI systems, J. Phys. Chem 1990,94(16):6435-6440
    [49] Doy R., Lee W. ,Dwight K.,et al. The effect of WO3 on the photocatalytic activity of TiO2. [J].JSolid state Chem, 1994,108(10):198-201
    [50] Rabani J, Sandwitch collides of ZnO and ZnS in aqueous solutions,J. Phys. Chem 1989, 93(22): 7707-7713
    
    
    [51] 阎俊萍,张中太,唐子龙,等 半导体基纳米复合材料光催化研究进展,[J].无机材料学报,2003,18(5):980-988
    [52] Masakazu A, Takafumi K., Sukeya K.,et al., Photocatalysis on Ti-Al binary oxides: Enhanced of the photocatalytic activity of TiO2, J. Phys. Chem 1988, 99(2):438-440
    [53] Alemany L J, Luca Lietti, Ferlazzo N., Reactivity and physicochemical characterization of V2O5-WO3/TiO2 de Nox catalysts, J. Catal., 1995, 155: 117-130
    [54] Do Y R et al., J. Solid State Chem., 1994, 108:198
    [55] Papp J et al., Chem. Mater., 1994,6:496
    [56] Oosawa Y., Gr?tzel M., Effect of surface hydroxyl density on photocatalytic Oxygen generation in aqueous TiO2suspensions, J. Chem. Sco. Faraday Trans., 1988,84(1): 197-206
    [57] Kozlov D.V., Paukshtis E.A., Savinov E.N. The comparative studies of titanium dioxide in gas-phase ethanol photocatalytic oxidation by the FTIR in situ method. [J].Appl. Catal B: Environ,2000,24 (1):7-12
    [58] Yu J.C., Yu J., Zhao J. Enhanced photocatalytic activity of mesoporous and ordinary TiO2 thin films by sulfuric acid treatment.[J].Appl. Catal B: Environ, 2002,36(1):31-43
    [59] Muggli D.S., Ding L. Photocatalytic performance of sulfated TiO2 and Degussa P-25 TiO2 during oxidation of organics [J].Appl. Catal B: Environ, 2001,32(3):181-194
    [60] 苏文悦,付贤智,魏可镁. SO42- 表面修饰对TiO2结构及其光催化性能的影响,物理化学学报,2001,17(1): 28-31.
    [61] 刘鸿. 氢处理提高TiO2光催化活性研究:[博士后工作报告].大连:中科院大连化学物理研究所,2001
    [62] 刘建军, 于迎春, 李英骏, 等. TiO2的冲击波活化及其光催化活性,高压物理学报, 1999,13(2):138-142
    [63] 沈永嘉 酞菁的合成与应用, 北京:化学工业出版社,.2000:62
    [64] 佘远斌,杨锦宗.酞菁类催化剂的研究进展,北京工业大学学报,1998,24(2):115-120
    [65] Wentao Gao, Shufen Zhang, Jinzong Yang, et al. Metal phthalocyanine catalyzed oxidation of 4-nitrotoluene- 2-sulfonic acid to 4,40-dinitrostilbene-2, 20-disulfonic acid, Dyes and Pigments, 2000,44:155-159
    [66] Tsukasa Yoshida, Kazuhiro Kamat, Massaki Tsukamoto, et al. Selective electrocatalysis for CO2 reduction in the aqueous phase using cobalt phthalocyanine/ploy-4-vinylpyriding modified electrodes, Journal of Electroanalytical Chemistry, 1995,385:209-225
    [67] A.A. Valente, J. Vital, Oxidation of pinane to 2-pinane hydroperoxide over encaged metal phthalocyanines in Y zeolites. Mechanism and kinetic modeling, Journal of Molecular Catalysis A: Chemical, 2000, 156:163–172
    
    
    [68] Sandra Ellis, Ivan V. Kozhevnikov., Homogeneous oxidation of methyl isobutyrate with oxygen catalysed by metal complexes: polyoxometalates versus metalloporphyrins and metallophthalocyanines, Journal of Molecular Catalysis A: Chemical, 2002,187 :227-235
    [69] Sindhu Seelan, M.S. Agashe, D. Srinivas, S. Sivasanker, Effect of peripheral substitution on spectral and catalytic properties of copper phthalocyanine complexes, Journal of Molecular Catalysis A: Chemical, 2001,168:61–68
    [70] I. Chatti, A. Ghorbel, P. Grange, Oxidation of mercaptans in light oil sweetening by cobalt(II) phthalocyanine¨Chydrotalcite catalysts, Catalysis Today, 2002,75:113-117
    [71] Elvira Armengol, Avelino Corma, Vicente Fornés, Cu2+-phthalocyanine and Co2+ -perfuorophthalocyanine incorporated inside Y faujasite and mesoporous MCM-41 as heterogeneous catalysts for the oxidation of cyclohexane, Applied Catalysis A: General 1999, 181:305-312
    [72] Fu-Ren F. Fan, Allen J. Bard Spectral sensitization of the heterogeneous photocatalytic oxidation of hydroquinone in aqueous solutions at phthalocyanine-coated TiO2 powdwes, J. Ame. Chem. Soc. 1979,101(20):6139-6140
    [73] Andrew P. Hong, Detlef W. Bahnemann, Michael R. Hoffmann Cobalt(II) tetrassulfophthalocyanine on titanium dioxide: A new efficient electron relay for the photocatalytic formation and depletion of hydrogen peroxide in aqueous suspensions, J. Phys. Chem. 1987,91:2109-2117
    [74] Koodail T. Ranjit .Itamar Willner,.Iron(III) phthalocyanine-modified titanium dioxide: A novel photocatalyst for the enhanced photodegradation of organic pollutants, J Phys. Chem.B. 1998.102:9397-9403
    [75] V. Iliev, D. Tomova, L. Bilyarska, et al. Phthalocyanine modified TiO2 or WO3-catalysts for photooxidation of sulfide and thiosulfate ions upon irradiation with visible light, [J].J Photochemistry and Photobiology A: Chemistry 2003,159 :281–287
    [76] V. Iliev, Phthalocyanine-modified titania—catalyst for photooxidation of phenols by irradiation with visible light, J Photochem and Photobiology A: Chem, 2002,151 : 195–199
    [77] V. Iliev, A. Mihaylova, Photooxidation of sodium sulfide and sodium thiosulfate under irradiation with visible light catalyzed by water soluble polynuclear phthalocyanine complexes, [J]. J Photochemistry and Photobiology A: Chem, 2002,149: 23–30
    [78] V. Iliev, D. Tomova., Photocatalytic oxidation of sulfide ion catalyzed by phthalocyanine modified titania, [J].Catal Communications 2002,3 : 287–292
    [79] V. Iliev , A. Mihaylova, L. Bilyarska, Photooxidation of phenols in aqueous solution, catalyzed by mononuclear and polynuclear metal phthalocyanine complexes Journal of Molecular Catalysis A: Chemical, 2002,184:121–130
    
    
    [80] Giuseppe Mele, Giuseppe Ciccarella, Giuseppe Vasapollo, et al., Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 samples impregnated with Cu(II)-phthalocyanine ,[J].Appl Catal B: Environ 2002,38 : 309–319
    [81] Giuseppe Mele, Roberta Del Sole, Giuseppe Vasapollo, et al. Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 impregnated with functionalized Cu(II)–porphyrin or Cu(II)–phthalocyanine, [J]. J Catal 2003,217:334–342
    [82] 鲁宇浩,吴益华,郭 丽. 聚合物电解质燃料电池中的酞菁催化剂,化学电源,2003,27(3):333-338
    [83] 王灶生,许宜铭.磺化酞菁铁的合成与光催化降解染料废水的研究,上海环境科学,2001,10:480-483
    [84] 徐如人,庞文琴. 无机合成与制备活性.北京:高等教育出版社,2001.532
    [85] 叶钊,邱挺,潘海波. TiO2光催化剂的超临界CO2 萃取法制备及其降解甲基橙的活性,环境化学,2003,22(6):578-581
    [86] 黄俊,官建国,袁润章. 酞菁铜 - Fe3O4纳米复合粒子复合机理及其性能的研究, 硅酸盐学报,2000,28(5):432-436
    [87] 黄俊,姜德生,官建国. 酞菁镍与 Fe3O4纳米粒子的复合机理及复合粒子的结构模型, 复合材料学报,2001,18(2):81-84
    [88] 刘恺,沈淑引,许慧君.酞菁与TiO2超微粒间的光诱导电子转移相互作用,物理化学学报,2000,16(2):1103-1109
    [89] V. Iliev, V. Alexiev, L. Bilyarska. Effect of metal phthalocyanine complex aggregation on the catalytic and photocatalytic oxidation of sulfur containing compounds Journal of Molecular Catalysis A: Chemical, 1999,137:15–22
    [90] 吕功烜,李树本.酞菁钴界面修饰的CuxS·CdS复合硫化物光催化剂, 物理化学学报,1994,10(9)790-795
    [91] Manassen J.,Metal complexes of porphyrinlike compound as heterogeneous catalysts, Cat. Rev.-Sci.Eng,1974,9(2):223-243
    [92] Masri Y.,Hroncc M. Hydroxylation of phenol catalyzed by metal phthalocyanines,Stud Surf Sci Catal,1991,66:455-460

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700