催化功能纤维降解染料等有机污染物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,水环境污染已成为当今世界各国都面临的重大课题,而纺织印染工业所排放的染料等有机污染物废水是其中一个重要的污染源。工业上普遍采用吸附和生物法处理染料等有机污染物,吸附法只是将染料等有机物从液相转移到固相,并没有完全消除有机污染物,生物法处理周期长、设备占用面积大,会因染料等有机物对生物的毒性作用而不能有效的去除。与之相比,高级氧化技术通过产生强氧化性的活性种能直接将染料等有机物有效降解,甚至彻底矿化,引起人们的广泛关注,但这些高级氧化技术也有一定的局限,如易带来二次污染、处理成本高、不适合大流量废水处理等。因此,开发高效、对环境无危害的染料等有机污染物处理方法是化学研究的一个重要课题。
     金属酞菁及其衍生物与细胞色素P-450的活性中心金属卟啉结构相似,是由亚胺桥键连接四个对称的异吲哚单元构成的共轭π电子大环体系,具有良好的化学稳定性,在催化氧化方面的研究已成为金属酞菁应用研究的一个重要领域。我们注意到,染料在纺织业中主要是用于纤维染色的,而染色的机理就是染料在很短时间内从染液富集或固着到纤维上的过程。在这种思想的指导下,本文提出了“纤维相转移原位催化降解染料等有机污染物”的思想,将金属酞菁负载到纤维材料上制备得到“催化功能纤维”,利用其直接降解废水中染料等有机污染物,巧妙地利用染料等有机物与纤维的亲和性,即纤维吸附富集废水中的染料等有机物,同时将其在纤维介质中原位催化降解。该方法结合了传统吸附法和高级氧化法的优势,不仅能凭借纤维对染料等有机物的亲和力进行有效富集,而且能在纤维中对其进行快速有效地降解,解决了传统吸附法存在的吸附饱和问题,还可以改善高级氧化法的环境适应性,同时催化功能纤维降解废水中的染料等有机污染物是一个多相催化反应,纤维载体的选择使金属酞菁的重复使用成为可能,避免了小分子金属酞菁使用时带来的二次污染。论文取得了一些具有重要学术价值和应用前景的研究成果。
     1.采用苯酐-尿素路线制备了四硝基钴酞菁,然后将其还原成四氨基钴酞菁(CoTAPc),通过三聚氯氰对CoTAPc环上的氨基进行修饰,首次制备了水溶性、且具有较高反应活性的钴酞菁衍生物——四(2,4-二氯-1,3,5-三嗪基)氨基钴酞菁(Co-TDTAPc),使用UV/Vis、FTIR和TGA等方法对其进行表征。然后将其负载到纤维素纤维上,制备得到纤维素纤维负载钴酞菁催化剂(Co-TDTAPc-F)。
     2.根据“纤维相转移原位催化降解染料等有机污染物”的思想,采用对环境友好的H2O2作为氧化剂,Co-TDTAPc-F能对多种结构较稳定的染料进行催化氧化降解,其中包括:酸性红G、活性艳红X-3B、活性艳红K-2BP、活性艳红M-3BE、活性黄M-3RE、活性艳蓝M-BRE和直接桃红12B等染料。相对于Co-TDTAPc/H_2O_2均相体系,采用Co-TDTAPc-F/H_2O_2异相体系对染料进行催化氧化降解能大大提高染料的降解效率。该催化反应在酸性条件下速率最快,与Fenton试剂不同的是,该体系在碱性条件下也有较好的催化效率,且经多次循环使用后Co-TDTAPc-F的催化活性并没有明显下降。在向该反应体系中加入NaCl后,染料的降解速率会大大提高,由于印染废水中含有大量的这类电解质,因此,这一结果将有利于其在印染废水处理中的应用。通过对染料催化氧化降解过程中产生的中间产物进行分析发现:染料降解过程中首先生成含苯环和萘环的化合物,然后它们继续发生氧化降解而开环,最后生成一些可以生物降解的小分子脂肪酸类化合物,如乙二酸、丙二酸和顺丁烯二酸等,也有部分中间体被直接矿化为CO2和H2O。在整个催化氧化过程中,纤维素纤维本身起到至关重要的作用:快速富集浓缩染料,进而提高染料氧化降解的速率;阻止酞菁类催化剂因聚集而失活;有利于克服一些不利因素的影响,如乙醇和异丙醇等,相反,当这些物质存在时,反而提高了染料的催化降解速率。另外,Co-TDTAPc-F/H_2O_2体系还能有效地催化降解邻氯苯酚(2-CP)、对氯苯酚(4-CP)、2,4-二氯苯酚(2,4-DCP)和2,4,6-三氯苯酚(2,4,6-TCP)等酚类化合物,催化中间产物也是一些脂肪酸类化合物,研究还表明Co-TDTAPc-F不仅能使酚类化合物发生开环反应,而且还能将生成的脂肪酸类化合物继续深度氧化。
     3.分别将CoTAPc负载到氧化处理后的碳纤维(CF)、碳纳米纤维(CNF)和多壁碳纳米管(MWNTs)上,制得CoTAPc-CF、CoTAPc-CNF和CoTAPc-MWNTs催化剂。以CoTAPc-MWNTs为例,使用IR、XPS、UV/Vis和EPR等对其进行了表征。以罗丹明6G(Rh6G)为研究对象,分别研究了在H_2O_2存在下CoTAPc-CF和CoTAPc-CNF对Rh6G的氧化情况,结果表明它们均能在常温、pH中性条件下快速有效地催化氧化Rh6G,发现这些碳纤维材料的引入大大提高钴酞菁的催化活性。为了更深入地研究碳纤维材料对金属酞菁催化性能的影响,选择结构更加规整且表面缺陷更少的MWNTs作为载体,重点研究了CoTAPc-MWNTs对Rh6G的催化氧化性能及其催化机理。采用电子顺磁共振技术对CoTAPc-MWNTs/H_2O_2催化体系进行分析,结果表明该催化氧化过程是非自由基反应。原位电化学实验的测试结果表明反应过程中CoTAPc-MWNTs中的MWNTs上产生了大量的空穴,空穴的形成会使MWNTs上产生一些局部高电势的活性位,能快速地将吸附在CoTAPc-MWNTs上的Rh6G进行氧化,MWNTs在反应过程中为催化反应提供了一个新的电子转移通道。另外,还研究了CoTAPc-MWNTs/再生纤维素复合纤维对染料的催化氧化性能,发现其在酸性、中性和碱性条件下均能有效地催化氧化染料,进一步改善钴酞菁所处的反应环境,从而大大拓宽了钴酞菁在催化氧化领域的应用范围。因此,选用具有π电子共轭结构的碳纤维材料能大大提高钴酞菁的催化活性,这为金属酞菁催化活性的增强提供了一个新的途径,为设计更加高效的金属酞菁相转移催化体系奠定了基础。
     4.为了进一步提高“纤维相转移原位催化降解染料等有机污染物”的应用范围,本文选择了具有优良吸附特性和较高化学稳定性的活性碳纤维(ACF)作为金属酞菁的载体,将Co-TDTAPc负载到ACF制备得到Co-TDTAPc-ACF催化剂。Co-TDTAPc-ACF/H_2O_2体系能在较宽pH和温度范围内快速有效地催化氧化对硝基苯酚(4-NP)等酚类化合物,与小分子钴酞菁相比,ACF的引入大大提高了钴酞菁的催化活性,而且Co-TDTAPc-ACF具有很好的重复使用性能。通过GC/MS对酚类化合物降解产物进行分析可知,这些酚类化合物首先脱去取代基生成芳香类物质,芳香物质继续氧化开环,生成可生物降解的小分子有机酸,如顺丁烯二酸、丁二酸、己二酸和羟基丁二酸等。该体系与CoTAPc-MWNTs/H_2O_2体系的反应过程类似,均属于非自由基反应,能克服其它高级氧化法因自由基捕获剂的存在而终止反应的缺陷,使Co-TDTAPc-ACF/H_2O_2催化体系具有广阔的应用前景。Co-TDTAPc-ACF/H_2O_2催化体系结合了金属酞菁的催化作用和活性碳纤维的吸附作用,其中活性碳纤维的主要作用有:特殊的π电子共轭多孔结构使钴酞菁的催化活性大大提高,而且使钴酞菁便于重复循环使用;活性碳纤维的多微孔结构和巨大的比表面积有助于缩小反应空间,减小了传质过程中的阻碍,降低了反应的活化能,从而大大提高了反应速率;可富集低浓度的有机污染物达到对其浓缩的目的,这有利于加快催化氧化反应。因此,Co-TDTAPc-ACF/H_2O_2体系可对酚类化合物实现边吸附边催化氧化,达到快速有效地去除酚类化合物的目的。
At present, water pollution has become a major issue in many countries, particularly in developing countries. Dye pollutant from dyestuffs and textile industry is a dangerous source of environment contamination. The conventional treatment technologies widely used in industry for eliminating dyes include adsorption and biological treatment. However, adsorption treatments simply transfer dyes from solution to adsorbents, and cannot completely eliminate them. Biological treatments are limited to some extent due to the long treatment period, the larger occupied area of equipments and the biological toxicity of various dyes. Recently, advanced oxidation processes (AOPs), which have high degradation rates, have received increasing attention as a promising technology for the efficient destruction of dyes and other organic pollutants, while some oxidation processes need energylight sources, like ultraviolet light, and may bring secondary pollution. Therefore, there is a clear need for more efficient and eco-friendly approaches to removing dyes and other organic pollutants from wastewater.
     Metallophthalocyanine derivatives (MPcs), having analogous structure to the active center of cytochrome P-450, are highly conjugated macrocyclic compounds and have been extensively studied as catalysts for a variety of applications in organic synthesis, green chemistry and environmental treatment. Recently, MPcs have received increasing attention in some catalytic oxidation systems using H_2O_2 as oxidant. We note that dyes in the textile industry is mainly used for fiber dyeing, and the mechanism of dyeing is the enrichment and fixation processes of dyes from solution to fiber in a very short time. In light of the above considerations, we demonstrated that a new method,“phase transfer in situ catalytic oxidation,”which is based on fiber supported MPcs (catalytic functional fiber), can be applied to eliminate various dyes. Because fibers have a high natural affinity to dyes by physical and chemical interaction, dyes can be enriched or adsorbed onto the fiber, and be oxidized rapidly and effectively in situ at the surface and interior of fiber. This method combines common adsorption and AOPs together. The advantage of this method is that dyes can be transferred quickly from aqueous phase to adsorbent material (fiber) and be decomposed in situ immediately in the presence of oxidant and on-site catalyst. This method resolves the problem of adsorption saturation and improves the environmental adaptability of AOPs. The oxidative process of dyes in the presence of catalytic functional fiber is a heterogeneous catalytic reaction. Catalytic functional fiber is recuperated easily from dyes solution for the reuse, and causes no secondary pollution. The phase transfer in situ catalytic oxidation has proven itself to be a feasible approach, which may be potentially applied to the elimination of widely existing pollutants. This dissertation has gained some valuable results both in academic disciplines and practical applications.
     1. The phthalic anhydride-urea route was employed to synthesize cobalt tetranitrophthalocyanine, which was then reduced into cobalt tetraaminophthalocyanine (CoTAPc). A novel aqueous soluble and highly reactive metallophthalocyanine derivative, cobalt tetra(2,4-dichloro-1,3,5-triazine)aminophthalocyanine (Co-TDTAPc), was prepared by modification of CoTAPc with cyanuric chloride and characterized by UV/Vis, FTIR, TGA, and so on. Because of the high reactive groups in the side chains, Co-TDTAPc was immobilized on the cellulosic fiber by covalent bond to obtain a novel cellulosic fiber supported MPcs catalysts (Co-TDTAPc-F).
     2. Based on“phase transfer in situ catalytic oxidation”, we choose the inexpensive and eco-friendly H_2O_2 as the sole oxidant in our reaction system. The Co-TDTAPc-F/H_2O_2 system can efficiently decompose various dyes, including C. I. Acid Red 1 (AR1), C. I. Reactive Red 2, C. I. Reactive Red 24, C. I. Reactive Red 195, C. I. Reactive Yellow 145, C. I. Reactive Blue 221 and C. I. Direct Red 31. The catalytic activity of Co-TDTAPc-F in the heterogeneous system is evidently higher than that of Co-TDTAPc in the homogeneous system. This catalytic reaction can proceed at a wide pH range from acidic to alkaline in the Co-TDTAPc-F/H_2O_2 catalytic system, although lower pH resulted in higher oxidation rate. This result is distinct from the traditional Fenton system where the oxidation can only take place at the pH lower than 3. Co-TDTAPc-F is stable, causes no secondary pollution and remains efficient in repetitive test cycles with no obvious degradation of catalytic activity. This system has no negative effect caused by NaCl as encountered in other systems; instead, NaCl is an accelerant for the current catalytic oxidation. Therefore, it is an additional advantage for our system to be used practically. The intermediates and by-products formed in the catalytic oxidation of dyes were examined by HPLC, TOC, FTIR and GC/MS. The results show that the intermediates include phenol and naphthol analogy complexes. Then the opening of the phenyl-ring and naphthyl-ring occur to form small molecular biodegradable aliphatic carboxylic compounds such as oxalic acid, malonic acid and maleic acid etc. Some of the intermediates can be mineralized into CO2 and H2O. The fiber phase plays an important role in the whole catalytic oxidation process, improves the decomposition rate of dyes by concentrating dyes and catalytic active sites in the reaction system, prevents the formation of dimeric phthalocyanine and provides a microenvironment that is prosperous to the catalytic reaction. Importantly, the Co-TDTAPc-F/H_2O_2 system can overcome the effect of negative factors, such as ethanol and isopropanol. By contraries, these additives can accelerate the degradation of dyes. In addition, Co-TDTAPc-F has a high catalytic ability to degrade chlorophenols (CPs) such as 2-chlorophenol, 4-chlorophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol in the presence of H_2O_2. The process of decomposition of CPs in the Co-TDTAPc-F/H_2O_2 system includes the dechlorination of CPs and the opening of benzene rings. The main intermediates are oxalic acid, maleic acid and succinic acid, which can also be further degraded in this system. Therefore, the catalytic oxidation in the Co-TDTAPc-F/H_2O_2 system leads to a deeper oxidation.
     3. Carbon fiber (CF), carbon nanofiber (CNF) and multiwalled carbon nanotubes (MWNTs) used to support MPcs catalysts (CoTAPc-CF, CoTAPc-CNF and CoTAPc-MWNTs) were prepared using covalent immobilization of CoTAPc on them, and characterized by X-ray photoelectron spectroscopy, attenuated total reflection Fourier transform infrared spectra and thermogravimetric analysis. The oxidative removal of rhodamine 6G (Rh6G) in the presence of CoTAPc-CF or CoTAPc-CNF was investigated by examination of UV/Vis absorption spectra. The results showed that Rh6G was oxidized efficiently in the CoTAPc-CF/H_2O_2 or CoTAPc-CF/H_2O_2 system at neutral pH and room temperature. The introduction of CF and CNF resulted in a marked enhanced catalytic activity that CoTAPc does not have. In order to further investigate the effect of carbon fiber materials on the catalytic performance of MPcs, the more structured MWNTs with less surface defects were chosen as the support. Electron paramagnetic resonance spin-trap experiments indicated that CoTAPc-MWNTs have a novel non-radical pathway, which is different from common CoTAPc catalytic systems. On the basis of the online electrochemical measurements in the CoTAPc-MWNTs/H_2O_2 system, we inferred that MWNTs participated directly in the electron transfer during the catalytic oxidation process and generated abundant holes, which provided local high electric potential at active sites for the oxidation of the adsorbed Rh6G. In this catalytic system, MWNTs provide strong adsorption to conjugated Rh6G due to their special sp2 hybridized surface, and are able to rapidly oxidize the conjugated dye by a special electron transfer pathway. In addition, CoTAPc-MWNTs/regenerated cellulose composite fiber (CoTAPc-MWNTs-F) was prepared by solution spinning and was used to catalyze the oxidation of Rh6G. The results indicated that CoTAPc-MWNTs-F/H_2O_2 system could efficiently oxidize Rh6G in acidic, neutral and alkaline conditions, thereby improving the reaction environment of cobalt phthalocyanine and greatly broadening the scope of application of cobalt phthalocyanine in catalytic oxidation fields. The enhanced catalytic performance of cobalt phthalocyanine by inducing theπ-conjugated carbon fiber materials may provide a new strategy for the design of highly efficient oxidation catalysts.
     4. In order to further develop“phase transfer in situ catalytic oxidation”for removing other organic pollutants, activated carbon fiber (ACF) was chosen as the support for the MPcs due to its extremely high adsorption capacity and unusual chemical stability. We immobilized Co-TDTAPc covalently on ACF to obtain a novel heterogeneous catalyst, Co-TDTAPc-ACF. The Co-TDTAPc-ACF/H_2O_2 system can efficiently remove phenols such as 4-nitrophenol (4-NP) across a wide pH and temperature range. Importantly, compared with homogeneous Co-TDTAPc used alone, the introduction of ACF contributed specifically to the activity enhancement of Co-TDTAPc. This might be attributed to the fact that ACF provides a predominant enrichment of catalytic active sites and improves catalytic oxidation efficiency by concentrating substrates from solution dozens, and even hundreds, of times. Gas chromatography/mass spectrometry analysis demonstrated that most of the phenols was oxidized into less-toxic and more-biodegradable compounds, such as maleic acid, succinic acid, malic acid and adipic acid, etc. Controlled experiments showed that the presence of 2-propanol, as hydroxyl radicals scavenger, has little influence on 4-NP oxidation. The result of electron paramagnetic resonance spin-trap experiments indicated that ACF result in a different reaction pathway from free radicals pathway to non-radical mechanism, and open up a new channel to specifically enhance the catalytic activity of cobalt phthalocyanine. Repetitive tests showed that Co-TDTAPc-ACF can maintain high catalytic activity over several cycles, and it has a better regeneration capability under mild conditions. Furthermore, as an improved phase transfer catalytic oxidation system, Co-TDTAPc-ACF/H_2O_2 may be identified as a potential conventional approach to treat wastewater by combining enrichment and catalytic oxidation together. Depend on the self-reliance regeneration capability of Co-TDTAPc-ACF in the presence of H_2O_2, it is expected to provide a technology capable of being operated in a continuous and efficient mode to treat organic pollutants.
引文
[1]中华人民共和国国家统计局.中国统计年鉴(2008年版) [M].北京:中国统计出版社, 2008.
    [2] Zollinger, H. Color chemistry: syntheses, properties, and applications of organic dyes and pigments, 3rd, Revised edition [M]. Verlag Helvetica Chimica Acta & WILEY-VCH, 2003.
    [3] Vandevivere, P. C.; Bianchi, R.; Verstraete, W. Treatment and reuse of wastewater from the textile wet-processing industry: Review of emerging technologies [J]. J. Chem. Technol. Biotechnol. 1998, 72, 289-302.
    [4] Galindo, C.; Jacques, P.; Kalt, A. Photochemical and photocatalytic degradation of an indigoid dye: a case study of Acid Blue 74(AB74) [J]. J. Photochem. Photobiol., A 2001, 141, 47-56.
    [5] Crittenden, J. C.; Suri, R. P. S.; Perram, D. L.; Hand, D. W. Decontamination of water using adsorption and photocatalysis [J]. Wat. Res. 1997, 31, 411-418.
    [6] Chung, K. T.; Cerniglia, C. E. Mutagenicity of azo dyes: structure-activity relationships [J]. Mutat. Res. 1992, 277, 201-220.
    [7] Baughman, G. L.; Weber, E. J. Transformation of dyes and related compounds in anoxic sediment: kinetics and products [J]. Environ. Sci. Technol. 1994, 28, 267-276.
    [8] Weber, E. J.; Adams, R. L. Chemical- and sediment-mediated reduction of the azo dye disperse blue 79 [J]. Environ. Sci. Technol. 1995, 29, 1163-1170.
    [9] Legrini, O.; Oliveros, E.; Braun, AM. Photochemical processes for water treatment [J]. Chem. Rev. 1993, 93, 671-698.
    [10] Sevimli, M. F.; Sarikaya, H. Z. Ozone treatment of textile effluents and dyes: effect of applied ozone dose, pH and dye concentration [J]. J. Chem. Technol. Biotechnol. 2002, 77, 842-850.
    [11] Fernandez, J.; Bandara, J.; Lopez, A.; Buffat, Ph.; Kiwi, J. Photoassisted Fenton degradationof nonbiodegradable azo dye (Orange II) in Fe-free solutions mediated by cation transfer membranes [J]. Langmuir 1999, 15, 185-192.
    [12] Mackay, A. A.; Pignatello, J. J. Application of Fenton-based reactions for treating dye wastewaters: stability of sulfonated. azo dyes in the presence of iron(III) [J]. Helv. Chim. Acta 2001, 84, 2589-2600.
    [13] Parra, S.; Guasaquillo, I.; Enea, O.; Mielczarski, E.; Mielczarki, J.; Albers, P.; Kiwi-Minsker, L.; Kiwi, J. Abatement of an azo dye on structured C-Nafion/Fe-ion surfaces by photoFenton reactions leading to carboxylate intermediates with a remarkable biodegradability increase of the treated solution [J]. J. Phys. Chem. B 2003, 107, 7026-7035.
    [14] Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis [J]. Chem. Rev. 1995, 95, 69-96.
    [15] Konstantinou, I. K.; Albanis, T. A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution:kinetic and mechanistic investigations a review [J]. Appl. Catal. B: Environ., 2004, 49, 1-14.
    [16] Liang, X.; Fu, D.; Liu, R.; Zhang, Q.; Zhang, T.Y.; Hu, X. Highly efficient NaNO2-catalyzed destruction of trichlorophenol using molecular oxygen [J]. Angew. Chem., Int. Ed. 2005, 44, 5520-5523.
    [17] Asahi, R.; Morikawa, T.; Ohwaki. T. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science, 2001, 193, 269-271.
    [18] Zhao, W.; Ma, W. H.; Chen, C. C.; Zhao, J. C.; Shuai, Z. G. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation [J]. J. Am. Chem. Soc. 2004, 126, 4782-4783.
    [19] Leznoff, C. C.; Lever, A. B. P. Phthalocyanines: Properties and Applications [M], Vol. 1-4; VCH, New York, 1989, 1992, 1993, 1996.
    [20] Rismayani1, S.; Fukushima, M.; Ichikawa, H.; Tatsumi, K. Decolorization of orange II by catalytic oxidation using iron (III) phthalocyanine-tetrasulfonic acid [J]. J. Hazard. Mater., 2004, 114, 175-181.
    [21] Sorokin, A.; Séris, J.-L.; Meunier, B. Efficient oxidative dechlorination and aromatic ring cleavage of chlorinated phenols catalyzed by iron sulfophthalocyanine [J]. Science 1995, 268, 1163-1166.
    [22] Sorokin, A.; De Suzzoni-Dezard, S.; Poullain, D.; No?l, J.-P.; Meunier, B. CO2 as the ultimate degradation product in the H2O2 oxidation of 2,4,6-trichlorophenol catalyzed by iron tetrasulfophthalocyanine [J]. J. Am. Chem. Soc.1996, 118, 7410-7411.
    [23] Tao, X.; Ma, W.; Zhang, T.; Zhao, J. Efficient photooxidative degradation of organic compounds in the presence of iron tetrasulfophthalocyanine under visible light irradiation [J]. Angew. Chem., Int. Ed. 2001, 40, 3014-3016.
    [24] Tao, X.; Ma, W.; Zhang, T.; Zhao, J. A novel approach for the oxidative degradation of organic pollutants in aqueous solutions mediated by iron tetrasulfophthalocyanine under visible light radiation [J]. Chem. Eur. J. 2002, 8, 1321-1326.
    [25] Alvaro, M.; Carbonell, E.; Espla, M.; Carcia, H. Iron phthalocyanine supported on silica or encapsulated inside zeolite Y as solid photocatalysts for the degradation of phenols and sulfur heterocycles [J]. Appl. Catal. B: Environ. 2005, 57, 37-42.
    [26] W?hrle, D.; Baziakina, N.; Suvorova, O.; Makarov, S.; Kutereva, V.; Schupok, E.; Schnurpfeil, G. Phthalocyanine coatings on silica and zinc oxide. Synthesis and their activities in the oxidation of sulfide [J]. J. Porphyrins Phthalocyanines 2004, 8, 1390-1401.
    [27]高冠道,陈金龙,郑寿荣.新型仿生光催化剂的合成及在孔雀绿光催化降解中的作用[J].催化学报2005, 26(7), 545-549.
    [28]陈文兴,余志成,胡智文. 21世纪的纤维与环境保护[J].纺织学报2002, 23(5), 418-420.
    [29] Chen, W.; Lu, W.; Yao, Y.; Xu, M. Highly efficient decomposition of organic dyes by aqueous-fiber phase transfer and in situ catalytic oxidation using fiber-supported cobalt phthalocyanine [J]. Environ. Sci. Technol. 2007, 41(17): 6240-6245.
    [30] Lu, W.; Li, N.; Chen, W.; Yao, Y. The role of multiwalled carbon nanotubes in enhancing the catalytic activity of cobalt tetraaminophthalocyanine for oxidation of conjugated dyes [J]. Carbon 2009, 47, 3337-3345.
    [31] Lu, W.; Chen, W.; Li, N.; Xu, M.; Yao, Y. Oxidative removal of 4-nitrophenol using activated carbon fiber and hydrogen peroxide to enhance reactivity of metallophthalocyanine [J]. Appl. Catal. B: Environ. 2009, 87, 146-151.
    [32] Zhuang, X.; Wan, Y.; Feng, C.; Shen, Y.; Zhao D. Highly efficient adsorption of bulky dye molecules in wastewater on ordered mesoporous carbons [J]. Chem. Mater. 2009, 21, 706-716.
    [33] Lin, C.; Liu, H. Adsorption in a centrifugal field: Basic dye adsorption by activated carbon [J]. Ind. Eng. Chem. Res. 2000, 39, 161-167.
    [34] Valix, M.; Cheung, W. H.; McKay, G. Roles of the textural and surface chemical properties of activated carbon in the adsorption of acid blue dye [J]. Langmuir 2006, 22, 4574-4582.
    [35] Khraisheh, M. A. M; Al-Degs, Y. S.; Allen, S. J.; Ahmad, M. N. Elucidation of controlling steps of reactive dye adsorption on activated carbon [J]. Ind. Eng. Chem. Res. 2002, 41, 1651-1657.
    [36] Amin, N. K. Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: Adsorption equilibrium and kinetics. J. Hazard. Mater. 2009, 165, 52-62.
    [37]上海市环境保护局.废水物化处理[M].上海:同济大学出版社, 1999.
    [38] Buckley, C. A. Membrane technology for the treatment of dyehouse effluents [J]. Water Sci Technol. 1992, 25, 203-209.
    [39] El-Nashar, A. M. The desalting and recycling of wastewaters from textile dyeing operations using reverse osmosis [J]. Desalination 1977, 20, 267-277.
    [40] Wenzel, H.; Knudsen, H. H.; Kristensen, G. H.; Hansen, J. Reclamation and reuse of process water from reactive dyeing of cotton [J]. Desalination 1996, 106, 195-203.
    [41] Chang, J. Bioprocess development for mercury detoxification and azo-dye decolorization [J]. ACS Symp. Ser. 2003, 862, 159-172.
    [42] Knapp, J. S.; Newby, P. S.; Reece, L. P. Decolorization of dyes by wood-rotting basidiomycete fungi [J]. Enzyme Microb. Technol. 1995, 17, 664-668.
    [43]杨巍.美国水处理化学品市场现状与展望[J].工业水处理1998, 18(2), 7-11.
    [44] Kirby, N.; Mcmullan, G.; Marchant, R. Bioremediation of textile industrial wastewater by white-rot fungi [M]. In: Global Environmental Biotechnology. D. L. Wise, Ed., 1997, 711-718.
    [45] Chiron S.; Fernandez-Alba A.; Rodriguez A.; Garcia-Calvo E. Pesticide chemical oxidation: State-of-the-art [J]. Water Res. 2000, 34, 366-377.
    [46] Glaze, W. H.; Kang, J. W. Advanced oxidation process description of a kinetic model for the oxidation of hazardous materials in aqueous media with ozone and hydrogen peroxide in a semibatch reactor [J]. Int. Eng. Chem. Res. 1989, 28, 1573-1586.
    [47] G?hr, F.; Hermanutz, F.; Oppermann, W. Ozonation– An important technique to comply with new German laws for textile wastewater treatment [J]. Water Sci. Technol. 1994, 30, 255-263.
    [48] Koch, M.; Yediler, A.; Lienert, D.; Kettrup, A. Ozonation of hydrolyzed azo dye reactive yellow 84(CI) [J]. Chenosphere 2002, 46, 109-113.
    [49] Fenton, H. J. H. Oxidation of tartaric acid in the presence of iron [J]. Chem. Soc. Trans. 1894, 65, 899-910.
    [50] Feng, J.; Hu, X.; Yue, P.; Zhu, H.; Lu, G. Degradation of azo-dye orange ?? by a photoassisted Fenton reaction using a novel composite of iron oxide and silicate nanoparticles as a catalyst [J]. Ind. Eng. Chem. Res. 2003, 42, 2058-2066.
    [51] Chen, M.; Ma, W.; Li, J.; Huang, Y.; Zhao, J.; Wen, Y.; Xu, Y. Visible-light-assisted degradation of dye pollutants over Fe(???)-loaded resin in the presence of H2O2 at Neutral pH values [J]. Environ. Sci. Technol. 2004, 38, 1569-1575.
    [52] Gupta, S. S.; Stadler, M.; Noser, C. A.; Ghosh, A.; Steinhoof, B.; Lenoir, D.; Horwitz, C. P.; Schramm, K. W.; Collins, T. J. Rapid total destraction chlorophenols by activated hydrogen peroxide [J]. Science 2002, 296, 326-328.
    [53] Collins, T. J. TMAL oxidant activators:a new approach to the activation of hydrogen peroxide for environmentally significant problem [J]. Acc. Chem. Res. 2002, 35, 782-790.
    [54] Oliviero, L.; Barbier, J. Jr.; Duprez, D. Wet air oxidation of nitrogen-containing organic compounds and ammonia in aqueous media [J]. Appl. Catal. B: Environ. 2003, 40, 163-184.
    [55]雷乐成,汪大辉.湿式氧化法处理高浓度活性染料废水[J].中国环境科学1999, 19(1), 42-46.
    [56] Glaze, W. H.; Kang, J. W.; Chapin, D. H. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation [J]. Ozone Sci. Eng. 1987, 9, 335-352.
    [57] Prengle, H. W. Jr. Experimental rate constants and reactor considerations for the destruction of micropolutants and THM precursors by ozone with ultraviolet radiation [J]. Environ. Sci. Technol. 1983, 17, 743-747.
    [58] Bandara, J.; Nadtochenko, V.; Kiwi, J.; Pulgarin, C. Dynamics of the oxidants addition as a parameter in the modeling of dye mineralization via advanced oxidation technologies [J].Water Sci. Technol. 1997, 35, 87-93.
    [59] Wu, K.; Zhang, T.; Zhao, J.; Hidaka, H. Photodegradation of a dye in the presence of Fe3+ /H2O2 under visible light irradiation [J]. Chem. Lett. 1998, 6, 857-858.
    [60] Wu, K.; Xie, Y.; Zhao, J.; Hidaka, H. Photo-Fenton degradation of a dye under visible light irradiation [J]. J. Mol. Catal. A: Chem. 1999, 144, 77-84.
    [61] Xie, Y.; Wu, K.; He, J.; Zhao, J.; Wang, H. Photoassisted degradation of two dyes in the presence of Fe3+ and H2O2 under visible irradiation [J]. J. Photochem. Photobio. A: Chem. 2000, 136, 235-240.
    [62] Fox, M. A.; Dulay, M. T. Heterogeneous photocatalysis [J]. Chem. Rev. 1993, 93, 341-357.
    [63] Matthews, R. W. Photooxidative degradation of colored organics in water using supported catalysts: titanium dioxide on sand [J]. Water Res. 1991, 25, 1169-1176.
    [64] Reutergardh, L. B.; Langphasuk, M. Photocatalytic decolourization of reactive azo dye, a comparison between TiO2 and CdS photoctalysis [J]. Chemosphere 1997, 35, 585-596.
    [65] Comparelli, R.; Fanizza, E.; Curri, M. L.; Cozzoli, P. D.; Mascolo, G.; Agostiano, A. UV-induced photocatalytic degradation of azo dyes by organic-capped ZnO nanocrystals immobilized onto substrates [J]. Appl. Catal. B: Environ. 2005, 60, 1-11.
    [66] Tang, W. Z.; An, H. UV/TiO2 photocatalytic oxidation of commercial dyes in aqueous solutions [J]. Chemosphere 1995, 31, 4157-4170.
    [67] Liu, G.; Wu, T.; Zhao, J.; Hidaka, H.; Serpone, N. Photoassisted degradation of dye pollutant. 8. Irreversible degradation of alizarin red under visible light radiation in air-equilibrated aqueous TiO2 dispersions [J]. Environ. Sci. Technol. 1999, 33, 2081-2087.
    [68] Lacorte, S.; Guiffard, I.; Fraisse, D.; Barcelo, D. Broad spectrum analysis of 109 priority compounds listed in the 76/464/CEE council directive using solid-phase extraction and GC/EI/MS [J]. Anal. Chem. 2000, 72, 1430-1440.
    [69] Adav, S. S.; Chen, M.; Lee, D.; Ren, N. Degradation of phenol by aerobic granules and isolated yeast candida tropicalis [J]. Biotechnol. Bioeng. 2007, 96, 844-852.
    [70] Chung, T.; Wu, P.; Juang, R. Process development for degradation of phenol by pseudomonas putida in hollow-fiber membrane bioreactors [J]. Biotechnol. Bioeng. 2004, 87, 219-227.
    [71] Snyder, J. D.; Leesch, J. G. Methyl bromide recovery on activated carbon with repeatedadsorption and electrothermal regeneration [J]. Ind. Eng. Chem. Res. 2001, 40, 2925-2933.
    [72] Wang, H.-L.; Jiang, W.-F. Adsorption of dinitro butyl phenol (DNBP) from aqueous solutions by fly ash [J]. Ind. Eng. Chem. Res. 2007, 46, 5405-5411.
    [73] El-Feky, A. A.; Shalaby, M. N. Factors affecting the adsorption of ethoxylated nonyl phenol onto synthetic rubber [J]. Polym. Adv. Technol. 2003, 14, 12-18.
    [74] Abu-Arabi, M. K.; Allawzi, M. A.; Al-Zoubi, A. S. Adsorption of phenol from aqueous solutions on jojoba nuts residue [J]. Chem. Eng. Technol. 2007, 30, 493-500.
    [75] Khalid, M.; Joly, G.; Renaud, A.; Magnoux, P. Removal of phenol from water by adsorption using zeolites [J]. Ind. Eng. Chem. Res. 2004, 43, 5275-5280.
    [76] Pan, B.; Du, W.; Zhang, W.; Zhang, X.; Zhang, Q.; Pan, B.; Lv, L.; Zhang, Q.; Chen, J. Improved adsorption of 4-nitrophenol onto a novel hyper-cross-linked polymer [J]. Environ. Sci. Technol. 2007, 41, 5057-5062.
    [77] Cordero, T.; Rodríguez-Mirasol, J.; Bedia, J.; Gomis, S.; Yustos, P.; García-Ochoa, F.; Santos, A. Activated carbon as catalyst in wet oxidation of phenol: Effect of the oxidation reaction on the catalyst properties and stability [J]. Appl. Catal. B: Environ. 2008, 81, 122-131.
    [78] Li, N.; Descorme, C.; Besson, M. Catalytic wet air oxidation of 2-chlorophenol over Ru loaded CexZr1?xO2 solid solutions [J]. Appl. Catal. B: Environ. 2007, 76, 92-100.
    [79] Li, N.; Descorme, C.; Besson, M. Application of Ce0.33Zr0.63Pr0.04O2-supported noble metal catalysts in the catalytic wet air oxidation of 2-chlorophenol: Influence of the reaction conditions [J]. Appl. Catal. B: Environ. 2008, 80, 237-247.
    [80] Wang, J.; Zhu, W.; Yang, S.; Wang, W.; Zhou, Y. Catalytic wet air oxidation of phenol with pelletized ruthenium catalysts [J]. Appl. Catal. B: Environ. 2008, 78, 30-37.
    [81] Prpich, G. P.; Daugulis, A. J. Enhanced biodegradation of phenol by microbial consortium in a solid-liquid two-phase partitioning bioreactor [J]. Biodegradation 2005, 16, 329-339.
    [82] Aksu, Z. Application of biosorption for removal of organic pollutants: a review [J]. Process Biochem. 2005, 40, 997-1026.
    [83] Mantzavinos, D.; Psillakis, E. Review enhancement of biodegradability of industrial wastewaters by chemical oxidation pre-treatment [J]. J. Chem. Technol. Biotechnol. 2004, 79, 431-454.
    [84] Gonzalez, J. F.; Encinar, J. M.; Ramiro, A.; Sabio, E. Regeneration by wet oxidation of an activated carbon saturated with p-nitrophenol [J]. Ind. Eng. Chem. Res. 2002, 41, 1344-1351.
    [85] Schueller, B. S.; Yang, R. T. Ultrasound enhanced adsorption and desorption of phenol on activated carbon and polymeric resin [J]. Ind. Eng. Chem. Res. 2001, 40, 4912-4918.
    [86] Jarvie, M.E.; Hand, D. W.; Bhuvendralingam, S.; Crittenden, J. C.; Hokanson, D. R. Simulating the performance of fixed-bed granular activated carbon adsorbers: removal of synthetic organic chemicals in the presence of background organic matter [J]. Water Res. 2005, 39, 2407-2421.
    [87] Rivas, F. J.; Beltran, F. J.; Gimeno, O.; Frades, J. Wet air and extractive ozone regeneration of 4-chloro-2-methylphenoxyacetic acid saturated activated carbons [J]. Ind. Eng. Chem. Res. 2004, 43, 4159-4165.
    [88] Gonzalez, J. F.; Encinar, J. M.; Ramiro, A.; Sabio, E. Regeneration by wet oxidation of an activated carbon saturated with p-nitrophenol [J]. Ind. Eng. Chem. Res. 2002, 41, 1344-1351.
    [89] Sullivan, P. D.; Rood, M. J.; Grevillot, G.; Wander, J. D.; Hay, K. J. Activated carbon fiber cloth electrothermal swing adsorption system [J]. Environ. Sci. Technol. 2004, 38, 4865-4877.
    [90] Bercic, G.; Pintar, A. Desorption of phenol from activated carbon by hot water regeneration, desorption isotherms [J]. Ind. Eng. Chem. Res. 1996, 35, 4619-4625.
    [91] Matatov-Meytal, Y.; Sheintuch, M. Catalytic regeneration of chloroorganics-saturated activated carbon using hydrodechlorination [J]. Ind. Eng. Chem. Res. 2000, 39, 18-23.
    [92] Santos, A.; Yustos, P.; Quintanilla, A.; Garcia-Ochoa, F.; Casas, J. A.; Rodriguez, J. J. Evolution of toxicity upon wet catalytic oxidation of phenol [J]. Environ. Sci. Technol. 2004, 38, 133-138.
    [93] Lente, G.; Espenson, J. H. Oxidation of 2,4,6-trichlorophenol by hydrogen peroxide. Comparison of different iron-based catalysts [J]. Green Chem. 2005, 7, 28-34.
    [94] Wu, Z. C.; Zhou, M. Partial degradation of phenol by advanced electrochemical oxidation process [J]. Environ. Sci. Technol. 2001, 35, 2698-2703.
    [95] Zhu, X.; Shi, S.; Wei, J.; Lv, F.; Zhao, H.; Kong, J.; He, Q.; Ni, J. Electrochemical oxidationcharacteristics of p-substituted phenols using a boron-doped diamond electrode [J]. Environ. Sci. Technol. 2007, 41, 6541-6546.
    [96] Esplugas, S.; Giménez, J.; Contreras, S.; Pascual, E.; Rodríguez, M. Comparison of different advanced oxidation processes for phenol degradation [J]. Water Res. 2002, 36, 1034-1042.
    [97] Tasbihi, M.; Ngah, C. R.; Aziz, N.; Mansor, A.; Abdullah, A. Z.; Teong, L. K.; Mohamed, A. R. Lifetime and regeneration studies of various supported TiO2 photocatalysts for the degradation of phenol under UV-C light in a batch reactor [J]. Ind. Eng. Chem. Res. 2007, 46, 9006-9014.
    [98] Braun, A.; Tcherniac, J.über die Produkte der Einwirkung von Acetanhydrid auf Phthalamid [J]. Ber. Dtsch. Chem. Ges. 1907, 40, 2709-2714.
    [99] Shirai, H.; Kobayashi, N. Phthalocyanines-Chemistry and Functions [M]. IPC, Tokyo, 1997.
    [100] McKeown, N. B. Phthalocyanine Materials: Synthesis, Structure and Function [M]. Cambridge University Press, Cambridge, 1998.
    [101] de la Torre, G.; Claessens, C. G.; Torres, T. Phthalocyanines: old dyes, new materials. Putting color in nanotechnology [J]. Chem. Commun. 2007, 2000-2015.
    [102] Petersen, J. L.; Schramm, C. S.; Stojakovic, D. R.; Hoffman, B. M.; Marks, T. J. A new class of highly conductive molecular solids: the partially oxidized phthalocyanines [J]. J. Am. Chem. Soc. 1977, 99, 286-288.
    [103] Schramm, C. S.; Scaringe, R. P.; Stojakovic, D. R.; Hoffman, B. M.; Ibers, J. A.; Marks, T. J. Chemical, spectral, structural, and charge transport properties of the“molecular metals”produced by iodination of nickel phthalocyanine [J]. J. Am. Chem. Soc. 1980, 102, 6702-6713.
    [104] Palmer, S. M.; Stanton, J. M.; Hoffman, B. M.; Ibers, J. A. Structure, conductivity, and magnetic properties of (phthalocyaninato)nickel(II) bromide [J]. Inorg. Chem. 1986, 25, 2296-2300.
    [105] Tang, C. W. Two-layer organic photovoltaic cell [J]. Appl. Phys. Lett. 1986, 48, 183-185.
    [106] Iwatsu, F.; Kobayashi, T.; Uyeda, N. Solvent effects on crystal growth and transformation of zinc phthalocyanine [J]. J. Phys. Chem. 1980, 84, 3223-3230.
    [107] Hor, A. M.; Loutfy, R. O. Solvent-induced dimorphic transformation in magnesium phthalocyanine and its effect on the photoactivity [J]. Thin Solid Films 1983, 106, 291-301.
    [108] Madru, R.; Guillaud, G.; Sadoun, M. Al; Maitrot, M.; André, J. -J.; Simon, J.; Even, R. A well-behaved field effect transistor based on an intrinsic molecular semiconductor [J]. Chem. Phys. Lett. 1988, 145, 343-346.
    [109] Tada, H.; Touda, H.; Takada, M.; Matsushige, K. Quasi-intrinsic semiconducting state of titanyl-phthalocyanine films obtained under ultrahigh vacuum conditions [J]. Appl. Phys. Lett. 2000, 76, 873-875.
    [110] Hamann, C.; Kampfrath, G.; Mueller, M. Gas and humidity sensors based on organic active thin films [J]. Sens. Actuators B 1990, 1, 142-147.
    [111] Liu, C. J.; Shih, J. J.; Ju, Y. H. Surface morphology and gas sensing characteristics of nickel phthalocyanine thin films [J]. Sens. Actuators B 2004, 99, 344-349.
    [112] Lee, Y. L.; Tsai, W. C.; Maa, J. R. Effects of substrate temperature on the film characteristics and gas-sensing properties of copper phthalocyanine films [J]. Appl. Surf. Sci. 2001, 173, 352-361.
    [113] Lee, Y. L.; Sheu, C. Y.; Hsiao, R. H. Gas sensing characteristics of copper phthalocyanine films: effects of film thickness and sensing temperature [J]. Sens. Actuators B 2004, 99, 281-287.
    [114] Bouvet, M.; Guillaud, G.; Leroy, A.; Maillard, A.; Spirkovitch, S.; Tournilhac, F. Phthalocyanine-based field-effect transistor as ozone sensor [J]. Sens. Actuators B 2001, 73, 63-70.
    [115] Bouvet, M.; Leroy, A.; Simon, J.; Tournilhac, F.; Guillaud, G.; Lessnick, P.; Maillard, A.; Spirkovitch, S.; Debliquy, M.; de Haan, A.; Decroly, A. Detection and titration of ozone using metallophthalocyanine based field effect transistors [J]. Sens. Actuators B 2001, 72, 86-93.
    [116] Abass, A.; Krier, A.; Collins, R. The influence of chlorine on the electrical properties of lead phthalocyanine thin film gas sensors [J]. J. Phys. D: Appl. Phys. 1993, 26, 1120-1124.
    [117] Altindal, A.; Ozturk, Z. Z.; Dabak, S.; Bekaroglu, O. Halogen sensing using thin films of crosswise-substituted phthalocyanines [J]. Sens. Actuators B 2001, 77, 389-394.
    [118] Miller, K. A.; Yang, R. D.; Hale, M. J.; Park, J.; Fruhberger, B.; Colesniuc, C. N.; Schuller, I. K.; Kummel, A. C.; Trogler, W. C. Electrode independent chemoresistive response for cobalt phthalocyanine in the space charge limited conductivity regime [J]. J. Phys. Chem. B. 2006,110, 361-366.
    [119] Bora, M.; Schut, D.; Baldo, M. A. Combinatorial detection of volatile organic compounds using metal-phthalocyanine field effect transistors [J]. Anal. Chem. 2007, 79, 3298-3303.
    [120] Bohrer, F I.; Colesniuc, C N.; Park, J.; Schuller, I K.; Kummel, A C.; Trogler, W C. Selective detection of vapor phase hydrogen peroxide with phthalocyanine chemiresistors [J]. J. Am. Chem. Soc. 2008, 130, 3712-3713.
    [121] Sakamoto, K.; Ohno, E. Synthesis of cobalt phthalocyanine derivatives and their cyclic voltammograms [J]. Dyes Pigm. 1997, 35, 375-386.
    [122]李洪武,周庆复,许慧君.新型LB膜成膜材料—两亲性侧链取代酞菁的合成[J].有机化学1996, 16, 160-164.
    [123] Sasmaz, S.; Agar, E.; Agar, A. Synthesis and characterization of phthalocyanines containing 4-allyl-2-methoxyphenyl moieties [J]. Dyes Pigm. 1999, 42, 117-122.
    [124]孙建平,吴洪才,李宝铭.侧链含酞菁铜功能基的聚苯胺的制备和性能研究[J].高等学校化学学报2003, 24, 1708-1711.
    [125] Piechocki, C.; Simon, J.; Skoulios, A.; Guillon, D.; Weber, P. Discotic mesophases obtained from substituted metallophthalocyanines. Toward liquid crystalline one-dimensional conductors [J]. J. Am. Chem. Soc. 1982, 104, 5245-5247.
    [126] Engel, K. M. In The Porphyrin Handbook [M], Vol. 20. Kadish, K. M.; Smith, K. M.; Guilard, R. Eds. Academic Press, New York, 2003.
    [127] Darwent J. R.,McCubbin I.,Phillips D. Excited singlet and triplet state electron-transfer reactions of aluminium(III) sulphonated phthalocyanine [J]. J Chem Soc, Faraday Trans. II 1982, 78, 347-357.
    [128] Ferraudi, G.; Srisankar, E. V. Photochemical redox reactivity of dimeric and monomeric copper(II) and cobalt (II) sulfophthalocyanines [J]. Inorg. Chem. 1978, 17, 3164-3168.
    [129] Shirai, H.; Maruyama, A.; Konishi, M.; Hojo, N. Functional metal–porphyrazine derivatives and their polymers. 5. Peroxidatic oxidation of guaiacol by Fe(Ⅲ-3,)4,3’,4’,3’’,4’’,3’’’,4’’’-octacarboxyphthalocyanine(Fe-oapc) and Fe-oapc/polyelectrolyte systems [J]. Makromol. Chem. 1980, 181, 1003-1012.
    [130] Shirai, H.; Maruyama, A.; Takano, J.; Kobayashi, K.; Hojo, N. Fuctional metal-porphyrazine derivatives and their polymers, 3. Catalytic activity of Fe(Ⅲ- o)ctacarboxyphthalocyaninefor decomposition of hydrogen peroxide [J]. Makromol. Chem. 1980, 181, 565-573.
    [131] McKeown, N. B.; Makhseed, S.; Msayib, K. J.; Ooi, L.; Helliwell, M.; Warren, J. E. A phthalocyanine clathrate of cubic symmetry containing interconnected solvent-filled voids of nanometer dimensions [J]. Angew. Chem. Int. Ed. 2005, 44, 7546-7549.
    [132] Makhseed, S.; Ibrahim, F.; Samuel, J.; Helliwell, M.; Warren, J. E.; Bezzu, C. G.; McKeown, N. B. Clathrate formation from octaazaphthalocyanines possessing bulky phenoxyl substituents: A new cubic crystal containing solvent-filled, nanoscale voids [J]. Chem. Eur. J. 2008, 14, 4810-4815.
    [133] Klofta, T. J.; Danziger, J.; Lee, P.; Pankow, J.; Nebesny, K. W.; Armstrong, N. R. Photoelectrochemical and spectroscopic characterization of thin films of titanyl phthalocyanine: comparisons with vanadyl phthalocyanine [J]. J. Phys. Chem. 1987, 91, 5646-5651.
    [134] Cammidge, A. N.; Gopee, H. Macrodiscotic triphenylenophthalocyanines [J]. Chem. Commun. 2002, 966-967.
    [135] Silerova, R.; Kalvoda, L.; Neher, D.; Ferencz, A.; Wu, J.; Wegner, G. Electrical conductivity of highly organized Langmuir-Blodgett films of phthalocyaninato-polysiloxane [J]. Chem. Mater. 1998, 10, 2284-2292.
    [136] Xiao, K.; Liu, Y.; Huang, X.; Xu, Y.; Yu, G.; Zhu, D. Field-effect transistors based on Langmuir-Blodgett films of phthalocyanine derivatives as semiconductor layers [J]. J. Phys. Chem. B. 2003, 107, 9226-9230.
    [137] Guillaud, G.; Simon, J.; Germain, J. P. Metallophthalocyanines: Gas sensors, resistors and field effect transistors [J]. Coord. Chem. Rev. 1998, 178-180, 1433-1484.
    [138] Capone, S.; Mongelli, S.; Rella, R.; Siciliano, P.; Valli, L. Gas sensitivity measurements on NO2 sensors based on copper(II) tetrakis(n-butylaminocarbonyl)phthalocyanine LB films [J]. Langmuir 1999, 15, 1748-1753.
    [139] Rodriguez-Mendez, M. L.; Gorbunova, Y.; de Saja, J. A. Spectroscopic properties of Langmuir-Blodgett films of lanthanide bis(phthalocyanine)s exposed to volatile organic compounds. Sensing applications [J]. Langmuir 2002, 18, 9560-9565.
    [140] Spadavecchia, J.; Ciccarella, G.; Siciliano, P.; Capone, S.; Rella, R. Spin-coated thin films of metal porphyrin–phthalocyanine blend for an optochemical sensor of alcohol vapours [J].Sens. Actuators B 2004, 100, 88-93.
    [141] Spadavecchia, J.; Ciccarella, G.; Rella, R. Optical characterization and analysis of the gas/surface adsorption phenomena on phthalocyanines thin films for gas sensing application [J]. Sens. Actuators B 2005, 106, 212-220.
    [142] Spadavecchia, J.; Ciccarella, G.; Valli, L.; Rella, R. A novel multisensing optical approach based on a single phthalocyanine thin films to monitoring volatile organic compounds [J]. Sens. Actuators B 2006, 113, 516-525.
    [143] Lee, Y. L.; Tsai, W. C.; Chang, C. H.; Yang, Y. M. Effects of heat annealing on the film characteristics and gas sensing properties of substituted and un-substituted copper phthalocyanine films [J]. Appl. Surf. Sci. 2001, 172, 191-199.
    [144] Neal, G. M.; Seymour, P.; Jayaraj, K.; Fu, Y.; Lever, A. B. P. Perchlorinated phthalocyanines: Spectroscopic properties and surface electrochemistry [J]. Inorg. Chem. 1990, 29, 1719-1727.
    [145] Giovanelli, L.; Amsalem, P.; Themlin, J. M.; Ksari, Y.; Abel, M.; Nony, L.; Koudia, M.; Bondino, F.; Magnano, E.; Mossoyan-Deneux, M.; Porte, L. Evolution of the electronic structure at the interface between a thin film of halogenated phthalocyanine and the Ag(111) surface [J]. J. Phys. Chem. C 2008, 112, 8654-8661.
    [146] Liao, M. S.; Kar, T.; Gorun, S. M.; Scheiner, S. Effects of peripheral substituents and axial ligands on the electronic structure and properties of iron phthalocyanine [J]. Inorg. Chem. 2004, 43, 7151-7161.
    [147] Kudrik, E. V.; Makarov, S. V.; Zahl, A.; van Eldik, R. Kinetics and mechanism of the cobalt phthalocyanine catalyzed reduction of nitrite and nitrate by dithionite in aqueous solution [J]. Inorg. Chem. 2003, 42, 618-624.
    [148] Kudrik, E. V.; Makarov, S. V.; Zahl, A.; Eldik, R. Kinetics and mechanism of the iron phthalocyanine catalyzed reduction of nitrite by dithionite and sulfoxylate in aqueous solution [J]. Inorg. Chem. 2005, 44, 6470-6475.
    [149] Grodkowski, J.; Dhanasekaran, T.; Neta, P.; Hambright, P.; Brunschwig, B. S.; Shinozaki, K.; Fujita, E. Reduction of cobalt and iron phthalocyanines and the role of the reduced species in catalyzed photoreduction of CO2 [J]. J. Phys. Chem. A 2000, 104, 11332-11339.
    [150] Das, G.; Sain, B.; Kumar, S.; Garg, M. O.; Murali Dhar G. Synthesis, characterization andatalytic activity of cobalt phthalocyanine tetrasulphonamide in sweetening of LPG [J]. Catal. Today 2009, 141, 152-156.
    [151] Achar, B. N.; Lokesh, K. S. Studies on tetra-amine phthalocyanines [J]. J. Organomet. Chem. 2004, 689, 3357-3361.
    [152] Lin, M.;Fang, X.; Xu, M.; Wang, J. The effect of protonation on the spectra and stabilities of alkoxyl substituted phthalocyaninatometals [J]. Spectrochim. Acta A 2008, 71, 1188-1192.
    [153] Tannert, S.; Ermilov, E. A.; Vogel, J. O.; Choi, M. T. M.; Ng, D. K. P.; Roder B. The influence of solvent polarity and metalation on energy and electron transfer in porphyrin-phthalocyanine heterotrimers [J]. J. Phys. Chem. B 2007, 111, 8053-8062.
    [154] Soares, A. R. M.; Martinez-Diaz, M. V.; Bruckner, A.; Pereira, A. M. V. M.; Tome, J. P. C.; Alonso, C. M. A.; Faustino, M. A. F.; Neves, M. G. P. M. S.; Tome, A. C.; Silva, A. M. S.; Cavaleiro, J. A. S.; Torres, T.; Guldi, D. M. Synthesis of novel N-linked porphyrin-phthalocyanine dyads [J]. Org. Lett. 2007, 9, 1557-1560.
    [155] González-Rodríguez, D.; Claessens, C. G.; Torres, T.; Liu, S.; Echegoyen, L.; Vila, N.; Nonell, S. Tuning photoinduced energy- and electron-transfer events in subphthalocyanine-phthalocyanine dyads [J]. Chem. Eur. J. 2005, 11, 3881-3893.
    [156] Guldi, D. M.; Zilbermann, I.; Gouloumis, A.; Vazquez, P.; Torres, T. Metallophthalocyanines: Versatile electron-donating building blocks for fullerene dyads [J]. J. Phys. Chem. B 2004, 108, 18485-18494.
    [157] Torres, T.; Gouloumis, A.; Sanchez-Garcia, D.; Jayawickramarajah, J.; Seitz, W.; Guldi, D. M.; Sessler, J. L. Photophysical characterization of a cytidine–guanosine tethered phthalocyanine–fullerene dyad [J]. Chem. Commun. 2007, 292-294.
    [158] Sooksimuang, T.; Mandal, B. K. [5]Helicene-fused phthalocyanine derivatives. New members of the phthalocyanine family [J]. J. Org. Chem. 2003, 68, 652-655.
    [159] Elemans, J. A. A. W.; Rowan Alan, E.; Nolte Roeland, J. M. Mastering molecular matter. Supramolecular architectures by hierarchical self-assembly [J]. J. Mater. Chem. 2003, 13, 2661-2670.
    [160] Troshin, P. A.; Koeppe, R.; Peregudov, A. S.; Peregudova, S. M.; Egginger, M.; Lyubovskaya, R. N.; Sariciftci, N. S. Supramolecular association of pyrrolidinofullerenes bearing chelating pyridyl groups and zinc phthalocyanine for organic solar cells [J]. Chem.Mater. 2007, 19, 5363-5372.
    [161] Janssen, A. G. F.; Riedl, T.; Hamwi, S.; Johannes, H. H.; Kowalsky, W. Highly efficient organic tandem solar cells using an improved connecting architecture [J]. Appl. Phys. Lett. 2007, 91, 073519.
    [162] Palomares, E.; Victoria Martínez-Díaz, M.; Haque, S A.; Torres, T.; Durrant, J. R. State selective electron injection in non-aggregated titanium phthalocyanine sensitised nanocrystalline TiO2 films [J]. Chem. Commun. 2004, 2112-2113.
    [163] Levitsky, I. A.; Euler, W. B.; Tokranova, N.; Xu, B.; Castracane, J. Hybrid solar cells based on porous Si and copper phthalocyanine derivatives [J]. Appl. Phys. Lett. 2004, 85, 6245-6247.
    [164] Reddy, P. Y.; Giribabu, L.; Lyness, C.; Snaith, H. J.; Vijaykumar, C.; Chandrasekharam, M.; Lakshmikantam, M.; Yum, J. H.; Kalyanasundaram, K.; Gr?tzel, M.; Nazeeruddin, M. K. Efficient sensitization of nanocrystalline TiO2 films by a near-IR-absorbing unsymmetrical zinc phthalocyanine [J]. Angew. Chem. Int. Ed. 2007, 45, 373-376.
    [165] Sivanesan, A.; Abraham, J. S. Amino group position dependent orientation of self-assembled monomolecular films of tetraaminophthalocyanato cobalt(II) on Au surfaces [J]. Langmuir 2008, 24, 2186-2190.
    [166] de la Torre, G.; Vázquez, P.; Agulló-López, F.; Torres, T. Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds [J]. Chem. Rev. 2004, 104, 3723-3750.
    [167] Brouwer, W. M.; Piet, P.; German, A. L. The promoting role of polycations in the cobalt(II) phthalocyanine tetrasodium sulfonate catalyzed oxidation of thiols [J]. J. Mol. Catal. 1985, 31, 169-182.
    [168] van Welzen, J.; van Herk, A. M.,; German, A. L. Effect of ionenes on structure and catalytic activity of cobaltphthalocyanine, 1. Visible light spectroscopic investigations [J]. Makromol. Chem. 1987, 188, 1923-1932.
    [169] Tao, X.; Ma, W.; Li, J.; Huang, Y.; Zhao, J.; Yu, J. C. Efficient degradation of organic pollutants mediated by immobilized iron tetrasulfophthalocyanine under visible light irradiation [J]. Chem. Commun. 2003, 80-81.
    [170] Yao, Y.; Chen, W.; Lu, S.; Zhao, B. Binuclear metallophthalocyanine supported on treatedsilk fibres as a novel air-purifying material [J]. Dyes Pigm. 2007, 73, 217-223.
    [171] Hirth, A.; Sobbi, A. K.; W?hrle, D. Synthesis of a monofunctional phthalocyanine on silica [J]. J. Porphyrins Phthalocyanines 1997, 1, 275-279.
    [172] Schneider, G.; W?hrle, D.; Spiller, W.; Stark, J.; Schulz-Ekloff, G. Photooxidation of 2-mercaptoethanol by various water soluble phthalocyanines in aqueous alkaline solution under irradiation with visible light [J]. J. Photochem. Photobiol. 1994, 60, 333-342.
    [173] Eichhorn, H.; Sturm, M.; W?hrle, D. Polymer-bound porphyrins and their precursors, 11. Syntheses and polymerization of methacryloyloxy and 2,4-hexadienoyloxy derivatives of porphyrins and phthalocyanines [J]. Macromol. Chem. Phys. 1995, 196, 115-131.
    [174] Oostergetel, G. T.; Teerenstra, M. N.; Schouten, A. J. Slow structural rearrangement of a side-chain phthalocyanine methacrylate polymer at the air-water interface [J]. Macromolecules 1993, 26, 3306-3312.
    [175] Kimura, M.; Nishigaki, T.; Koyama, T.; Hanabusa, K.; Shirai, H. Functional metallomacrocycles and their polymers, Part 34. Catalytic oxygenation of cyclohexene by water-soluble polymer containing manganese phthalocyanine complex [J]. React. Funct. Polym. 1996, 29, 85-89.
    [176] Makhseed, S.; Cook, A.; Mckeown, N. B. Phthalocyanine-containing polystyrenes [J]. Chem. Commun. 1999, 419-420.
    [177] Pan, Y.; Chen, W.; Lu, S.; Zhang, Y. Novel aqueous soluble cobalt phthalocyanine: synthesis and catalytic activity on oxidation of 2-mercaptoethanol [J]. Dyes Pigm. 2005, 66, 115-121.
    [178] Shen, X.; Lu, W.; Feng, G.; Yao, Y.; Chen, W. Preparation and photoactivity of a novel water-soluble, polymerizable zinc phthalocyanine [J]. J. Mol. Catal. A: Chem. 2009, 298, 17-22.
    [179] Chen, W.; Zhao, B.; Pan, Y.; Yao, Y.; Lu, S.; Chen, S.; Du, L. Preparation of a thermosensitive cobalt phthalocyanine/N-isopropylacrylamide copolymer and its catalytic activity on thiol [J]. J. Colloid Interface Sci. 2006, 300, 626-632.
    [180] Buck, T.; Bohlen, H.; W?hrle, D.; Schulz-Ekloff, G.; Andreev, A. Influence of substituents and ligands of various cobalt (II) porphyrin derivatives coordinately bonded to silica on the oxidation of mercaptan [J]. J. Mol. Catal. 1993, 80, 253-267.
    [181] Balkus, K. J. Zeolite encapsulated metallophthalocyanines, in: Phthalocyanines: Propertiesand Applications [M]. Leznoff, C. C.; Lever, A. B. P. Eds., VCH, New York, 1996, 4, p287.
    [182] Ganschow, M.; W?hrle, D.; Schulz-Ekloff, G. Incorporation of differently substituted phthalocyanines into the mesoporous molecular sieve Si-MCM-41 [J]. J. Porphyrins Phthalocyanines 1999, 3, 299-309.
    [183] Epstein, A.; Wildi, B. S. Electrical properties of poly-copper phthalocyanine [J]. J. Chem. Phys. 1960, 32, 324-329.
    [184] W?hrle, D.; Marose, U.; Knoop, R. Polymeric phthalocyanines and their precursors, 8. Synthesis and analytical characterization of polymers from 1,2,4,5-benzenetetracarbonitrile [J]. Makromol. Chem. 1985, 186, 2209-2228.
    [185] W?hrle, D.; Schulte, B. Polymeric phthalocyanines and their precursors, 14. Synthesis and analytical characterization of polymers from oxy- and arylenedioxy-bridged diphthalonitriles [J]. Makromol. Chem. 1988, 189, 1167-1187.
    [186] W?hrle, D.; Schulte, B. Polymeric phthalocyanines and their precursors, 15. Syntheses of alkylenedioxy bridged polymeric phthalocyanines and their absorption capacities for organic solvents in comparison to other phthalocyanines [J]. Makromol. Chem. 1988, 189, 1229-1238.
    [187] Young, J. G.; Onyebuagu, W. Synthesis and characterization of di-disubstituted phthalocyanines [J]. J. Org. Chem. 1990, 55, 2155-2159.
    [188] Cook, A. H. Catalytic properties of the phthalocyanines. Part I. Catalase properties [J]. J. Chem. Soc. 1938, 1761-1768.
    [189] Cook, A. H. Catalytic properties of the phthalocyanines. Part II. Oxidase properties [J]. J. Chem. Soc. 1938, 1768-1774.
    [190] Cook, A. H. Catalytic properties of the phthalocyanines. Part III [J]. J. Chem. Soc. 1938, 1774-1780.
    [191] Shirai, H. Odor removing materials using artificial enzymes [J]. J. Jpn. Soc. Compos. Mater. 1994, 67, 564-573.
    [192] Shirai, H.; Tsuiki, H.; Masuda, E.; Koyama, T.; Hanabusa, K. Functional metallomacrocycles and their polymers. 25. Kinetics and mechanism of the biomimetic oxidation of thiol by oxygen catalyzed by homogeneous (polycarboxyphthalocyaninato) metals [J]. J. Phys. Chem. 1991, 95, 417-423.
    [193] Schipper, E. T. W. M.; Pinckaers, R. P. M.; Piet, P.; German, A. L. Synthesis and cocatalytic properties of polystyrene-ionene-stabilized lattices [J]. Macromolecules 1995, 28, 2194-2200.
    [194] W?hrle, D.; Buck, T.; Hündorf, U.; Schulz-Ekloff, G.; Andreev, A. Phthalocyanines on mineral carriers, 4. Low-molecular-weight and polymeric phthalocyanines on SiO2,γ-Al2O3 and active charcoal as catalysts for the oxidation of 2-mercaptoethanol [J]. Makromol. Chem. 1989, 190, 961-974.
    [195] Buck, T.; W?hrle, D.; Schulz-Ekloff, G.; Andreev, A. Structure and mercaptan oxidation activity of cobalt(II) phthalocyanines covalently bonded to silica of low surface area [J]. J. Mol. Catal. 1991, 70, 259-268.
    [196] Fischer, H.; Schulz-Ekloff, G.; Buck, T.; W?hrle, D.; Vassileva, M.; Andreev, A. Mercaptan adsorption capacity and catalytic oxidation activity of silica-supported phthalocyanines [J]. Langmuir 1992, 8, 2720-2723.
    [197] Fischer, H.; Schulz-Ekloff, G.; Buck, T.; W?hrle, D. Effects of substituents and coordination sites on the adsorption and catalytic oxidation of mercaptan at silica-supported cobalt porphyrins [J]. Erd?l, Erdgas, Kohle 1994, 110, 128-135.
    [198] W?hrle, D.; Schlettwein, D.; Schnurpfeil, G.; Schneider, G.; Karmann, E.; Yoshida, T.; Kaneko, M. Phthalocyanines and related macrocycles for multi-electron transfer in catalysis, photochemistry and photoelectrochemistry [J]. Polym. Adv. Techn. 1995, 6, 118-130.
    [199] Barkanova, S. V.; Derkacheva, V. M.; Dolotova, O. V.; Li, V. D.; Negrimovskii, V. M.; Kaliya, O. L.; Luk’yanets, E. A. Homogeneous oxidation of aromatics in nucleus with peracetic acid catalyzed by iron and manganese phthalocyanine complexes [J]. Tetrahedron Lett. 1996, 37, 1637-1640.
    [200] Dolotova, O. V.; Bundina, N. I.; Kaliya, O. L.; Lukyanets, E. A. Manganese phthalocyanine coordination chemistry: recent results and present status [J]. J. Porphyrins Phthalocyanines 1997, 1, 355-366.
    [201] Kinura, M.; Nishigaki, T.; Koyama, T.; Hanabusa, K.; Shirai, H. Functional metallomacrocycles and their polymers, 27a) Catalase-like activity of water-soluble polymer containing a phthalocyanine-manganese complex [J]. Macromol. Chem. Phys. 1994, 195, 3499-3508.
    [202] Sorokin, A.; Meunier, B. Oxidation of pollutants catalyzed by metallophthalocyanines [J]. Acc. Chem. Res. 1997, 30, 470-476.
    [203] Marais, E.; Klein, R.; Antunes, E.; Nyokong, T. Photocatalysis of 4-nitrophenol using zinc phthalocyanine complexes [J]. J. Mol. Catal. A: Chem. 2007, 261, 36-42.
    [204] Derosa, M. C.; Crutchley, R. J. Photosensitized singlet oxygen and its applications [J]. Coordin. Chem. Rev. 2002, 233-234, 351-371.
    [205] Kluson, P.; Drobek, M.; Strasak, T.; Krysa, J.; Karaskova, M.; Rakusan, J. Sulphonated phthalocyanines as effective oxidation photocatalysts for visible and UV light regions [J]. J. Mol. Catal. A: Chem. 2007, 272, 213-219.
    [206] Agboola, B.; Ozoemena, K. I.; Nyokong, T. Comparative efficiency of immobilized non-transition metal phthalocyanine photosensitizers for the visible light transformation of chlorophenols [J]. J. Mol. Catal. A: Chem. 2006, 248, 84-92.
    [207] Ozoemena, K.; Kuznetsova1, N.; Nyokong, T. Photosensitized transformation of 4-chlorophenol in the presence of aggregated and non-aggregated metallo phthalocyanines [J]. J. Photoch. Photobio. A: Chem. 2001, 139, 217-224.
    [208] Tau, P.; Nyokong, T. Comparative photocatalytic efficiency of oxotitanium(IV) phthalocyanines for the oxidation of 1-hexene [J]. J. Mol. Catal. A: Chem. 2007, 273, 149-155.
    [209] Xue, X.; Xu Y. Selective photooxidation of cyclohexene with molecular oxygen sensitized by palladium phthalocyaninesulfonate [J]. J. Mol. Catal. A: Chem. 2007, 276, 80-85.
    [210] Manassen, J. Metal complexes of porphyrinlike compounds as heterogeneous catalyst [J]. Catal. Rev. Sci. Eng. 1974, 9, 223-243.
    [211] Masri, Y.; Hronec, M. Dioxygen activation and homo-geneous catalytic oxidation [J]. Stud. Surf. Sci. Catal. 1991, 66, 455-461.
    [212] Kropf, H.; Hoffmann, H. D. Autoxidation von cumol in gegenwart von substituierten kupfer-phthalocyaninen und verwandten kupfer-komplexen [J]. Tetrahedron Lett. 1967, 8, 659-663.
    [213] Inoue, H.; Kida, Y.; Imoto, E. The catalytic action of binary metal-polyphthalocyanine complex on the oxidation of acetaldehyde, ethylene, acetal [J]. Bull. Chem. Soc. JPn. 1965, 38, 2214-2214.
    [214] Inoue H., Kida Y., Imoto E. Organic catalysts. IV. The role of the iron as an oxidation catalyst in copper-iron-polyphthalocyanine [J]. Bull. Chem. Soc. JPn. 1968, 41, 684-691.
    [215] Spiller W., W?hrle D., Schulz-Ekloff C., Ford W. T., Schneider G., Stark J. Photo-oxidation of sodium sulfide by sulfonated phthalocyanines in oxygen-saturated aqueous solutions containing detergents or latexes [J]. J. Photochem. Photobiol. A: Chem. 1996, 95, 161-173.
    [216] Sorokin, A. B.; Kudrik, E. V.; Bouchu, D. Bio-inspired oxidation of methane in water catalyzed by N-bridged diiron phthalocyanine complex [J]. Chem. Commun. 2008, 2562-2564.
    [217] Kudrik, E. V.; Sorokin, A. B. N-bridged diiron phthalocyanine catalyzes oxidation of benzene with H2O2 via benzene oxide with NIH shift evidenced by using 1,3,5-[D3]benzene as a probe [J]. Chem Eur. J. 2008, 14, 7123-7126.
    [218] Kudrik, E. V.; Afanasiev, P.; Bouchu, D.; Millet, J. M. M.; Sorokin, A. B. Diiron N-bridged species bearing phthalocyanine ligand catalyzes oxidation of methane, propane and benzene under mild conditions [J]. J. Porphyrins Phthalocyanines 2008, 12, 1078-1089.
    [219] I?ci, U.; Afanasiev, P.; Millet, J. M. M.; Kudrik, E. V.; Ahsen, V.; Sorokin, A. B. Preparation and characterization of mu-nitrido diiron phthalocyanines with electron-withdrawing substituents: application for catalytic aromatic oxidation [J]. Dalton Trans. 2009, 7410-7420.
    [1] Sorokin, A.; Mangematin, S.; Pergrale, C. Selective oxidation of aromatic compounds with dioxygen and peroxides catalyzed by phthalocyanine supported catalysts [J]. J. Mol. Catal. A: Chem. 2002, 182-183, 267-281.
    [2] Tao, X.; Ma, W.; Li, J.; Huang, Y.; Zhao, J.; Yu, J. C. Efficient degradation of organic pollutants mediated by immobilized iron tetrasulfophthalocyanine under visible light irradiation [J]. Chem. Commun. 2003, 80-81.
    [3]从方地,杜锡光,赵宝中,刘群,陈彬.两种四氨基铜酞菁异构体的合成及其分子中氨基的稳定性研究[J].分子科学学报2003, 19(1), 26-31.
    [4]丛方地,杜锡光,赵宝中,刘群,陈彬.两种四氨基锌酞菁异构体的简易合成及其表征[J].高等学校化学学报2002, 23(12), 2221-2225.
    [5] Achar, B. N.; Fohlen, G. M.; Parker, J. A.; Keshavayya J. Synthesis and structural studies of metal( -Ⅱph) t4h,a9l,o1c6y,a2n3ine tetraamines [J]. Polyhedron 1987, 6, 1463-1467.
    [6] Seelan, S.; Agashe, M. S.; Srinivas, D.; Sivasanker, S. Effect of peripheral substitution on spectral and catalytic properties of copper phthalocyanine complexes [J]. J. Mol. Catal. A: Chem. 2001, 168, 61-68.
    [7]黄金陵,彭亦如,陈耐生.金属酞菁配合物结构研究的一些谱学方法[J].光谱学与光谱分析2001, 21, 1-6.
    [8] Mack, J.; Stillman, M. J. Assignment of the optical spectra of metal phthalocyanines through spectral band deconvolution analysis and zindo calculations [J]. Coord. Chem. Rev. 2001, 219, 993-1032.
    [1] Galindo, C.; Jacques, P.; Kalt, A. Photooxidation of the phenylazonaphthol AO20 on TIO2: kinetic and mechanistic investigations [J]. Chemosphere 2001, 45, 997-1005.
    [2] Bauer, C.; Jacques, P.; Kalt, A. Photooxidation of an azo dye induced by visible light incident on the surface of TiO2 [J]. J. Photochem. Photobiol. A: Chem. 2001, 140, 87-92.
    [3] Kos, L.; Perkowski, J.; Ledakowicz, S. Application of ozone, hydrogen peroxide, and UV irradiation in textile wastewater treatment [J]. AATCC Rev. 2004, 4, 30-34.
    [4] Klemm, D.; Philipp, B.; Heinze, T.; Heinze, U.; Wagenknecht, W. Comprehensive Cellulose Chemistry, Volume 1: Fundamentals and Analytical Methods [M], Wiley-VCH, Verlag GmbH, Weinheim, 1998, p1.
    [5]杨锦宗.染料的分析与剖析[M].北京:化学工业出版社, 1987, p4-5.
    [6] Vickerstaff, T. The Physical Chemistry of Dyeing, 2nd Ed; Oliver and Boyd, London, 1954.
    [7] Dutta, K.; Mukhopadhyay, S.; Bhattacharjee, S.; Chaudhuri, B. Chemical oxidation of methylene blue using a Fenton-like reaction [J]. J. Hazard. Mater. 2001, B84, 57-71.
    [8] Kiwi, J.; Lopez, A.; Nadtochenko, V. Mechanism and kinetics of the OH- radical intervention during Fenton oxidation in the presence of a significant amount of radical scavenger (Cl-) [J]. Environ. Sci. Technol. 2000, 34, 2162-2168.
    [9] Zhu, B.; Kitrossky, N.; Chevion, M. Evidence for production of hydroxyl radicals by pentachlorophenol metabolites and hydrogen peroxide: A metal-independent organic Fenton reaction [J]. Biochem. Biophys. Res. Commun. 2000, 270, 942-946.
    [10] Polyakov, O.V.; Badalyan, A.M.; Bakhturova, L. F. The role of electrolyte concentration in the decomposition of water and generation of electrons under conditions of anodic microdischarges [J]. High Energy Chem. 2005, 39, 111-113.
    [11] Sorokin, A.; Meunier, B. Oxidation of pollutants catalyzed by metallophthalocyanines [J]. Acc. Chem. Res. 1997, 30, 470-476.
    [12] Khodja, A. A.; Sehili, T.; Pihichowski, J. F.; Boule, P. Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions [J]. J. Photochem. Photobiol. A: Chem. 2001, 141, 231-239.
    [13] Tao, X.; Ma, W.; Zhang, T.; Zhao, J. Efficient photooxidative degradation of organic compounds in the presence of iron tetrasulfophthalocyanine under visible light irradiation [J].Angew. Chem., Int. Ed. 2001, 40, 3014-3016.
    [14] Tao, X.; Ma, W.; Zhang, T.; Zhao, J. A novel approach for the oxidative degradation of organic pollutants in aqueous solutions mediated by iron tetrasulfophthalocyanine under visible light radiation [J]. Chem. Eur. J. 2002, 8, 1321-1326.
    [15] Tao, X.; Ma, W.; Li, J.; Huang, Y.; Zhao, J.; Yu, J. C. Efficient degradation of organic pollutants mediated by immobilized iron tetrasulfophthalocyanine under visible light irradiation [J]. Chem. Commun. 2003, 80-81.
    [16] Stylidi, M.; Kondarides, D. I.; Verykios, X. E. Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions [J]. Appl. Catal. B: Environ. 2003, 40, 271-286.
    [17] Gupta, S. S.; Stadler, M.; Noser, C. A.; Ghosh, A.; Steinhoof, B.; Lenoir, D.; Horwitz, C. P.; Schramm, K. W.; Collins, T. J. Rapid total destraction chlorophenols by activated hydrogen peroxide [J]. Science 2002, 296, 326-328.
    [18] Sorokin, A.; De Suzzoni-Dezard, S.; Poullain, D.; No?l, J.-P.; Meunier, B. CO2 as the ultimate degradation product in the H2O2 oxidation of 2,4,6-trichlorophenol catalyzed by iron tetrasulfophthalocyanine [J]. J. Am. Chem. Soc.1996, 118, 7410-7411.
    [19] Grubbs, R. H.; Gibbons, C. L.; Kroll, C.; Bonds, W. D.; Brubaker, C. H. Activation of homogenous catalysts by polymer attachment [J]. J. Am. Chem. Soc. 1973, 95, 2373-2375.
    [20] Grubbs, R. H.; Kroll, L. C. Catalytic reduction of olefins with a polymer-supported rhodium(I) catalyst [J]. J. Am. Chem. Soc. 1971, 93, 3062-3063.
    [21] Rollmann, L. D. Porous, polymer-bonded metalloporphyrins [J]. J. Am. Chem. Soc. 1975, 97, 2132-2136.
    [22] Overberger, C. G.; Maki, H. Esterolytic catalyses by copolymers containing imidazole and carboxyl functions [J]. Macromolecules 1970, 3, 214-220.
    [23] Shinkai, S.; Kunitake, T. The Michaelis–Menten-type hydrolysis of an anionic phenyl ester by partly quaternized poly(1-vinyl-2-methylimidazole) and its copolymers [J]. Polymer J. 1973, 4, 253-261.
    [24] Pandiyan, T.; Martínez Rivas, O.; Orozco Martínez, J.; Burillo Amezcua, G.; Martínez-Carrillo, M. A. Comparison of methods for the photochemical degradation of chlorophenols [J]. J. Photochem. Photobiol. A: Chem. 2002, 146, 149-155.
    [1]万惠霖等,固体表面物理化学若干研究前沿[M].厦门:厦门大学出版社, 2006, p509-516.
    [2] Planeix, J. M.; Coustel, N.; Coq, B.; Brotons, V.; Kumbhar, P. S.; Dutartre, R.; Geneste, P.; Bernier, P.; Ajayan, P. M. Application of carbon nanotubes as supports in heterogeneous catalysis [J]. J. Am. Chem. Soc. 1994, 116, 7935-7936.
    [3] Yoon, B; Wai, C. M. Microemulsion-templated synthesis of carbon nanotube-supported Pd and Rh nanoparticles for catalytic applications [J]. J. Am. Chem. Soc. 2005, 127, 17174-17175.
    [4] Vu, H.; Gon?alves, F.; Philippe, R.; Lamouroux, E.; Corrias, M.; Kihn, Y.; Plee, D.; Kalck, P.; Serp, P. Bimetallic catalysis on carbon nanotubes for the selective hydrogenation of cinnamaldehyde [J]. J. Catal. 2006, 240, 18-22.
    [5] Hermans, S.; Sloan, J.; Shephard, D. S.; Johnso,n B. F. G.; Green, M. L. H. Bimetallic nanoparticles aligned at the tips of carbon nanotubes [J]. Chem. Commun. 2002, 276-277.
    [6] Kongkanand, A.; Vinodgopal, K.; Kuwabata, S.; Kamat, P. V. Highly dispersed Pt catalysts on single-walled carbon nanotubes and their role in methanol oxidation [J]. J. Phys. Chem. B2006, 110, 16185-16188.
    [7] Xue, B.; Chen, P.; Hong, Q.; Lin, J.; Tan, K. L. Growth of Pd, Pt, Ag and Au nanoparticles on carbon nanotubes [J]. J. Mater. Chem. 2001, 11, 2378-2381.
    [8] Zhang, H. B.; Dong, X.; Lin, G. D.; Liang, X. L.; Li, H. Y. Carbon nanotube-promoted Co-Cu catalyst for highly efficient synthesis of higher alcohols from syngas [J]. Chem. Commun. 2005, 5094-5096.
    [9] Zhang, H.; Qiu, J.; Liang, C.; Li, Z.; Wang, X.; Wang, Y.; Feng, Z.; Li, C. A novel approach to Co/CNTs catalyst via chemical vapor deposition of organometallic compounds [J]. Catal. Lett. 2005, 101, 211-214.
    [10] Pan, X.; Fan, Z.; Chen, W.; Ding, Y.; Luo, H.; Bao, X. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles [J]. Nat. Mater. 2007, 6, 507-511.
    [11] Kim, D. S.; Lee, T.; Geckeler, K. E. Hole-doped single-walled carbon nanotubes: Ornamenting with gold nanoparticles in water [J]. Angew. Chem. Int. Ed. 2006, 45, 104-107.
    [12] Campidelli, S.; Sooambar, C.; Diz, E. L.; Ehli, C.; Guldi, D. M.; Prato, M. Dendrimer-functionalized single-wall carbon nanotubes: synthesis, characterization, and photoinduced electron transfer [J]. J. Am. Chem. Soc. 2006, 128, 12544-12552.
    [13] Choi, H. C.; Shim, M.; Bangsaruntip, S.; Dai, H. Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes [J]. J. Am. Chem. Soc. 2002, 124, 9058-9059.
    [14] Kongkanand, A.; Kamat, P. V. Electron storage in single wall carbon nanotubes. Fermi level equilibration in semiconductor–SWCNT suspensions [J]. ACS Nano 2007, 1, 13-21.
    [15] Qu, L.; Dai, L. Substrate-enhanced electroless deposition of metal nanoparticles on carbon nanotubes [J]. J. Am. Chem. Soc. 2005, 127, 10806-10807.
    [16] Yang, K.; Wu, W.; Jing, Q.; Zhu, L. Aqueous adsorption of aniline, phenol, and their substitutes by multi-walled carbon nanotubes [J]. Environ. Sci. Technol. 2008, 42, 7931-7936.
    [17] Chen, J.; Chen, W.; Zhu, D. Adsorption of nonionic aromatic compounds to single-walled carbon nanotubes: Effects of aqueous solution chemistry [J]. Environ. Sci. Technol. 2008, 42, 7225-7230.
    [18] Lin, D.; Xing, B. Adsorption of phenolic compounds by carbon nanotubes: Role of aromaticity and substitution of hydroxyl groups [J]. Environ. Sci. Technol. 2008, 42,7254-7259.
    [19] Hu, C.; Chen, Z.; Shen, A.; Shen, X.; Li, J.; Hu, S. Water-soluble single-walled carbon nanotubes via noncovalent functionalization by a rigid, planar and conjugated diazo dye [J]. Carbon 2006, 44, 428-434.
    [20] Hirofusa, S.; Sadafumi, Y.; Akira, S.; Mobumasa, H. Functional metal-porphyrazine derivatives and their polymers, 1. Synthesis of metal-[2,9or10(or 2,16or17)bis(3,4-dicarboxybenzoyl)] phthalocyanine derivatives [J]. Makromol. Chem. 1977, 178, 1889-1895.
    [21] Pillay, J.; Ozoemena, K. I. Electrochemical properties of surface-confined films of single-walled carbon nanotubes functionalised with cobalt(II) tetra-aminophthalocyanine: Electrocatalysis of sulfhydryl degradation products of V-type nerve agents [J]. Electrochim. Acta 2007, 52, 3630-3640.
    [22] de la Torre, G.; Blau, W.; Torres, T. A survey on the functionalization of single-walled nanotubes. The chemical attachment of phthalocyanine moieties [J]. Nanotechnology 2003, 14, 765-771.
    [23] Yang, Z. L.; Chen, H. Z.; Cao, L.; Li, H. Y.; Wang, M. Synthesis and photoconductivity study of carbon nanotube bonded by tetrasubstituted amino manganese phthalocyanine [J]. Mater. Sci. Eng. B 2004, 106, 73-78.
    [24] Ge, J. J.; Zhang, D.; Li, Q.; Hou, H.; Graham, M. J.; Dai, L.; Harris, F. W.; Cheng, S. Z. D. Multiwalled carbon nanotubes with chemically grafted polyetherimides. [J]. J. Am. Chem. Soc. 2005, 127, 9984-9985.
    [25] Nilson, K.; Palmgren, P.; ?hlund, J.; Schiessling, J.; G?thelid, E.; M?rtensson, N.; Puglia, C.; G?thelid, M. STM and XPS Characterization of Zinc Phthalocyanine on InSb (001) [J], Surf. Sci. 2008, 602, 452-459.
    [26] Zhang, L.; Peisert, H.; Biswas, I.; Knupfer, M.; Batchelor, D.; Chassé, T. Growth of zinc phthalocyanine onto ZnS film investigated by synchrotron radiation-excited X-ray photoelectron and near-edge absorption spectroscopy [J], Surf. Sci. 2005, 596, 98-107.
    [27] Khan, M. A. K.; Kerman, K.; Petryk, M.; Kraatz, H. Noncovalent modification of carbon nanotubes with ferrocene-amino acid conjugates for electrochemical sensing of chemical warfare agent mimics [J]. Anal. Chem. 2008, 80, 2574-2582.
    [28] Chen, W.; Zhao, B.; Pan, Y.; Yao, Y.; Lu, S.; Chen, S.; Du, L. Preparation of a thermosensitive cobalt phthalocyanine/N-isopropylacrylamide copolymer and its catalytic activity on thiol [J]. J. Colloid Interface Sci. 2006, 300, 626-632.
    [29] Lee, R. S.; Kim, H. J.; Fisher, J. E.; Thess, A.; Smalley, R. E. Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br [J]. Nature 1997, 388, 255-257.
    [30] Huang F., Hou L., Wu H., Wang X., Shen H., Cao W., Yang W., Cao Y. High-efficiency, environment-friendly electroluminescent polymers with stable high work function metal as a cathode: Green- and yellow-emitting conjugated polyfluorene polyelectrolytes and their neutral precursors [J]. J. Am. Chem. Soc. 2004, 126, 9845-9853.
    [31] Rabindranath, A. R.; Zhu, Y.; Zhang, K.; Tieke, B. Purple red and luminescent polyiminoarylenes containing the 1,4-diketo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DPP) chromophore [J]. Polymer 2009, 50, 1637-1644.
    [32] Obirai, J.; Nyokong, T. Synthesis, electrochemical and electrocatalytic behaviour of thiophene-appended cobalt, manganese and zinc phthalocyanine complexes [J]. Electrochim. Acta 2005, 50, 5427-5434.
    [33] Handbook of Chemistry and Physics [M], 87th ed.; CRC Press, Boca Raton, 2007, pp 8-40 to 8-41.
    [34] Handbook of Chemistry and Physics [M], 87th ed.; CRC Press: Boca Raton, 2007; pp 8-20 to 8-29.
    [35] Lim, S. C.; Jeong, H. J.; Kim, S. K.; Lee, I. B.; Bae, D. J.; Lee, Y. H. Extracting independently the work function and field enhancement factor from thermal-field emission of multi-walled carbon nanotube tips [J]. Carbon 2005, 43, 2801-2807.
    [1] Park, J. W.; Lee, S. S. Adsorption equilibria of toluene, dichloromethane, and trichloroethylene onto activated carbon fiber [J]. J. Chem. Eng. Data 2002, 47, 980-983.
    [2] Tang, D.; Zheng, Z.; Lin, K.; Luan, J.; Zhang, J. Adsorption of p-nitrophenol from aqueous solutions onto activated carbon fiber [J]. J. Hazard. Mater. 2007, 143, 49-56.
    [3] Frackowiak, E. Carbon materials for supercapacitor application [J]. Phys. Chem. Chem. Phys. 2007, 9, 1774-1785.
    [4] Jurewic, K.; Vix-Guterl, C.; Frackowia, E.; Saadallah, S.; Reda, M.; Parmentier, J.; Patarin, J.; Be′guin, F. Capacitance properties of ordered porous carbon materials prepared by a templating procedure [J]. J. Phys. Chem. Solids. 2004, 65, 287-293.
    [5] Vittorio, S. L.; Dresselhaus, M. S.; Endo, M. The transport properties of activated carbon fibers [J]. J. Mater. Res. 1991, 6, 778-783.
    [6] Boehm, H. P. Some aspects of the surface chemistry of carbon blacks and other carbons [J]. Carbon 1994, 32, 759-769.
    [7] Radovic, L.; Silva, I. F.; Ume, J. I.; Menéndez, J. A.; Leon Y Leon, C. A.; Scaroni, A. W. An experimental and theoretical study of the adsorption of aromatics possessing electro-withdrawing and electron-donating functional groups by chemically modified activated carbon [J]. Carbon 1997, 35, 1339-1348.
    [8] Langmuir, I. The constitution and fundamental properties of solids and liquids [J]. J. Am. Chem. Soc. 1916, 38, 2221-2295.
    [9] Langmuir, I. The adsorption of gases on plane surface of glass, mica and platinum [J]. J. Am. Chem. So. 1918, 40, 1361-1403.
    [10] Freundlich, H.über die Adsorption in L?sungen [J]. Z. Phys. Chem. 1906, 57, 385-470.
    [11] Temkin, M. I.; Pyzhev, V. Kinetics of ammonia synthesis on promoted iron catalyst [J]. ActaPhysiochim., URSS 1940, 12, 327-356.
    [12] Sinan Bilgili, M. Adsorption of 4-chlorophenol from aqueous solutions by xad-4 resin: Isotherm, kinetic, and thermodynamic analysis [J]. J. Hazard. Mater. 2007, 143, 598-599.
    [13] Annadurai, G.; Rajesu Babu, S.; Mahesh, K. P. O.; Murugesan, T. Adsorption and bio-degradation of phenol by chitosan-immobilized Pseudomonas putida (NICM 2174) [J]. Bioprocess Eng. 2000, 22, 493-501.
    [14] Treybal, R. E. Mass transfer operations (10th edition) [M]. McGrew-Hill, New York, 1988.
    [15] von Oepen, B.; K?rdel, W.; Klein, W. Sorption of nonpolar and polar compounds to soils: Processes, measurements and experience with the applicability of the modified OECD-Guideline 106 [J]. Chemosphere 1991, 22, 285-304.
    [16] Dean, J. A. Handbook of organic chemistry [M], McGraw-Hill, New York, 1987.
    [17] Lin, C.; Protasiewicz, J. D.; Smith, E. T.; Ren, T. Redox tuning of the dimolybdenum compounds at the ligand periphery: A direct correlation with the hammett constant of the substituents [J]. J. Chem. Soc., Chem. Commun. 1995, 2257-2258.
    [18] Shieh, D. J.; Lee, S.; Yim, Y.; Lin, S. H.; Eyring, H. Magnetic circular dichroism of molecules in dense media: Relation between magnetic circular dichroism and hammett's constants [J]. Proc. Nat. Acad. Sci. USA 1975, 72, 452-453.
    [19] Antonaraki, S.; Androulaki, E.; Dimotikali, D.; Hiskia, A.; Papaconstantinou, E. Photolytic degradation of all chlorophenols with polyoxometallates and H2O2 [J]. J. Photochem. Photobiol. A: Chem. 2002, 148, 191-197.
    [20] Arcanh, Y.; Hawari, J.; Guiot, S. R. Solubility of pentachlorophenol in aqueous solutions [J]. Water Res. 1995, 29, 131-136.
    [21] Mrowetz, M.; Selli, E. Enhanced photocatalytic formation of hydroxyl radicals on fluorinated TiO2 [J]. Phys. Chem. Chem. Phys. 2005, 7, 1100-1102.
    [22] Tripathi, G. N. R.; Su, Y. The origin of base catalysis in the·OH oxidation of phenols in water [J]. J. Phys. Chem. A 2004, 108, 3478-3484.
    [23] Thomas, J. M.; Raja, R.; Lewis, D. W. Single-site heterogeneous catalysts. Angew. Chem. Int. Ed. 2005, 44, 6456-6482.
    [24] Tada, M.; Taniike, T.; Kantam, L. M.; Iwasawa, Y. Chiral self-dimerization of vanadium complexes on a SiO2 surface: the first heterogeneous catalyst for asymmetric 2-naphtholcoupling. Chem. Commun. 2004, 2542-2543.
    [25] Matsushita, M.; Kamata, K.; Yamaguchi, K.; Mizuno, N. Heterogeneously catalyzed aerobic oxidative biaryl coupling of 2-naphthols and substituted phenols in water. J. Am. Chem. Soc. 2005, 127, 6632-6640.
    [26] Yamaguchi, K.; Yoshida, C.; Uchida, S.; Mizuno, N. Peroxotungstate immobilized on ionic liquid-modified silica as a heterogeneous epoxidation catalyst with hydrogen peroxide. J. Am. Chem. Soc. 2005, 127, 530-531.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700