炭质光催化复合材料制备及液相有机物去除性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在环境保护领域中,采用半导体光催化材料降解溶液中有机物的反应探索已经进行了几十年。而单纯半导体金属氧化物由于其不易回收、稳定性低、可见光响应性弱、反应效率低等缺点,始终制约着该项技术向工业领域的推广。炭材料具有良好的稳定性与较强的吸附性能,同时作为催化剂载体有着广泛的应用,因此将新型炭材料与传统半导体金属氧化物进行结合,可以有效避免单纯半导体催化剂所产生的各种问题,从而为光催化材料在环境保护领域的发展提供了全新的途径,传统的以活性炭颗粒为代表的一系列炭材料为载体的复合光催化材料的产生已经证明了炭材料在此方向的优越性能。因此,本文旨在采用多种制备方法构建了一系列新型炭质光催化复合材料,并对其液相有机物去除性能进行探索。
     1.以微孔型沥青基球状活性炭(PSAC)为载体,钛酸四正丁酯为钛源,采用溶胶-凝胶法和浸渍-烧结法分别制备了TiO2/PSAC复合材料。考察了两种方法制备的复合材料对于探针有机物的光催化降解性能以及循环反应性能。结果表明,两种方法制备所得样品均为微孔材料,且具备了光催化降解有机物的活性。其中,溶胶-凝胶法所制备的TiO2/PSAC复合光催化剂在高纯氮气环境下于450℃煅烧后,TiO2晶型为锐钛矿型,并以薄膜形式涂覆在PSAC表层,其在紫外光照射下反应420min对探针有机物的去除率可达96.7%,第三次循环反应结束后去除率仍能保持在84.0%,分别高于浸渍-烧结法制备样品的90.1%和69.1%,而纯PSAC吸附对于探针有机物的吸附去除率为55.0%。
     2.以7nm的SiO2为模板剂,采用硬模板法制备的中孔炭(MC)为载体,通过溶胶-凝胶法制备了TiO2/MC复合光催化剂,并考察了其对有机物大分子液相光催化去除能力。复合材料TiO2含量及其晶型结构分别通过改变前驱体组成及煅烧温度进行调节。结果表明,由于中孔炭的纳米孔限域作用,锐钛矿型的TiO2以纳米颗粒形式均匀分散在炭的网络骨架界面上,从而形成了高度分散的TiO2/MC内米复合材料。另外,复合系统中中孔吸附作用的存在,与纳米TiO2的高效光催化产生协同作用,增强了复合材料在紫外光照射下对于水溶液中有机物的去除能力。在紫外光照射下反应75min时样品对探针有机物的去除率可达89%,而最终可达93%。此外,光降解反应遵循一级反应动力学,其最大反应速率常数为0.0147min-1。
     3.分别以粒径为7nm与12nm的SiO2为模板剂,采用硬模板法制备孔结构不同的中孔炭MC-7以及MC-12,并通过水热法制备非金属氮元素掺杂二氧化钛中孔炭复合光催化剂。氮气吸附测试结果表明样品负载前后孔结构参数有较大程度变化,电镜结果表明氮元素掺杂并未改变样品晶体结构同时有效促进了颗粒尺寸的减小。氮元素的掺杂促使样品产生可见光区激发反应,而MC-7与MC-12相比更适合作为复合催化剂载体,其样品在吸附-光催化协同作用下75液相有机物除率可达68%。
     4.采用三种结构不同的经过酸性氧化预处理的碳纳米纤维(CNFs)作为载体,以钛酸异丙酯为前驱体,通过水热法制备TiO2/CNFs复合催化剂,通过改变前驱体组成控制复合催化剂中TiO2含量。在材料复合过程中,纤维表面可以均匀负载锐钛矿型TiO2纳米颗粒,使样品在紫外光照条件下具有较好的液相有机物分子降解性能。CNFs促进了二氧化钛颗粒在其表面的分散,同时在复合材料系统中CNF所具有的吸附性能可与光催化降解作用形成协同效应。在不同CNF作为载体的复合材料中,TiO2/PCNF复合催化剂去除有机物性能高于其它。不同TiO2含量TiO2/PCNF复合催化剂中,TiO2含量80%时复合催化剂120min去除探针有机物效率最高,达到80.1%,不同煅烧温度复合催化剂中,煅烧温度500℃时复合催化剂120min内探针有机物去除效率最高,达到79.2%。在三次循环反应后,TiO2/PCNF复合催化剂对于液相有机物去除率仍能保持80%以上
     5.以三嵌段共聚物F127作为模板剂,钛酸四正丁酯为钛源,使用溶剂蒸发诱导自组装法制备了非金属元素掺杂的中孔TiO2体系。研究了样品制备过程中热处理温度、前驱体配比、氧气后处理等条件对于样品去除水溶液有机物性能的影响。结果表明,样品液相吸附性能由其孔结构决定,光催化降解性能受到晶体结构、元素掺杂含量等因素影响,当样品前驱体配比为1/1,煅烧温度700℃时具有最强的紫外光激发催化活性;当前驱体配比为3/1与4/1且经过氧气后处理时,样品表现出可见光激发响应性,同时紫外光激发响应性也有大幅提高,其对于探针有机物总去除率可分别达89.6%和89.5%。样品具有较高的稳定性,其暗反应、紫外光激发与可见光激发反应对探针有机物去除率均能在多次循环反应后保持稳定。
In the environmental protection field, the reactions of photocatalytic materials degradation organic molecule in solutions have been researched for decades, but pure semiconductor metal oxide powders have some disadvantages such as hardly to be recovered, low stability, weak visible light responsiveness, low reaction efficiency and so on, which always restrict the promotion of this technology to civil industry. Carbon materials exhibt good stability, strong adsorption performance, and a wide range of applications as catalyst supports, thus combining the novel carbon materials and traditional semiconductor metal oxide, can avoid various problems of pure powder catalysts, and provide a new way for photocatalytic materials in the field of environmental protection. Therefore, this thesis was aimed to use a variety of preparation method to construct a series of new type of carbonaceous photocatalytic composite materials, and to investigate the removing performance for organics in liquid solution.
     1. The TiO2/PSAC composites were prepared through sol-gel method and impregnation-calcination method, respectively, with tetrabuty tinanate as titanium source and pitch-based spherical activated carbon (PSAC) as support. The photocatalytic degradation activity and cyclic reaction of samples were studied using organic solution as a probe. The results indicated that the samples synthesized from the two methods exhibit microporous structure and show high photocatalytic activity. The composite prepared by sol-gel method sintered at450℃dunder N2atmosphere has an anatase crystal model coating on the surface of carrier, and its photocatalytic activities for probe organic can reach96.7%after the first cycle reaction, and84.0%after the third cycle, while the activities of composite sample prepared by impregnation-calcination method can just reach90.1%and69.1%, respectively, superior to pure PSAC just about55.0%.
     2. Mesopous carbons (MC) from colloid silica templates were employed as supports to prepare TiO2/MC nanocomposites through a sol-gel process. TiO2content and crystalline structure of photocatalysts were turned by changing the precursor composition and calcination temperature, respectively. The experiment results showed that anatase TiO2nanoparticles could be highly dispersed on the surface of carbon framework, leading to the formation of high performance photocatalysts for degradation of probe organic under UV irradiation. The MC promoted the dispersion of TiO2in composite system and induced synergistic effects of adsorption and phtocatalytic degradation on the removal of probe organic. The organic removing rate could reach as high as89%in75min and93%at last under UV irradiation. The kinetics of organic degradation fitted well the first-order reaction kinetic and the largest rate constant was about0.015min-1.
     3. Different pore structure mesoporous carbon were prepared with7nm and12nm SiO2particle as templates, then nitrogen element doped titanium dioxide mesoporous composites were prepared through hydrothermal process, results of nitrogen adsorption and electron microscope showed that pore structure parameters of MCs changed a lot after TiO2loading, and nitrogen doped did not change the crystal structure of TiO2loading on support, nitrogen doping prompted sample visible light excitation response and MC-7was more suitable than MC-12as a composite suppot, the removing rate of30%N-TiO2/MC-7for orgnic could reach68%in75min reaction.
     4. Three kinds of carbon nanofibers (CNFs) pretreated by acidity oxidation treatment were employed as supports to prepare TiO2/CNFs nanocomposites by a hydrothermal process with titanium (IV) isopropoxide as the precursor, their photocatalysis activity and recycle property were investigated. The TiO2content of photocatalysts was turned by changing the precursor composition. Anatase TiO2nanoparticles could be highly dispersed on the surface of fibers, leading to the formation of high performance photocatalysts for degradation of probe organic under UV irradiation. The CNFs promoted the dispersion of TiO2in composite system and induced synergistic effects of adsorption and phtocatalytic degradation on the removal of organic. The TiO2/PCNF showed better performance than other composite, and the highest organic removing rate of TiO2/PCNF could reach as high as80.1%in120min for different TiO2content samples and79.2%for different temperature under UV irradiation. After three cycle reaction, the organic removing rate of TiO2/PCNF could still reach80%.
     5. Block copolymers F127as template agent, titanium acid butyl acetate as titanium source, using solvent evaporation induced self-assembly process to prepare nonmetallic element doped mesopore TiO2system. The effect on removing properties for organic compound of sample preparation process conditions like heat treatment temperature, ratio of precursors, and oxygen post-treatment were investigated. The results showed that the liquid adsorption performance of samples was determined by its pore structure and the photocatalytic degradation performance was determined by the crystal structure, element doping content and so on. When precursor ratio1/1, calcining temperature700℃, the sample had strongest ultraviolet excitation catalytic activity, when the ratio of precursor were3/1,4/1and after oxygen post-processing, the samples showed visible light excitation response, at the same time ultraviolet excitation response also have greatly improved, and total removing rate for probe organic can reach up to89.6%and89.5%, respectively. The removing rate under dark reaction, ultraviolet and visible light excitation response to probe organic can remain stable for multiple cycle reaction that proved the high stability of the samples.
引文
[1]肖刚,王景国.染料工业技术[M].化学工业出版社,2004:535-536
    [2]王占生,刘文君.微污染水源饮用水处理[M].中国建筑工业出版社,1999
    [3]安鑫南.林产化学工艺学[M].中国林业出版社,2002:17-23
    [4]侯立安.特殊废水处理技术及工程实例[M].化学工业出版社,2003:77-113
    [5]刘守新.活性炭光再生技术与Ti02/活性炭协同作用机制研究[D].东北林业大学博士学位论文.哈尔滨.2002:15-18
    [6]张万友,王德英,都丽娟,等.有机污染饮用水深度处理试验研究[J].工业水处理.1996,16(6):29-31
    [7]周娟娟.生物活性炭技术进展与研究[J].工业给排水.2003,25(2):13-17
    [8]张尘山.臭氧化-生物活性炭饮用水深度处理[J].工业给排水.2004,26(4):1-4
    [9]Peronj.A.E, Rodman.C.A. Factors Involved with Biological Regeneration of activated Carbon [J].Water-1974 AICE Symp series 144,1978
    [10]朱长乐,刘莱娥.膜科学与技术[M].浙江大学出版社.1992
    [11]邵刚.膜法水处理技术[M].冶金工业出版社.1991
    [12]高以煊,叶凌碧.膜分离技术基础[M].科学出版社.1989
    [13]Hoffmann M R, Hua I, Chemer R H. Application of ultrasonic irradiation for the degradation of chemical contaminants in water[J].Ultrasonics Sonochemisgy,1996, 3(3):S163-S172
    [14]Okino H, Vim B, Mizukoshi Y, et al.Sonolytic degradation of hazardous organic compounds in aqueous solution[J].Ultrasonics Sono-chemistry.2000,7:261-264
    [15]David D, Robrecht D B, Alex D V, et al.Sonolysis of trichloroethylene in aqueous solution [J]. Volatile Organic Intermediares,1996,3:S83-S90
    [16]孙德智.环境工程中的高级氧化技术[M].化工出版社.2002,4
    [17]Fujishima A, Honda K. Electrochemical photolysis of water at a semicondutor electrode[J].Nature,1972,238:37-38
    [18]Frank, Steven N, Bard, et al. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders[J]. Journal of Physical Chemistry,1977,81(15):1484-1486
    [19]Clearfield A, Lehto J.Preparation structure and ion-exchange properties of Na4Ti902o.xH20 [J].Journal of Solid State Chemistry,1988,73(1):98-106
    [20]Nagase T, Ebina T, Iwasaki T, et al. Hydrothermal synthesis of brookite[J] Chem.Lett.,1999, (9):911-912
    [21]邓南圣,吴峰.环境光化学[M].化学工业出版社.2003,309-328
    [22]Linsebigler A L, Lu G Q, Yates J T. Photocatal ysison TiO2 surface:priciples, mechanisms, and selected results [J].Chem.Rev.,1995, (95):735-738
    [23]Tomkiewicz M. Scaling Properties in Photocatalysis [J].Catal. Today.,2000, (58): 151-159
    [24]Chen Y M, Jin H Y, Li T J, et al. Study on photoelectric propertation of a TiO2 nanoparticle [J].Vac. Sci. Technol.:B,1997,15(4):1442-1444
    [25]孙奉玉,吴鸣,李文钊,等.二氧化钛的尺寸与光活性的关系[J].催化学报.1998,1961(3):229-233
    [26]Linsebigler A L, Lu G Q, Yates J T.Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected Results[J].Chem.Rev.,1995,95(3):735-758
    [27]Turehi C S, Ollis D E.Photocatalytic oxidation of chlorinated hydrocarbons in water [J]. Wat.Res.,1997,31(3):429-438
    [28]Choi W, Termin A, Hoffmann M R.The role of metal ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics[J].J.Phys.Chem.,1994,98(51):13669-13679
    [29]Marta M, Elena S. Effects of iron species in the photocatalytic degradation of an azo dye in TiO2 aqueous suspensions [J].Journal of Photochemistry and Photobiology A: Chemistry,2004,62(1):89-95
    [30]Asahi R, Morikawa T Ohwaki K, et al.Visible-light photocatalysis in nitrogen doped titanium oxides[J].Science,2001,293(13):269-271
    [31]Mabakazu A, Kawamura T, Kodama S, et al. J.Phys.Chem.,1998,92(2):438-440
    [32]Fu X, Clark L A, Yang Q, et al. Enhanced photocatalytic performance of titania-based binary metal oxides:TiO2/SiO2 and TiO2/ZrO2[J].Environ.Sci. Technol.,1996, 30(2):647-653
    [33]Vogel R, Hoyer P, Weller H. Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors[J]. J.Phys.Chem.,1994,98(12):3183-3188
    [34]So W W, Kim K J, Moon S J. Photo-production of hydrogen over the CdS-TiO2 nano-composite particulate treated with TiO2[J].International Journal of Hydrogen Energy,2004,29:229-234
    [35]Weon-Pil Tai. Photoelectrochemical properties of SnO2-TiO2 coupled electrode sensitized by a mercurochrome dye [J].Materials Letters,2001, (1):451-454
    [36]张琦,李新军,李芳柏.制备工艺对W03/TiO2薄膜可见光催化活性的影响[J].中国有色金属学报.2002,12(6):1299-1303
    [37]Kamat P V, Fox M A. Photosensitization of TiO2 colloids by erythrosin B in acetonitrile[J].Chemical Physics Letters,1983,102(4):379-384
    [38]袁锋,沈涛,许慧君.荧光素与电子给体/受体LB膜的制备、表征和光电性质[J].感光科学与光化学.1995,11(6):526
    [39]Fu P F, Luan Y, Dai X G. Preparation of activated carbon fibers supported TiO2 photocatalyst and evaluation of its photocatalytic reactivity [J]. Journal of Molecular Catalysis A:Chemical,2004(221):81-88
    [40]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].化学工业出版社.2002,46-48
    [41]Gerischer H. The impact of semiconductors on the concepts of electrochemistry [J].Electrochimica Acta,1990,35(11-12):1677-1699
    [42]Dijkstra M F J, Michorius A, Buwalda H, et al. Comparison of the efficiency of immobilized and suspended systems in photocatalytic degradation[J].Catalysis Today,2001(66):487-494
    [43]Hofstadler K, Bauer R N, Ovallc S, et al. New reactor design for photocatalytic wastewater treatment with TiO2 immobilized on fused-silica glass fibers: photomineralization of 4-chlorophenol [J].Environ. Sci. Technol.,1994,28:670-674
    [44]廖振华,姚可夫,陈建军,等.纳米Ti02光催化剂的研究进展[J].无机材料学报.2004,19(1):17-22
    [45]张风宝,张前程.负载型Ti02光催化剂的研究进展[J].化学工业与工程.2004,21(4):248-255
    [46]朱永法,李巍,尚静,等.不锈钢金属丝网上Ti02纳米薄膜光催化剂的研究[J].高等学校化学学报.2003,24(3):465-468
    [47]贺飞,唐怀军,赵文宽,等.二氧化钛光催化自洁功能陶瓷的研制[J].武汉大学学报(理学版).2001,47(4):419-424
    [48]曾炽涛,陈爱平,陈爱华,等.负载型Ti02玻璃弹簧的光催化杀菌作用[J].催化学报.2003,24(7):520-524
    [49]Shang J, Yao W Q, Zhu Y F, et al. Structure and photocatalytic performances of glass/SnO2/TiO2 interface composite film [J]. Applied Catalysis A: General,2004,257:25-32
    [50]Su B T, Liu X H, Peng X X, et al. Preparation and characterization of the TiO2/polymer complex nano material [J].Materials Science and Engineering A, 2003,349:59-62
    [51]Langlet M, Kim A, Audier W, et al. Transparent photocatalytic films deposited on polymer substrates from sol-gel processed titania sols [J].Thin Solid Films,2003, 429:13-21
    [52]Lee D K, Kim S C, Cho I C, et al. Photocatalytic oxidation of microcystin-LR in a fluidized bed reactor having TiO2-coated activated carbon [J]. Separation and Purification Technology,2004,34:59-66
    [53]Arafia J, Dofia-Rodnguez J M, Rendon E T, et al.TiO2 activation by using activated carbon as a support Part II:Photoreactivity and FTIR study[J].Applied Catalysis B:Environmental,2003,44:153-160
    [54]李桂珍,江立文.纳米Ti02光催化剂负载和光催化反应器的研究进展[J].江西能源.2004(2):8-11
    [55]温敏,齐公台,孙菊梅.Ti02溶胶的制备及其胶凝过程影响因素分析[J].表面技术.2004,33(1):30-32
    [56]施尔畏,夏长泰,王步国,等.水热法的应用与发展[J].无机材料学报.1996,11(2):193-198
    [57]古映莹,丘小勇,杜作鹃,等.不同晶型纳米Ti02的水热合成及光催化性能明[J].化工新型材料.2004,32(3):14-17
    [58]Tang P S, Hong Z L, Zhou S F, et al.Preparation of nanosized TiO2 catalyst with high photo-catalytic activity under visible irradiation by hydrothermal method [J]. Chinese Journal of Catalysis,2004,25(12):925-930
    [59]贺飞,唐怀军,赵文宽,等.纳米Ti02光催化剂负载技术研究[J].环境污染治理技术与设备.2001,2(2):47-59
    [60]刘振字,郑经堂,王茂章.活性炭纤维孔结构控制和表面改性[J].离子交换与吸附.1997,13(4):353-358
    [61]Lijima S.Helical microtubules of graphitic carbon [J].Nature,1991,354,56-58
    [62]Kamat P.V.Harvesting photons with carbon nanotubes [J].Nanotoday,2006,1(4): 20-27
    [63]Hasobe T, Fukuzumi S, Kamat P V.Stacked-cup carbon nanotubes for photo electrochemical solar cells[J].Angew.Chem.Int.Ed.,2006,45(5):755-759
    [64]Jang S R,Vittal R, Kim K J.Incorporation of functionalized single-wall carbon nanotubes in dye-sensitized TiO2 solar cells[J].Langmuir,2004,20(22):9807-9810
    [65]Jitianu A, Cacciaguerra T, Benoit R, et al.Synthesis and characterization of carbon nanotubes-TiO2 nanocomposites[J].Carbon,2004,42(5-6):1147-1151
    [66]Orlanducci S, Sessa V, Terranova M L, et al.Nanocrystalline TiO2 on single walled carbon nanotube arrays:Towards the assembly of organized TiO2 nanosystems[J].Carbon,2006,44(13),2839-2843
    [67]Yu H, Ouan X, Chen S, et al.TiO2-multiwalled carbon nanotube heterojunction arrays and their charge separation capability [J]. Journal of Physical Chemistry C,2007, 111(35):12987-12991
    [68]陈水挟,曾汉民.功能纤维[M].化学工业出版社.2005,3
    [69]Merzbacher C I, Meier S R, Pierce J R, et al.Carbon aerogels as broadband non-reflective materials[J].J Non-cryst Solids.,2001,285:210-215
    [70]Goel J, Kadirvelu K, Rajagopal C, et al. Investigation of adsorption of lead, mercury and nickel from aqueous solutions onto carbon aerogel[J]. J.Chem. Technol.Biot., 2005,80:469-476
    [71]Dresselhaus M S.Future directions in carbon science [J].Anna.Rev.Mater.Sci.,1997, 27:1-34
    [72]Yoon S, Park Y, Mochida I.Preparation of carbonaceous spheres from suspensions of pitch materials [J].Carbon,1992,30(5):781-786
    [73]杨骏兵,康飞宇.球形活性炭及其应用[J].材料导报.2002,16(5):59-61
    [74]Hisatsugu K, Kazahiro W.Method for producing spherical particles of carbon and of cativated carbon [P]. US Patent:4420443.1983
    [75]Blucher H V. Process of making microspherules of cativated carbon[P].US Patent: 4857243.1989
    [76]宋燕,乔文明,凌立成,等.球状活性炭及其应用进展[J].炭素.1999,1:3-6
    [77]Nagai H, Katori K, Shiiki Z.Process for production of activated carbon spheres [P]. GB Patent:1468982.1985
    [78]张永刚,王成扬,闫斐.沥青基球形活性炭的制备及其应用进展[J].材料导报.2002,16(2):46-48
    [79]吕春祥,李开喜,吕永根.沥青基球状活性炭的医用性能评价[J].新型炭材料.2002,17(3):11-14
    [80]Jen L C, Tong H S.Preparation of spherical encapsulation of activated carbons and their adsorption capacity of typical uremic toxins [J]. Journal of Biomedical Materials Research,1991,24(2):243-258
    [81]Watanabe K.Sorbent comprising spherical particles of activated carbon depositing non-crystalline compound of zirconium and process for preparing thereof [P]. US Patent:4474853.1984
    [82]Medvedev S, Trichleb V, Kozinchenko A.Preparation and spheres of application of the new carbon sorbents from the synthetic polycondensed polymers [A]. International carbon conference, Carbon'90[C]. Paris:Group Francais Detude Des Carbones.1990: 130-131
    [83]Gurina N, Nikova V M, Mnkhalovskv S.Synthetic active carbons for selective removal of the antibodies against encephalitogenic myelin basic protein [A]. International carbon conference, Carbon'90[C]. Paris:Group Francais Detude Des Carbones.1990:134-135
    [84]Kagaku K, Kaisha K.Method of treatment for stoma-peripheral inflammation diseases [P]. US Patent:5556600,1996
    [85]何俣,朱永法,喻方.玻璃珠负载中孔TiO2纳米薄膜光催化研究[J].无机材料学报.2004,19(2):385-390
    [86]李佑稷,李效东,李君文,等.TiO2/活性炭复合体的制备及其表征[J].材料科学与工艺.2005,13(5):537-543
    [87]刘小军.沥青基球形活性炭的制备及结构控制的研究[D].华东理工大学.2009
    [88]Valladares D L, Reinoso F R, Zgrablich G. Characterization of active carbons the influence of the method in the determination of the pore size distribution[J]. Carbon, 1998,36(10):1491-1499
    [89]Rychlicki G, Terzyk A P, Lukaszewicz J P. Determination of carbon porosity from low-temperature nitrogen adsorption data. A comparison of the most frequently used methods[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,1995, 96(1):105-111
    [90]Long D H, Zhang R, Qiao W M, et al. Biomolecular adsorption behavior on spherical carbon aerogels with various mesopore sizes[J].Journal of Colloid and Interface Science,2009,331 (1):40-46
    [91]Seton N A, Walton J, Quirk N. A new analysis method for the determination of the pore size distribution of porous carbons from nitrogen adsorption measurement[J].Carbon,1989,27(6):853-861
    [92]Kowalczyk P, Terzyk A P, Gauden P A, et al. Estimation of the pore-size distribution function from the nitrogen adsorption isotherm.Comparison of density functional theory and the method of do and co-workers[J].Carbon,2003,41(6):1113-1125
    [93]周云龙,胡志彪,陈武华,等.TiO2/竹炭复合材料研究(Ⅱ)[J].功能材料.2010,41(2): 197-199
    [94]Darmstadt H, Roy C, Kaliaguine S, et al. Surface chemistry of ordered mesoporous carbons[J].Carbon,2002,40(14):2673-2683
    [95]Mills A, Hunte S L. An overview of semiconductor photocatalysis[J].Journal of Photochemistry and Photobiology A:Chemistry,1997,108(1):1-35
    [96]潘超,李琪,乔庆东.焙烧过程对纳米TiO2晶型参数的影响[J].化工科技.2004,12(1):26-28
    [97]张慧,陈建华,陈鸿博,等.纳米TiO2混晶的形成及其对光催化性能的影响[J].分子催化.2006,20(3):249-254
    [98]Fox M A, Dulay M T. Heterogeneous photocatalysis[J].Chemical Reviews,1993, 93(1):341-357
    [99]Yu J C, Y J J, Ho W, et al. Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation[J].Chemical Communication,2001,1942-1943
    [100]Satoh N, Nakashima T, Kamikura K, et al. Quantum size effect in TiO2 nanoparticles prepared by finely controlled metal assembly on dendrimer templates [J].Nature Nanotechnology,2008,3 (2):106-111
    [101]Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis [J].Chemical Reviews,1995,95 (1):69-96
    [102]Tang Z H, He X, Song Y, et al. Properties of mesoporous carbons prepared from different carbon precursors using nanosize silica as a template [J].New Carbon Material,2010,25(6):465-469
    [103]Ryoo R, Joo S H, Kruk M, et al. Ordered mesoporous carbons[J].Advanced Materials, 2001,13(9):677-681
    [104]Darmstadt H, Roy C, Kaliaguine S, et al. Surface chemistry of ordered mesoporous carbons[J].Carbon,2002,40(14):2673-2683
    [105]Kim D J, Lee H I, Yie J E, et al. Ordered mesoporous carbons:Implication of surface chemistry, pore structure and adsorption of methyl mercaptan[J]. Carbon, 2005,43(9):1868-1873
    [106]Kennedy L J, Vijaya J J, Kayalvizhi K, et al.Adsorption of phenol from aqueous solutions using mesoporous carbon prepared by two-stage processfJ].Chemical Engineering Journal,2007,132(1-3):279-287
    [107]Lee H I, Lung Y, Kim S, et al.Preparation and application of chelating polymer-mesoporous carbon composite for copper-ion adsorption[J].Carbon, 2009,47(4):1043-1049
    [108]Grabowska L E, Gryglewicz G.Adsorption characteristics of Congo Red on coal-based mesoporous activated carbon[J].Dyes and Pigments,2007,74(1):34-40
    [109]Ohkubo T, Miyawaki J, Kaneko K, et al. Adsorption properties of templated mesoporous carbon (CMK1) for nitrogen and supercritical methane-experiment and GCMC simulation[J].The Journal of Physical Chemistry B,2002,106(25):6523-6528
    [110]Xu D P, Yoon S H, Mochida I, et al.Synthesis of mesoporous carbon and its adsorption property to biomolecules[J].Micropor.Mesopor.Mater.,2008,115(3): 461-468
    [111]Vengatesan S, Kim H, Kim S, et al.High dispersion platinum catalyst using mesoporous carbon support for fuel cells [J].Electrochimica Acta,2008,54(2): 856-861
    [112]Cui X Z, Shi J L, Zhang L X, et al.Pt-Co supported on ordered mesoporous carbon as an electrode catalyst for methanol oxidation [J].Carbon,2009,47(1):186-194
    [113]Lei Z B, Bai S Y, Xiao Y, et al.CMK-5 mesoporous carbon synthesized Via chemical vapor deposition of ferrocene as catalyst support for methanol oxidation[J]. J.Phys.Chem.C.,2008,112(3):722-731
    [114]Ariga K, Vinu A, Ji Q M, et al. A layered mesoporous carbon sensor based on nanopore-filling cooperative adsorption in the liquid phase[J].Angew.Chem.Int. Ed., 2008,47(38):7254-7257
    [115]Jurewicz K, Vix-Gutrl C, Frackoeiak E, et al.Capacitance properties of ordered porous carbon materials prepared by a templating procedure[J]. Journal of Physics and Chemistry of Solids,2004,65(2-3):287-293
    [116]Kodama M, Yamshita J, Soneda Y, et al.Structure and electrochemical capacitance of nitrogen-enriched mesoporous carbon[J].Chem.Lett.,2006,35(6):680-681
    [117]Tamai H, Kunihiro M, Morita M, et a 1.Mesoporous activated carbon as electrode for electric double layer capacitor[J]. J.Mater.Sci.,2005,40(14):3703-3707
    [118]Xu B, Wu F, Chen R J, et a 1.Highly mesoporous and high surface area carbon:A high capacitance electrode material for EDLCs with various electrolytes[J]. Electrochem. Commun.,2008,10(5):795-797
    [119]Yoon S, Lee J W, Hyeon T, et al.Electric double-layer capacitor performance of a new mesoporous carbon[J].Journal of the Electrochemical Society,2000,147 (7):2507-2512.
    [120]Zhang C X, He J P, Zhou J H, et al. Synthesis and capacitance properties of ordered mesoporous carbon CMK-3 supported nickel oxide by microwave method[J].Acta. Chim. Sin.,2008,66(6):603-608
    [121]Zhou H S, Zhu S M, Hibino M, et al.Electrochemical capacitance of self-ordered mesoporous carbon[J]. Journal of Power Sources,2003,122(3):219-223
    [122]龙东辉.中孔炭材料的制备及其结构控制研究[D].华东理工大学,2008
    [123]LU A H, Schmidt W, Schuth F.Simplified novel synthesis of ordered mesoporous carbon with a bimodal pore system[J].New Carbon Materials,2003,18(3):181-185
    [124]Tang Z, Song Y, Tian Y, et al. Pore development of thermosetting phenol resin derived mesoporous carbon through a commercially nanosized template[J]. Materials Science and Engineering:A,2008,473(1-2):153-157
    [125]Qiao W M, Song Y, Hong S H, et al.Development of mesophase pitch derived mesoporous carbons through a commercially nanosized template [J]. Langmuir, 2006,22(8):3791-3797
    [126]Wang J T, Chen Q J, Liu X J, et al. Hard-templating synthesis of mesoporous carbon spheres with controlled particle size and mesoporous structure for enzyme immobilization[J].Materials Chemistry and Physics,2011,129(3):1035-1041
    [127]Chantal G, Bernard B, Cedric D, et al.Physicochemical properties and photocatalytic activities of TiO2-films prepared by sol-gelmethods[J].Applied Catalysis B: Environmental,2002,39(4):331-342
    [128]Zhang J, Huang Z H, Xu Y, et al.Carbon-coated TiO2 composites for the photo catalytic degradation of low concentration benzene[J].New Carbon Materials, 2011,26(1):63-70
    [129]Zhu L, Meng Z D, Cho K Y, et al.Synthesis of CdS/CNT-TiO2 with a high photocatalytic activity in photodegradation of methylene blue [J].New Carbon Materials,2012,27(3):166-174
    [130]Sing K S W, Everett D H, Haul R A W, et al. Reporting Physisorption data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity [J].Pure and Applied Chemistry,1982,54(11):2201-2218
    [131]Hamdy M S, Berg O, Jansen J C, et al. TiO2 nanoparticles in mesoporous TUD-1: synthesis, characterization and photocatalytic performance in propane oxidation [J].Chemistry-A European Journal,2006,12(2):620-628
    [132]Ziolkowski L, Vinodgopal K, Kamat P V. Photo stabilization of organic dyes on poly(styrenesulfonate)-capped TiO2 nanoparticles[J].Langmuir,1997,13(12): 3124-3128
    [133]Karunagaran B, Rajendra K R T, Senthil K V, et al. Structural characterization of DC magnetron-sputtered TiO2 thin films using XRD and Raman scattering studies[J].Materials Science in Semiconductor Processing,2003,6(5-6):547-550
    [134]Xie Y, Yuan C. Visible-light responsive cerium ion modified titania sol and nanocrystallites for X-3B dye photodegradation[J]. Applied Catalysis B: Environmental,2003,46(2):251-259
    [135]Ao Y H, Xu J J, Fu D G, et al.Photocatalytic degradation of X-3B by titania-coated magnetic activated carbon under UV and visible irradiation[J]. Journal of Alloys and Compounds,2009,471(1-2):33-38
    [136]Ihara T, Miyoshi M, Iriyama Y, et al. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping [J].Applied Catalysis B:Environmental,2003,42:403
    [137]Yin S, Zhang Q W, Fumio S, et al. Preparation of Visible Light-Activated Titania Photocatalyst by Mechanochemical Method[J]. Chemistry Letters,2003,32(4):358
    [138]Hiroshi I, Yuka W, Kazuhito H.Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst[J].Chemistry Letters,2003,32(8):772-773
    [139]Matos J, Laine J, Herrmann J M.Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon[J]. Applied Catalysis B: Environmental,1998,18(3-4):281-291
    [140]Yu H, Quan X, Chen S, et al. TiO2-Multiwalled carbon nanotube heterojunction arrays and their charge separation capability[J].J.Phys.Chem.C.,2007,111(35):12987-12991
    [141]Woan K, Pyrgiotakis G, Sigmund W. Photocatalytic carbon-nanotube-TiO2 composites[J].Advanced Materials,2009,21(21):2233-2239
    [142]Yao Y, Li G, Ciston S, et al. Photoreactive TiO2/Carbon nanotube composites: synthesis and reactivity[J].Environmental Science & Technology,2008,42(13): 4952-4957
    [143]Liang Y, Wang H, Sanchez Casalongue H, et al. TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials[J].Nano Research,2010,3 (10):701-705
    [144]Yali W, Yuxing W, Yanqin T, et al. Optimization of structure parameters for the head of the anti-flood spiral pile. Information Engineering (ICIE).2010.WASE International Conference on:14-15 Aug.2010:179-183
    [145]Serp P, Corrias M, Kalck P. Carbon nanotubes and nanofibers in catalysisfJ]. Applied Catalysis A:General,2003,253(2):337-358
    [146]Zhou J, Sui Z, Zhou X, et al. Palladium catalysts supported on fishbone carbon nanofibers from different carbon sources[J].Chinese Journal of Catalysis,2008,29(11): 1107-1112
    [147]Baker R T K, Rodriguez N, Mastalir A, et al. Platinum/Graphite nanofiber catalysts of various structure:characterization and catalytic properties[J].The Journal of Physical Chemistry B,2004,108(38):14348-14355
    [148]Ma J, Park C, Rodriguez N M, et al.Characteristics of copper particles supported on various types of graphite nano fibers [J]. The Journal of Physical Chemistry B, 2001,105(48):11994-12002
    [149]Park C, Baker R T K. Catalytic behavior of graphite nano fiber supported nickel particles.2. The Influence of the Nano fiber Structure[J].The Journal of Physical Chemistry B,1998,102(26):5168-5177
    [150]Zhao T J, Chen D, Dai Y-C, et al. The effect of graphitic platelet orientation on the properties of carbon nanofiber supported Pd catalysts prepared by ion exchange[J].Topics in Catalysis,2007,45(1):87-91
    [151]Chesnokov V V, Prosvirin I P, Zaitseva N A, et al. Effect of the structure of carbon nanofibers on the state of an active component and on the catalytic properties of Pd/C catalysts in the selective hydrogenation of 1,3-butadiene[J]. Kinetics and Catalysis, 2002,43(6):838-846
    [152]Li Z, Cui X, Zheng J, et al. Effects of micro structure of carbon nanofibers for amperometric detection of hydrogen peroxide[J].Analytica Chimica Acta,2007, 597(2):238-244
    [153]Yang Q H, Hou P X, Bai S, et al.Adsorption and capillarity of nitrogen in aggregated multi-walled carbon nanotubes[J].Chemical Physics Letters,2001,345(1-2):18-24
    [154]Gao B, Chen G Z, Li P G Carbon nanotubes/titanium dioxide (CNTs/TiO2) nanocomposites prepared by conventional and novel surfactant wrapping sol-gel methods exhibiting enhanced photocatalytic activity [J]. Applied Catalysis B: Environmental,2009,89(3-4):503-509
    [155]Choi H, Stathatos E, Dionysiou D D. Photocatalytic TiO2 films and membranes for the development of efficient wastewater treatment and reuse systems[J]. Desalination, 2007,202(1-3):199-206
    [156]Lee S K, Robertson P K J, Mills A, et al. The alteration of the structural properties and photocatalytic activity of TiO2 following exposure to non-linear irradiation sources[J].Applied Catalysis B:Environmental,2003,44(2):173-184
    [157]Park C, Baker R T K.Catalytic behavior of graphite nanofiber supported nickel particles.3. The effect of chemical blocking on the performance of the system[J].The Journal of Physical Chemistry B,1999,103(13):2453-2459
    [158]Hasobe T, Fukuzumi S, Kamat P V. Stacked-cup carbon nanotubes for photoelectrochemical solar cells[J].Angewandte Chemie International Edition, 2006,45(5):755-759
    [159]Liu H, Cheng S, Zhang J, et al. Titanium dioxide as photocatalyst on porous nickel: Adsorption and the photocatalytic degradation of sulfosalicylic acid[J]. Chemosphere, 1999,38(2):283-292
    [160]Rachel A, Subrahmanyam M, Boule P.Comparison of photocatalytic efficiencies of TiO2 in suspended and immobilised form for the photocatalytic degradation of nitrobenzenesulfonic acids[J].Applied Catalysis B:Environmental,2002,37(4): 301-308
    [161]Kandiel T A, Dillert R, Robben L, et al.Photonic efficiency and mechanism of photocatalytic molecular hydrogen production over platinized titanium dioxide from aqueous methanol solutions[J].Catalysis Today,2011,161(1):196-201
    [162]Jimmy C Y, Lizhi Z, Jiaguo Y. Rapid synthesis of mesoporousTiO2 with high photocatalytic activity by ultrasound-induced agglomeration[J].New J. Chem.,2002, 26(4):416-420
    [163]Soler-Illia G J, Louis A, Sanchez C.Synthesis and characterization of mesostructured titania-based materials through evaporation-induced self-assembly[J].Chem. Mater., 2002,14(2):750-759
    [164]Cabrera S, Haskouri J E.Enhanced surface area in thermally stable pure mesoporous TiO2[J].Solid State Sciences,2000,2:513-518
    [165]Alexandridis P, Hatton T A.Poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) block copolymer surfactants in agueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling[J].Colloids Surfaces, 1995,96:1-46
    [166]Nivaggioli T, Alexandridis P, Hatton T A. Fluorescence probe studies of pluronic copolymer solutions as a function of temperature [J].Langmuir,1995,11:730-737
    [167]Kruk M, Jaroniec M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials[J].Chem. Mater.,2001,13(10):3169-3183.
    [168]Soler-Illia G J A A, Scolan E, Louis A, Albouy P A, et al.Design of meso-structured titanium oxo based hybrid organic-inorganic networks[J].New J. Chem., 2001,25:156-165
    [169]温超.蒸发诱导自组装法制备二氧化钛中孔材料[D].中山大学,2006
    [170]李和兴,朱建.特定结构光催化剂的制备及其构效关系[J].催化学报.2008,29(1):91-98
    [171]王江,张密林,刘克松,等.蒸发诱导组装合成高度有序纳米Ti02薄膜[J].哈尔滨工业大学学报.2007,39(11):1808-1810
    [172]Liang C, Hong K, Guiochon G, et al. Synthesis of ordered large-scale highly ordered porous carbon film by self-assembly of block copolymers[J].Angew Chem. Int. Ed., 2004,43(43):5785-5789
    [173]Tanaka S, Nishiyama N, Egashira Y, et al.Synthesis of ordered meaoporous carbons with channel structure from an organic-organic nanocomposite[J].Chem. Connnun., 2005(16):2125-2127
    [174]Meng Y, Gu D, Zhang F Q, et al.Ordered mesoporous polymers and homologous carbon frameworks:Amphiphilic surfactant templating and direct transformation[J].Angew Chem.,2005,117(43):7215-7221
    [175]Meng Y, Gu D, Zhang F Q, et al. A family of highly ordered mesoporous polymer resin and carbon structures from organic-organic self-assembly [J].Chem. Mater., 2006,18(18):4447-4464
    [176]Liang C D, Dai S.Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction[J].J. Am. Chem. Soc.,2006,128(16):5316-5317
    [177]Huang Y, Cai H, Yu T, et al. Formation of mesoporous carbon with a face-centered-cubic structure and bimodal architectural pores from the reverse amphiphilic triblock copolymer PPO-PEO-PPO[J].Angew Chem. Int. Ed.,2007, 46(7):1089-1093
    [178]Deng Y, Liu C, Gu D, et al. Thick wall mesoporous carbons with a large pore structure templated from a weakly hydrophobic PEO-PMMA diblock copolymer [J].J. Mater. Chem.,2008,18(1):91-97

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700