拯救GPMV毒株细胞系的构建及靶向沉默P基因抑制GPMV复制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鹅副黏病毒病是由鹅副黏病毒引起的一种高死亡率的传染病。该病对各种年龄的鹅均具有易感性,其中15日龄以内雏鹅的发病率和死亡率可高达100%。经鉴定,鹅副黏病毒为禽副黏病毒血清I型,因此鹅副黏病毒病又可称为是鹅的新城疫。近几年,该病对我国养鹅业造成了严重的经济损失,威胁着养鹅业的健康发展。鹅副黏病毒病的预防主要依靠弱毒疫苗株,目前尚没有同源疫苗进行鹅副粘病毒病的特异免疫,因此,新型疫苗的创制是该病防控的重要环节之一。通过反向遗传学技术来获得鹅新城疫的疫苗株是国内外研究的热点,其中最重要的基础环节就是需要一个稳定表达T7RNA聚合酶的细胞系。
     新城疫病毒的复制主要依靠核糖核蛋白聚合体(RNP),形成RNP的必要条件之一就是需要P蛋白,P蛋白和L蛋白的结合物具有RNA依赖RNA聚合酶活性,所以本研究选择靶向沉默P基因,进而抑制病毒的复制。
     对T7RNA聚合酶基因进行克隆,构建真核表达载体PCI-T7。利用脂质体转染法将该载体转染到V7细胞系,构建了表达T7 RNA聚合酶的V7细胞系。并利用Western blot和间接免疫荧光对HA蛋白进行了检测,证实T7 RNA聚合酶基因在VT7细胞系中得到了稳定有效的表达。
     根据鹅源副黏病毒NA-1株已发表的P基因序列,siRNA表达载体的要求和RNAi靶位基因序列选择原则,应用BLAST工具筛选出特异性地针对鹅源副黏病毒的siRNA序列,同时设计阴性RNAi靶位。根据所设计的RNAi的靶位分子和表达载体的要求,将RNAi靶位分子经过退火、纯化后连接到酶切后的RNAi专用表达载体上,进而转染鸡胚成纤维细胞(CEF)及鸡胚,6h后接种病毒。接毒后36h时分别用Real Time RT-PCR、病毒滴度测定、间接免疫荧光、细胞病变情况来观察RNAi对GPMV NA-1在CEF中复制和繁殖的影响情况,并用血凝试验检测RNAi在鸡胚中的抑制作用。实验结果显示,针对GPMV NA-1株P基因设计的2个RNAi靶位,在RNAi过程中表现出了很强的抑制效果,其中RNAi-P641的抑制效率更高。说明了P基因的这两个位点是鹅源副黏病毒复制所必需的。
     脱氧核酶(Deoxyriozyme DNAzyme DZ)是一种通过对体外合成的随机序列库进行筛选得到的具有RNA切割功能的DNA分子,是目前基因沉默研究的热点之一。本试验应用生物信息学针对鹅源副黏病毒NA-1株P基因设计DZ-P-358、DZ-P-446、DZ-P-7023种10-23脱氧核酶,经体外切割实验筛选得到DZ-P-702、DZ-P-358具有切割活性,DZ-P-702活性较高。在CEF细胞水平通过细胞病变情况、病毒滴度测定、间接免疫荧光方法验证了DZ-P-702、DZ-P-358可以抑制鹅源副黏病毒在CEF细胞的复制;通过Real-time PCR方法检测表明DZ-P-358及DZ-P-702降低CEF细胞中P基因的转录水平,其中DZ-P-702抑制效率可达到78.5%。通过对尿囊液血凝效价的测定表明脱氧核酶可以有效抑制GPMV在鸡胚中的增殖,展现了脱氧核酶在生产实践中的应用前景。
     综上所述,本研究成功构建稳定表达T7RNA聚合酶的VT7细胞系,为通过反向遗传学技术来获得新城疫的疫苗株奠定了坚实的基础;筛选出两个有效的抑制鹅副黏病毒P基因表达的干扰靶位。筛选出了针对鹅副黏病毒P基因特异的脱氧核酶DZ-P-702。有效靶位的筛选和确立,为进一步研究该病的抗病毒治疗及抗病育种领域提供了技术基础。
Goose paramyxovirus disease is a high mortality rate of infectious diseases caused by the goose paramyxovirus. The disease was susceptibility to all age of goose.Less 15-day-old goslings' morbidity and mortality can be as high as 100%. It was identified that the goose paramyxovirus is theⅠ-type serum virus, so the goose paramyxovirus virus may also called the Newcastle disease of goose. In recent years, this disease cause serious economic damage to the raising goose industry in China, threatening the healthy development of goose industry. The prevention of goose paramyxovirus mainly relied on the Attenuated vaccine, so the creating of new vaccine is one of the most important links to prevent and control the disease. It's a hot research that to gain the attenuated vaccine of Newcastle disease by reverse genetic manipulation, and one of the most important basic link is that it requires a cell lines to express T7RNA polym erase stably.
     The replication of the Newcastle disease virus mainly depend on the RNP, and a necessary condition for the formation of RNP is the P protein needed, the complex of P protein and L protein have a RNA-dependent RNA polymerase activity, so this research select to target to science the P gene, in order to prevent the replication of the virus.
     To clone the T7RNA polymerase gene, and construct the eukaryotic expression vector PCI-T7. Transfect the expression vector to the cell lines V7 by the method of Liposome transfection, thus constructing a V7 cell lines which express the T7 RNA polymerase. And detect the HA protein by Western blot and indirect immunofluorescence, which confirmed that the T7 RNA polymerase gene have expressed in VT7 cell lines stably and efficiently.
     According to the Published P gene sequence of goose paramyxovirus, requirements of SiRNA expression vector and the selection principle of RNAi targeted sequences, selected the SiRNA sequences specific for goose paramyxovirus by BLAST tools, and design negative RNAi sites in the same time. According to the requirement of the designed target molecule and expression vector of RNAi, the target molecule was connected to the dedicated expression vector of RNAi which was after Enzyme cutting when it has annealed and purified, and be transfected into CEF and chicken embryo,which would be inoculate the virus after 6h. in order to observe the influence of RNAi to the GPMV NA-1 which was replicated and reproduced in CEF 36h post-infection, Real Time RT-PCR, detecting of virus titer, indirect immunofluorescence and cell disease had been used.And testing the inhibition of RNAi in CEF by hemagglutination test. The experimental result shows that, the two RNAi sites aiming at the P protein of GPMV NA-1 showed a strong inhibitory effect, and the inhibition efficiency of RNAi-P641 is stronger. What was proofed that the P gene is necessary to the replication of goose paramyxovirus virus.
     DNAzyme is the DNA molecules with the function of RNA cutting, which was selecting from random sequence library composed in vitro, it's one of the hot spot in Gene silence research at present. By the bioinformatics having been used, this test design the DZ-P-358, DZ-P-446, DZ-P-702 three kinds of 10-23 DNAzyme aiming at GPMV NA-1 P protein, the cutting experiments in vitro has shown that the DZ-P-702, DZ-P 358 has cut activity, and DZ-P-702 has higher activity. It is proofed that DZ-P-702、DZ-P-358 can inhibit the replication of the goose paramyxovirus virus by observing the cell disease, detecting of virus titer, indirect immunofluorescence in CEF level; Test indicated that DZ-P-358 and DZ-P-702 may reduce the transcription level of P protein in CEF through the method of Real-time PCR, of which, the inhibition efficiency of DZ-P-702 may reach 78.5%. By determine the Blood clots titer of allantoic fluid, it proved that DZ may inhibit the proliferation of GPMV in CEF, and shown the application prospect of DNAzyme in production practice.
     Summary:To have successfully constructed VT7 cell lines that can express T7 RNA polymerase steady, and forming the massy foundation for gaining the AMERVAC PRRS of Newcastle disease by reverse genetic manipulation; and have selected two interference sites which may inhibit the expression of GPMV P gene effectively.Screened out the specific DNAzyme DZ-P-702 that is aiming at the goose paramyxovirus P gene. And the screening and establishment of the effective targets provide the technical foundation for further study of antiviral therapy and resistance of disease breeding areas.
引文
[1]Alexander, D.J.,1988. Newcastle disease:methods of spread. In:Alexander, D.J.(Ed.), Newcastle Disease. Kluwer Academic Publishers, Boston, pp. 256-272.
    [2]殷震,刘景华.动物病毒学.第二版:北京科学出版社,1997.48-62,736-767
    [3]Yusoff K, Tan W. Newcastle disease virus:macromolecules and opportunities. Avian Pathol,2001,30(5):439-455
    [4]Myers T M, Smallwood S, Moyer S A. Identification of nucleocapsid protein residues required for sendai virus nucleocapsid formation and genome replication. J Gen Virol,1999,80(6):1383-1391
    [5]McGinnes L W, Gravel K, Morrison T G. Newcastle disease virus HN protein alters the conformation of the F protein at cell surface. J Virol,2002,77(7):12622-12633
    [6]Peeters B P, de Leeuw O S, Koch G et al. Rescue of Newcastle disease virus from cloned cDNA:evidence that cleavability of the fusion protein is a major determinant for virulence. J Virol,1999,73:5001-5009
    [7]Kim, L.M., King, D.J., Curry, P.E., Suarez, D.L., Swayne, D.E., Stallknecht, D.E., Slemons,R.D., Pedersen, J.C., Senne, D.A.,Winker, K., et al.,2007a. Phylogenetic diversity among low virulence Newcastle disease viruses from waterfowl and shorebirds and comparison of genotype distributions to poultry-origin isolates. J. Virol.81,12641-12653.
    [8]Aldous, E.W., Mynn, J.K., Banks, J., Alexander, D.J.,2003. Amolecular epidemiological study of avian paramyxovirus type 1 (Newcastle disease virus) isolates by phylogenetic analysis of a partial nucleotide sequence of the fusion protein gene. Avian Pathol.32,239-256.
    [9]Czegledi, A., Ujvari, D., Somogyi, E., Wehmann, E., Werner, O., Lomniczi, B., 2006.Third genome size category of avian paramyxovirus serotype 1 (Newcastle disease virus) and evolutionary implications. Virus Res.120, 36-48.
    [10]Yu, L., Wang, Z., Jiang, Y., Chang, L., Kwang, J.,2001. Characterization of newly emerging Newcastle disease virus isolates from the People's Republic of China and Taiwan. J. Clin. Microbiol.39,3512-3519.
    [11]Ballagi-Pordany, A., Wehmann, E., Herczeg, J., Belak, S., Lomniczi, B.,1996. Identification and grouping of Newcastle disease virus strains by restriction site analysis of a region from the F gene. Arch. Virol.141,243-261.
    [12]Mase, M., Imai, K., Sanada, Y., Sanada, N., Yuasa, N., Imada, T., Tsukamoto, K., Yamaguchi, S.,2002. Phylogenetic analysis of Newcastle disease virus genotypesisolated in Japan. J. Clin. Microbiol.40,3826-3830.
    [13]Abolnik, C., Horner, R.F., Bisschop, S.P., Parker, M.E., Romito, M., Viljoen, G.J.,2004a.A phylogenetic study of South African Newcastle disease virus strains isolated between 1990 and 2002 suggests epidemiological origins in the Far East. Arch. Virol.149,603-619.
    [14]Wang, Z., Liu, H., Xu, J., Bao, J., Zheng, D., Sun, C., Wei, R., Song, C., Chen, J.,2006.Genotyping of Newcastle disease viruses isolated from 2002 to 2004 in China.Ann. N. Y. Acad. Sci.1081,228-239.
    [15]Tsai, H.J., Chang, K.H., Tseng, C.H., Frost, K.M., Manvell, R.J., Alexander, D.J.,2004.Antigenic and genotypical characterization of Newcastle disease viruses isolated in Taiwan between 1969 and 1996. Vet. Microbiol.104,19-30.
    [16]Alexander DJ. Newcastle disease and other Paramyxoviridae infections.In: Calnek BW, Barnes HJ,Beard CW, McDougald L, Saif YM, editors. Diseases of poultry,10th ed. Ames, IA:Iowa State University Press,1997. p.541±69.
    [17]Miers LA, Bankowski RA, Zee YC. Optimizing the enzyme-linked immunosorbent assay for evaluating immunity in chickens to Newcastle disease. Avian Path 1983;27:1112±25.
    [18]Jarecki-Black JC, King DJ. An oligonucleotide probe that distinguishes isolates of low virulence from the more pathogenic strains of Newcastle disease virus.Avian Dis 1993;37:724±30.
    [19]McMillan BC, Hanson RP. Di.erentiation of exotic strains of Newcastle disease virus by oligonucleotide fingerprinting. Avian Dis 1982;26:332±29.
    [20]Nagai Y, Klenk HD, Rott R. Proteolytic cleavage of the viral glycoproteins and its significance for the virulence of Newcastle disease virus. Virology 1976;72:494±508.
    [21]Kaleta EF, Siegmann O, Jank Ladwig R, Glunder G.Isolation and biological properties of virulent subpopulations from lentogenic Newcastle disease virus strains.Comp Immun Microbiol Infect Dis 1980;2:485±96.
    [22]King DJ. Newcastle disease virus passage in MDBK cells as an aid in detection of a virulent subpopulation.Avian Dis 1993;37:961±9.
    [23]Glickman RL, Syddall RJ, Iorio RM, Sheehan JP, Bratt MA. Quantitative basic residue requirements in the cleavage-activation site of the fusion glycoprotein as a determinant of virulence for Newcastle disease virus.J Virol 1988;62:354±6.
    [24]LeA Long L, Brasseur R, Wemers C, Meulemans G,Burny A. Fusion (F) protein gene of Newcastle disease virus:Sequence and hydrophobicity comparative analysis between virulent and avirulent strains. Virus Genes 1988;1:333±50.
    [25]Collins MS, Bashiruddin JB, Alexander DJ. Deduced amino acid sequences at the fusion protein cleavage siteof Newcastle disease viruses showing variation in antigenicity and pathogenicity. Arch Virol 1993;128:363±70.
    [26]Seal BS, King DJ, Locke DP, Senne DA, Jackwood MW. Phylogenetic relationships among highly virulent Newcastle disease virus isolates obtained from exotic birds and poultry from 1989 to 1996. J Clin Microbiol 1998;36:1141±5.
    [27]Kaleta EF, Baldauf C. Newcastle disease in free-living and pet birds. In: Alexander DJ, editor. Newcastle disease. Boston:Kluwer,1988. p.197±256.
    [28]Pearson JE, Senne DA, Alexander DJ, Taylor WD,Peterson LA, Russell PH. Characterization of Newcastle disease virus (avian paramyxovirus-1) isolated from pigeons. Avian Dis 1987;31:105±11.
    [29]Alexander DJ, Parsons G. Avian paramyxovirus type 1 infections of racing pigeons:2. Pathogenicity experiments in pigeons and chickens. Vet Rec 1984;114:466±9.
    [30]Alexander DJ, Parsons G. Pathogenicity for chickens of avian paramyxovirus type 1 isolates obtained from pigeons in Great Britain during 1983±1985. Avian Path 1986;15:487±93.
    [31]King DJ.In uence of chicken breed on pathogenicity evaluation of velogenic neurotropic Newcastle disease virus isolates from cormorants and turkeys. Avian Dis 1996;40:210±7.
    [32]Kruger, K., Grabowski, P. J., Zaug, A. J., Sands, J., Gottschling, D. E. and Cech, T. R. (1982) Self-splicing RNA:autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31,147-157.
    [33]Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N. and Altman, S. (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35,849-857.
    [34]Ellington, A. D. and Szostak, J. W. (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346,818-822.
    [35]Tuerk, C. and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment:RNAligands to bacteriophageT4 DNA polymerase. Science 249, 505-510.
    [36]Robertson, D. L. and Joyce, G. F. (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344,467-468.
    [37]Joyce, G. F. (2004) Directed evolution of nucleic acid enzymes. Annu. Rev. Biochem.73,791-836.
    [38]Silverman, S. K. (2007) In vitro selection and application of nucleic acid enzymes (ribozymes and deoxyribozymes).Wiley Encyclopedia of Chemical Biology, in press.
    [39]Breaker, R. R. and Joyce, G. F. (1994) A DNA enzyme that cleaves RNA. Chem. Biol.1,223-229.
    [40]Santoro, S. W. and Joyce, G. F. (1997) A general purpose RNA-cleaving DNA enzyme. Proc. Natl. Acad. Sci. USA 94,4262-4266.
    [41]Okumoto, Y. and Sugimoto, N. (2000) Effects of metal ions and catalytic loop sequences on the complex formation of a deoxyribozyme and its RNA substrate. J. Inorg. Biochem.82,189-195.
    [42]Zaborowska, Z., Furste, J. P., Erdmann, V. A. and Kurreck, J.(2002) Sequence requirements in the catalytic core of the (?) 10-23(?) DNA enzyme. J. Biol. Chem.277,40617-40622.
    [43]Zaborowska,Z., Schubert, S.,Kurreck, J. andErdmann,V. A.(2005) Deletion analysis in the catalytic region of the 10-23 DNA enzyme. FEBS Lett.579, 554-558.
    [44]Cairns, M. J., King, A. and Sun, L.-Q. (2003) Optimisation of the 10-23 DNAzyme-substrate pairing interactions enhanced RNA cleavage activity at purine-cytosine target sites. Nucleic Acids Res.31,2883-2889.
    [45]Peracchi, A. (2000) Preferential activation of the 8-17 deoxyribozyme by Ca2+ ions. Evidence for the identity of 8-17 with the catalytic domain of the Mg5 deoxyribozyme.J. Biol. Chem.275,11693-11697.
    [46]Peracchi, A., Bonaccio, M. and Clerici, M. (2005) A mutational analysis of the 8-17 deoxyribozyme core. J. Mol. Biol.352,783-794.
    [47]Kim, H. K., Rasnik, I., Liu, J., Ha, T. and Lu, Y. (2007) Dissecting metal ion-dependent folding and catalysis of a single DNAzyme. Nat. Chem. Biol.3, 763-768.
    [48]Lilley,D. M. J. (2000) Structures of helical junctions in nucleic acids. Q. Rev. Biophys.33,109-159.
    [49]Coppins, R. L. and Silverman, S. K. (2004) A DNA enzyme that mimics the first step of RNA splicing. Nat. Struct. Mol.Biol.11,270-274.
    [50]Zelin, E., Wang, Y. and Silverman, S. K. (2006) Adenosine is inherently favored as the branch-site RNA nucleotide in a structural context that resembles natural RNA splicing. Biochemistry 45,2767-2771.
    [51]Flynn-Charlebois, A., Wang, Y., Prior, T. K., Rashid, I.,Hoadley, K. A. Coppins, R. L., Wolf, A. C. and Silverman,S. K. (2003) Deoxyribozymes with 2'-5'RNA ligase activity.J. Am. Chem. Soc.125,2444-2454.
    [52]Chinnapen, D. J. and Sen, D. (2007) Towards elucidation of the mechanism of UV1C, a deoxyribozyme with photolyase activity. J. Mol. Biol.365, 1326-1336.
    [53]McManus, S. A. and Li, Y. (2008) A deoxyribozyme with a novel guanine quartet-helix pseudoknot structure. J. Mol.Biol.375,960-968.
    [54]Leung, E. K. and Sen, D. (2007) Electron hole flow patterns through theRNA-cleaving 8-17 deoxyribozyme yield unusual information about its structure and folding. Chem. Biol.14,41-51.
    [55]Coppins,R. L. and Silverman, S. K. (2005)Mimicking the first step of RNA splicing:an artificial DNA enzyme can synthesize branched RNA using an oligonucleotide leaving group as a 5'-exon analogue. Biochemistry 44, 13439-13446.
    [56]Carmi, N. and Breaker, R. R. (2001) Characterization of a DNA-cleaving deoxyribozyme. Bioorg.Med. Chem.9,2589-2600.
    [57]Cruz, R. P. G., Withers, J. B. and Li, Y. (2004) Dinucleotide junction cleavage versatility of 8-17 deoxyribozyme. Chem. Biol.11,57-67.
    [58]Li,Y. andBreaker,R. R. (1999)Kinetics ofRNAdegradation by specific base catalysis of transesterification involving the 2'-hydroxyl group. J. Am. Chem. Soc.121,5364-5372.
    [59]Soukup, G. A. and Breaker, R. R. (1999) Relationship between internucleotide linkage geometry and the stability of RNA. RNA 5,1308-1325.
    [60]Doudna, J. A. and Cech, T. R. (2002) The chemical repertoire of natural ribozymes. Nature 418,222-228.
    [61]Santoro, S. W. and Joyce, G. F. (1997) A general purpose RNA-cleaving DNA enzyme. Proc. Natl. Acad. Sci. USA 94,4262-4266.
    [62]Salehi-Ashtiani, K. and Szostak, J. W. (2001) In vitro evolution suggests multiple origins for the hammerhead ribozyme. Nature 414,82-84.
    [63]Faulhammer, D. and Famulok, M. (1996) The Ca2+ ion as a cofactor for a novel RNA-cleaving deoxyribozyme. Angew. Chem. Int. Ed. Engl.35, 2837-2841.
    [64]Feldman, A. R., Leung, E. K., Bennet, A. J. and Sen, D.(2006) The RNA-cleaving bipartiteDNAzyme is a distinctive metalloenzyme. ChemBioChem 7,98-105.
    [65]Geyer, C. R. and Sen, D. (1997) Evidence for the metalcofactor independence of an RNA phosphodiester-cleaving DNA enzyme. Chem. Biol.4,579-593.
    [66]Roth, A. and Breaker, R. R. (1998) An amino acid as a cofactor for a catalytic polynucleotide. Proc. Natl. Acad. Sci. USA 95,6027-6031.
    [67]Cuenoud, B. and Szostak, J. W. (1995) A DNA metalloenzyme with DNA ligase activity. Nature 375,611-614.
    [68]Flynn-Charlebois, A., Wang, Y., Prior, T. K., Rashid, I., Hoadley, K. A., Coppins, R. L., Wolf, A. C. and Silverman,S. K. (2003) Deoxyribozymes with 2'-5'RNA ligase activity.J.Am. Chem. Soc.125,2444-2454.
    [69]Flynn-Charlebois, A., Prior, T. K., Hoadley, K. A. and Silverman, S. K. (2003) In vitro evolution of anRNA-cleavingDNA enzyme into an RNA ligase switches the selectivity from 3'-5'to 2'-5'.J. Am. Chem. Soc.125, 5346-5350.
    [70]Semlow, D. R. and Silverman, S. K. (2005) Parallel selections in vitro reveal a preference for 2'-5'RNA ligation by deoxyribozyme-mediated opening of a 2',3'-cyclic phosphate.J. Mol. Evol.61,207-215.
    [71]Hoadley,K. A., Purtha,W. E.,Wolf,A. C., Flynn-Charlebois,A. and Silverman, S. K. (2005) Zn2+ dependent deoxyribozymes that form natural and unnatural RNA linkages.Biochemistry 44,9217-9231.
    [72]Coppins, R. L. and Silverman, S. K. (2004) Rational modification of a selection strategy leads to deoxyribozymes that create native 3'-5'RNA linkages. J. Am. Chem. Soc.126,16426-16432.
    [73]Wang, Y. and Silverman, S. K. (2005) Directing the outcome of deoxyribozyme selections to favor native 3'-5'RNA ligation. Biochemistry 44,3017-3023.
    [74]Purtha,W. E., Coppins, R. L., Smalley, M. K. and Silverman,S. K. (2005) General deoxyribozyme-catalyzed synthesis of native 3'-5'RNA linkages. J. Am. Chem. Soc.127,13124-13125.
    [75]Wang, Y. and Silverman, S. K. (2003) Deoxyribozymes that synthesize branched and lariat RNA. J. Am. Chem. Soc.125,6880-6881.
    [76]Wang, Y. and Silverman, S. K. (2003) Characterization of deoxyribozymes that synthesize branched RNA. Biochemistry 42,15252-15263.
    [77]Domdey, H., Apostol, B., Lin, R. J., Newman, A., Brody, E. and Abelson, J. (1984) Lariat structures are in vivo intermediates in yeast pre-mRNA splicing. Cell 39,611-621.
    [78]Padgett, R. A., Konarska, M. M., Grabowski, P. J., Hardy,S. F. and Sharp, P. A. (1984) Lariat RNA(?) s as intermediates and products in the splicing of messenger RNA precursors.Science 225,898-903.
    [79]Ruskin, B., Krainer, A. R., Maniatis, T. and Green, M. R.(1984) Excision of an intact intron as a novel lariat structure during pre-mRNA splicing in vitro. Cell 38,317-331.
    [80]Coppins, R. L. and Silverman, S. K. (2004) A DNA enzyme that mimics the first step of RNA splicing. Nat. Struct. Mol.Biol.11,270-274.
    [81]Coppins, R. L. and Silverman, S. K. (2005) A deoxyribozyme that forms a three-helix-junction complex with its RNA substrates and has general RNA branch-forming activity.J. Am. Chem. Soc.127,2900-2907.
    [82]Zelin, E., Wang, Y. and Silverman, S. K. (2006) Adenosine is inherently favored as the branch-site RNA nucleotide in a structural context that resembles natural RNA splicing.Biochemistry 45,2767-2771.
    [83]Pratico, E. D., Wang, Y. and Silverman, S. K. (2005) A deoxyribozyme that synthesizes 2',5'-branched RNA with any branch-site nucleotide. Nucleic Acids Res.33,3503-3512.
    [84]Wang, Y. and Silverman, S. K. (2005) Efficient one-step synthesis of biologically related lariat RNAs by a deoxyribozyme. Angew. Chem. Int. Ed. 44,5863-5866.
    [85]Buchhaupt, M., Peifer, C. and Entian, K. D. (2007) Analysis of 2'-O-methylated nucleosides and pseudouridines in ribosomal RNAs using DNAzymes. Anal. Biochem.361,102-108.
    [86]Lapham, J., Yu, Y. T., Shu, M. D., Steitz, J. A. and Crothers,D. M. (1997) The position of site-directed cleavage of RNA using RNase H and 2'-O-methyl oligonucleotides is dependent on the enzyme source. RNA 3, 950-951.
    [87]Hengesbach, M., Meusburger, M., Lyko, F. and Helm, M.(2008) Use of DNAzymes for site-specific analysis of ribonucleotide modifications. RNA 14, 180-187.
    [88]Cairns, M. J., King, A. and Sun, L.-Q. (2000) Nucleic acid mutation analysis using catalyticDNA.NucleicAcidsRes.28,E9.
    [89]Suenaga, H., Liu, R., Shiramasa, Y. and Kanagawa, T. (2005) Novel approach to quantitative detection of specific rRNA in a microbial community, using catalytic DNA. Appl. Environ. Microbiol.71,4879-4884.
    [90]Keiper, S. and Vyle, J. S. (2006) Reversible photocontrol of deoxyribozyme-catalyzed RNA cleavage under multipleturnover conditions. Angew. Chem. Int. Ed.45,3306-3309.
    [91]Li, J., Zheng, W., Kwon, A. H. and Lu, Y. (2000) A highly sensitive and selective catalytic DNA biosensor for lead ions.J. Am. Chem. Soc.122, 10466-10467.
    [92]Liu, J. and Lu, Y. (2005) Stimuli-responsive disassembly of nanoparticle aggregates for light-up colorimetric sensing.J. Am. Chem. Soc.127, 12677-12683.
    [93]Lu, Y. and Liu, J. (2006) Functional DNA nanotechnology:emerging applications of DNAzymes and aptamers. Curr.Opin. Biotechnol.17, 580-588.
    [94]Liu, J. and Lu, Y. (2007) Colorimetric Cu2+ detection with a ligation DNAzyme and nanoparticles. Chem. Commun.,4872-4874.
    [95]Liu, J. and Lu, Y. (2004) Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor. Anal. Chem.76,1627-1632.
    [96]Liu, J. andLu,Y. (2006) Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew. Chem. Int. Ed.45,90-94.
    [97]Levy, M. and Ellington, A. D. (2002) ATP-dependent allosteric DNA enzymes. Chem. Biol.9,417-426.
    [98]Cho, E. J., Yang, L., Levy, M. and Ellington, A. D. (2005) Using a deoxyribozyme ligase and rolling circle amplification to detect a non-nucleic acid analyte, ATP. J. Am. Chem.Soc.127,2022-2023.
    [99]Achenbach, J. C., Nutiu, R. and Li, Y. (2005) Structureswitching allosteric deoxyribozymes. Anal. Chim. Acta 534,41-51.
    [100]Kolpashchikov, D. M. (2007) A binary deoxyribozyme for nucleic acid analysis. ChemBioChem 8,2039-2042.
    [101]Stojanovic, M. N., de Prada, P. and Landry, D.W.(2000) Homogeneous assays based on deoxyribozyme catalysis.Nucleic Acids Res.28, 2915-2918.ug Discov.1,503-514.
    [102]Sioud, M. (2004) Ribozyme- and siRNA-mediated mRNA degradation:a general introduction.MethodsMol. Biol.252,1-8.
    [103]Patil, S. D., Rhodes, D. G. and Burgess, D. J. (2005) DNA-based therapeutics and DNA delivery systems:a comprehensive review. AAPS J.7, E61-E77.
    [104]Nunamaker, E. A., Zhang, H. Y., Shirasawa, Y., Benoit, J. N. andDean,D. A. (2003) Electroporation-mediated delivery of catalytic oligodeoxynucleotides for manipulation of vascular gene expression. Am. J. Physiol. Heart Circ. Physiol.285,H2240-H2247.
    [105]Datta, H. J. and Glazer, P. M. (2001) Intracellular generation of single-stranded DNA for chromosomal triplex formation and induced recombination. Nucleic Acids Res.29,5140-5147.
    [106]Tan, X.-X., Rose, K.,Margolin,W.and Chen, Y. (2004)DNA enzyme generated by a novel single-stranded DNA expression vector inhibits expression of the essential bacterial cell division gene ftsZ. Biochemistry 43, 1111-1117.
    [107]Chen, F.,Wang,R., Li, Z., Liu, B.,Wang,X., Sun, Y.,Hao,D. and Zhang, J. (2004) A novel replicating circular DNAzyme. Nucleic Acids Res.32, 2336-2341.
    [108]Tack, F., Bakker, A., Maes, S., Dekeyser, N., Bruining, M. Elissen-Roman,C., Janicot,M.,Brewster,M., Janssen,H. M.,De Waal, B. F. et al. (2006) Modified poly(propylene imine) dendrimers as effective transfection agents for catalytic DNA enzymes (DNAzymes). J. Drug Target. 14,69-86.
    [109]Tack, F., Bakker, A., Maes, S., Dekeyser, N., Bruining, M., Elissen-Roman, C., Janicot, M., Janssen, H. M., De Waal,B. F., Fransen, P. M. et al. (2006) Dendrimeric poly(propylene-imines) as effective delivery agents for DNAzymes:toxicity, in vitro transfection and in vivo delivery. J. Control.Release 116, e26-e28.
    [110]Kubo, T., Takamori, K., Kanno, K., Rumiana, B., Ohba, H., Matsukisono, M., Akebiyama, Y. and Fujii, M. (2005) Efficient cleavage of RNA, enhanced cellular uptake, and controlled intracellular localization of conjugate DNAzymes.Bioorg. Med. Chem. Lett.15,167-170.
    [111]Seifert, G., Taube, T., Paal, K., von Einsiedel, H. G., Well-mann, S., Henze, G., Seeger, K., Schroff, M. and Wittig, B.(2006) Stability and catalytic activity of novel circular DNAzymes. Nucleosides Nucleotides Nucleic Acids 25,785-793.
    [112]Schubert, S., Gul, D. C., Grunert, H. P., Zeichhardt, H.,Erdmann, V. A. and Kurreck, J. (2003) RNA cleaving (?) 10-23(?) DNAzymes with enhanced stability and activity. Nucleic Acids Res.31,5982-5992.
    [113]Vester, B., Hansen, L. H., Lundberg, L. B., Babu, B. R.,Sorensen,M. D.,Wengel, J. andDouthwaite, S. (2006)Locked nucleoside analogues expand the potential of DNAzymes to cleave structured RNA targets. BMC Mol. Biol. 7,19.
    [114]Abdelgany, A., Wood, M. and Beeson, D. (2007) Hairpin DNAzymes:a new tool for efficient cellular gene silencing.J. Gene Med.9,727-738.
    [115]Macdonald, J., Li, Y., Sutovic,M., Lederman, H., Pendri, K.,Lu, W. Andrews, B. L., Stefanovic, D. and Stojanovic, M. N.(2006)Mediumscale integration ofmolecular logic gates in an automaton. Nano Lett.6,2598-2603.
    [116]Peeters B P H, de Leeuw O S, Koch G. Rescue of Newcastle disease virus from cloned cDNA:evidence that cleavability of the fusion protein is a major determinant for virulence[J].J Virol,1999,73(6):5001-5009.
    [117]Schnell M J, Mebatsion T, Conzelmann K K. Infectious rabies viruses from cloned cDNA[J]. EMBO J,1994,13:4195-4203.
    [118]Romer-Oberdorfer A, Mundt E, Mebatsion T. Generation of recombinant lentogenic Newcastle disease virus from cDNA[J]. J Gen Virol,1999,80: 2987-2995.
    [119]Ito N, Mutsuyo T I, Kentaro Y, et al. Improved recovery of rabies virus from cloned cDNA using a vaccinia virus free reverse genetics system [J]. Microbio Immunol,2003,47:613-617.
    [120]Van Gennip H G P, Van Rijm P A, Widjojoatmodjo M N, et al. Recovery of infectious classical swine fever virus (CSFV) from full-length genomic cDNA clones by a swine kidney cell line expressing bacteriophage T7 RNA polymerase[J]. J Virol Met,1999,78:117-128.
    [121]Buchholz U J, Finke S, Conzelmann K K. Generation of bovine respiratory syncytial virus (BRSV) from cDNA:BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter[J]. J Virol,1999,73(1):251-259.
    [122]Landick R. Active-site dynamics in RNApolym erases.Cell, 2004,116(3):351-353
    [123]Delarue M, Poch O, Tordo N,et al. An attempt to unify the structure of polymerases.Protein Eng,1990,3(6):461-467.
    [124]Vennema H, Rijnbrand R, Heijnen L,et al. Enhancement of the vaccinia virus/phage T7 RNA polymerase expression system using encephalomyocarditis virus 5'-untranslated region sequences.Gene,1991, 108(2):201-209.
    [125]Deng H, Wolff JA. Self-amplifying expression fromtheT7 promoter in 3T3 mouse fibroblasts.Gene,1994,143(2):245-249.
    [126]Gao X, Huang L. Cytoplasmic expression of a reporter gene by codelivery of T7 RNA polymerase and T7 promoter sequence with cationic liposomes.Nucleic Acids Res,1993,21(12):2867-2872.
    [127]Czegledi, A., Ujvari, D., Somogyi, E., et al.Third genome size category of avian paramyxovirus serotype 1 (Newcastle disease virus) and evolutionary implications[J]. Virus Res.2006.120,36-48.
    [128]Wise M G, Sellers H S, Alvarez R, et al. RNA-dependent RNA polymerase gene analysis of worldwide Newcastle disease virus isolates representing different virulence types and their phylogenetic relationship with other members of the paramyxoviridae [J]. Virus Res,2004,104(1):71-80.
    [129]Czegledi A.,Ujvari D., Somogyi E., Wehmann E., Werner O., Lomniczi B. Third genome size category of avian paramyxovirus serotype 1 (Newcastle disease virus)and evolutionary implications. [J] Virus Res.2006 Sep;120(1-2):36-48.
    [130]McRobert L, McConkey GA. RNA interference (RNAi) inhibits growth of Plasmodium falciparum[J]. Mol,Biochem,Parasitol,2002,119:273-278.
    [131]Rout S.N.,Samal S.K.The large polymerase protein is associated with the virulence of Newcastle disease virus.[J]J Virol.2008 Aug;82(16):7828-36.
    [132]Chinchar V.G.,Portner A.Inhibition of RNA synthesis following proteolytic cleavage ofNewcastle disease virus P protein.[J]Virology.1981Nov;115(1):192-202.
    [133]Sagrera A.,Cobaleda C.,Munoz-Barroso I.,Shnyrov V.,Villar E.Modulation of the neuraminidase activity of HN protein from Newcastle disease virus by substrate binding and conformational change:kinetic and thermal denaturation studies.[J]Biochem Mol Biol Int.1995 Nov;37(4):717-27.
    [134]Kennerdell J R, Carthew R W. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway[J].Cell,1998,95:1017-1026.
    [135]Robinson K A, Beverley S M. Improvements in transfection efficiency and tests of RNA interference (RNAi) approaches in the protozoan parasite Leis mania[J]. Mol Biochem Parasitol,2003,128:217-228.
    [136]Chen M, Granger A J, VanBrocklin M W, et al. Inhibition of avian leukosis virus replication by vector-based RNA interference [J]. Virology,2007, 365(2):464-472.
    [137]Daniela R。 Andreas Z. Drug delivery of siRNA therapeutics:potentials and limits of nanosystems[J]. Nanomedi:Nanotechnol Biol Med,2009,1(5): 8-20.
    [138]Raphael S, Lilli S, Lucas P.。Lessons from genetics:interpreting complex phenotypes in RNAi screens[J].Curr Opinion Cell Biol,2008,20(4):483-489.
    [139]Mahmood-ur-Rahman, Imran A, Tayyab H, et al. RNA interference:. The story of gene silencing in plants and humans[J]. Bioteehno1. Adv, 2008,26(3):202-209.
    [140]Ge Q, McManus M T, Nguyen T, et al. RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription I-J]. Proc Natl Acad Sci,2003,100: 2718-2723.
    [141]叶健,刘利新,薛远,等.针对leader序列的siRNA能够有效抑制SARS冠状病毒多个mRNA的表达[J].生物化学与生物物理进展,2007,34(10):1092-1100.
    [142]Wu C J, Huang H W, Liu C Y, et al. Inhibition of SARS-CoV replication by siRNA[J]. Antiviral Res,2005,65(1):45-48.
    [143]崔丽瑾,王兴龙,任林柱,等.短发夹结构RNA对口蹄疫病毒2B基因瞬时表达的抑制[J].中国兽医学报,2008,28(5):532-535.
    [144]Ferreira H I, Spilki F R, Almeida R S, et al., Inhibition of avian metapneumovirus(AMPV)replication by RNA interference targeting nucleoprotein gene (N)in cultured cells[J]. Antivir Res,2007,74(1):77-81.
    [145]Chen M, Granger A J, VanBrocklin M W, et al.Inhibition of avian leukosis virus replication by vector-based RNA interference[J]. Virology,2007, 365(2):464-472.
    [146]刘美,母连志,孟轲音,等.RNAi靶向NP、L基因抑制鹅源副黏病毒在鸡胚成纤维细胞中的复制[J].中国兽医学报,2009,29(6):841-844.
    [147]尹仁福,刘新鑫,丁壮,等.鹅源新城疫病毒实时荧光定量PCR检测方法的建立[J].中国兽医科学,2008,38(4):320-322.
    [148]费恩阁,李德昌,丁壮.动物疫病学[M].北京:中国农业出版社,2002.
    [149]唐一鸣.新城疫病毒基因组与基因演化[J].动物医学进展,2005,26(10):1-4.
    [150]王学理,武迎红,丁壮.鹅源禽副粘病毒NA-1株生物学特性的研究[J].吉林农业大学学报,2006,28(1):93-97.
    [151]Silverman SK. In vitro selection characterization and application of deoxyribozymes that cleave RNA.Nucleic Acids Res JT-Nucleic acids research,2005,33:6151-63.
    [152]Santoro SW, Joyce GF. A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci U S A,1997,94:4262-6.
    [153]Dass CR. Deoxyribozymes:cleaving a path to clinical trials[J]. Trends Pharmacol Sci,2004,2s:39s-7.
    [154]Dash BC, Benerjea AC. Sequence-specific cleavage avtivities of DNA Enzyme.target againiss HIV-1 Gag and Nef egious[J]. Oligonucleotides,2004, 14(1)41-47.
    [155]Toyoda T, Imamura Y, Takaku H, Tsumura N,Kato H,Hamada N. Kashiwagi T, Hara K, Iwahashi J, Ohtsu Y, Inhibition of influenza virus replication in cultured cells by RNA-cleaving DNAenzyme[J]. FEBS Led.2000;481:11 3-116.
    [156]Takahashi H, Hamazaki H, Habu Y et al.A new modified DNA enzyme that targets influenza virus A mRNA inhibits viral infection in cultured cells[J]. FEBS Lett.2004,s60:69-74.
    [157]T akahashiH,Abel,Takai K,Takaku H.In hibition of influenza virus RNAPB2 mRNA expression by a modified DNAenzyme[J].Nucleic Acids SympSer.2000;44:278-87.
    [158]Santoro SW, Joyee GF.A general purpose RNA--cleaving DNA enzyme[J].Pro Natl Acad Sci USA,1997,94(9):4262-4266.
    [159]Lam CH, Perrin DM. Introduction of guanidinium-modified deoxyuridine into the substrate binding regions of DNAzyme 10-23 to enhance target affinity: Implications for DNAzyme design [J]. Bioorg Med Chem Lett,2010,20 (17):5119-5122.
    [160]He Y, Tian Y, Chen Y,. DNAzymes in DNA nanomachinesand DNA analysis[M]. Integr Anal Syst,2009:377-388.
    [161]AHhina Y, Ito Y, wu cH, et al. DNA ribonucleasea that are acfive against intraeellular hepatitis B viral RNA targets[J]. Hepatolosy,1998,28(2): 547-554.
    [162]Liu c, Cheng R, Sun LQ, et al. Supmslon of piatelet-type 12-lipoxygenase acttivity in humam erythreleukemia cells by an RNA-cleaving DNAzyme[J]. Biochem Biophys Res Commun,2001,284(4):1077-1082.
    [163]Wu Y, Yu L, McMahon R, et al. Inhibition of bcr-abl oneogen expression by novel doxyrlhozymes(DNAzymel)[J]. Hum Gene Ther,1999,10(17): 2847-2857。
    [164]Bhella D, Ral ph A,MurphyL B, et al. Significant differences in nucleocap sid mor phol ogywithin the Paramyxoviridae [J].J Gen Virol,2002,83 (8):1831 1839.
    [165]Hamaguchi M, Yoshida T, Nishikawa K. Transcriptive complex of Newcastle disease virus. I.Both L and P proteins are required to constitute an active complex. Virology,1983,128:105-117.
    [166]Hamaguchi M, Nishikawa K, Toyoda T. Transcriptive complex of Newcastle disease virus. II.Structural and functional assembly associated with the cytoskeletal framework. Virology,1985,147:295-308.
    [167]Curran J, Marq J B, Kolakofsky D. The Sendai virus nonstructural C proteins specifically inhibitviral mRNA synthesis. Virology,1992,189:647-656.
    [168]Neumann G. EAD response agreement--what does itmean for vets [J] AustVet J,2002,80 (7):398-400.
    [169]Helena Lage Ferreira, Fernando Rosado Spilki, Renata Servan deAlm eida, et al. Inhibition of avian metapneumovirus (AMPV)replication by RNA interference targeting nucleoprotein gene (N)in cultured cells [J]. Antiviral Research,2007, 32:108-115.
    [170]李敬双,于洋,唐雨顺,张玉科,李明,田莉莉.蟾酥注射液佐剂对鸡新城疫、传染性支气管炎二联活疫苗免疫效果的影响[J].中国农学通报,2011,(20).
    [171]王丽荣,董永军,胡建和,王宪文,杭柏林.甘草多糖对雏鸡新城疫抗体效价和体质量的影响[J].西北农业学报,2011,(6).
    [172]陶静,叶红.新城疫F蛋白基因工程疫苗的研究现状[J].安徽农业科学,2011,(17).
    [173]韩耘,封柯宇,李洪涛,李叔伟,田伟,王丽新,陶淑清,庞雅君,郑德富.新城疫SPF疫苗与普通疫苗免疫效果的比较试验[J].中国兽医杂志,2011,(5).
    [174]刘凤斌,李建福,陈晓芳,汤苏阳.以miRNA为基础的RNA干扰线粒体相关基因TFAM和POLG的研究[J].军医进修学院学报,2011,(9).
    [175]提高RNA干扰技术效率可望改进癌症治疗方法[J].技术与市场,2011,(9).
    [176]林小满,谢娜,徐杨.子宫内膜癌细胞中RNA干扰Bmi-1基因的实验研究及意义[J].中国医药科学,2011,(16).
    [177]Linda Hiisser,于琳琳.慢病毒介导的RNA干扰鉴定RIG-Ⅰ、MDA-5和TLR3在猪上皮细胞识别RNA病毒中的作用[J].中国畜牧兽医,2011,(8).
    [178]袁成良,刘定海,刘利洪,邹自英,魏世刚.RNA干扰抑制树突状细胞CD80和CD86基因表达研究[J].西部医学,2011,(8).
    [179]王卫锋,太帅帅,王鲁,刘贯山,李凤霞,高晓明,孙玉合.烟草NtLS基因RNA干扰表达载体的构建及遗传转化[J].中国烟草科学,2011,(4).
    [180]田树波,李乐平,靖昌庆.RNA干扰技术在大肠癌治疗中的研究进展[J].中国现代普通外科进展,2011,(8).
    [181]刘春亮,林丹丹,徐岚,姜智,吴士良.慢病毒介导的RNA干扰ppGalNAc-T2基因表达抑制Jurkat细胞增殖和迁移(英文)[J].生物化学与生物物理进 展,2011,(8).
    [182]郑典宝,郑骏年,陈家存,孙晓青.RNA干扰沉默Ki67基因对裸鼠肾癌细胞移植瘤生长及凋亡的影响[J].江苏医药,2011,(15).
    [183]袁伟,陆晓和,宫玉波,周瑾.重组腺病毒载体RNA干扰阻断ICOS共刺激通路抑制大鼠角膜移植免疫排斥反应的研究[J].眼科新进展,2011,(8).
    [184]李玉红,宋文涛,廖汉林,毕勇毅CYP4F3基因RNA干扰重组慢病毒载体的构建[J].江苏医药,2011,(14).
    [185]赵云,李媛媛,张宝刚,刘秀静,徐滨,赵一诺,刘雨清,王琳.小RNA干扰降低COX-2表达对乳腺癌细胞趋化和侵袭能力的影响[J].肿瘤防治研究,2011,(7).
    [186]蒋良君,阳学风.RNA干扰技术在肝纤维化治疗中的应用[J].中国现代医药杂志,2011,(7).
    [187]刘凤斌,李建福,陈晓芳,汤苏阳.以1niRNA为基础的RNA干扰线粒体相关基因TFAM和POLG的研究[J].军医进修学院学报,2011,(9).
    [188]提高RNA干扰技术效率可望改进癌症治疗方法[J].技术与市场,2011,(9).
    [189]林小满,谢娜,徐杨.子宫内膜癌细胞中RNA干扰Bmi-1基因的实验研究及意义[J].中国医药科学,2011,(16).
    [190]Linda Hiisser,于琳琳.慢病毒介导的RNA干扰鉴定RIG-Ⅰ、MDA-5和TLR3在猪上皮细胞识别RNA病毒中的作用[J].中国畜牧兽医,2011,(8).
    [191]袁成良,刘定海,刘利洪,邹自英,魏世刚.RNA干扰抑制树突状细胞CD80和CD86基因表达研究[J].西部医学,2011,(8).
    [192]王卫锋,太帅帅,王鲁,刘贯山,李凤霞,高晓明,孙玉合.烟草NtLS基因RNA干扰表达载体的构建及遗传转化[J].中国烟草科学,2011,(4).
    [193]田树波,李乐平,靖昌庆.RNA干扰技术在大肠癌治疗中的研究进展[J].中国现代普通外科进展,2011,(8).
    [194]刘春亮,林丹丹,徐岚,姜智,吴士良.慢病毒介导的RNA干扰ppGalNAc-T2基因表达抑制Jurkat细胞增殖和迁移(英文)[J].生物化学与生物物理进展,2011,(8).
    [195]郑典宝,郑骏年,陈家存,孙晓青.RNA干扰沉默Ki67基因对裸鼠肾癌细胞移 植瘤生长及凋亡的影响[J].江苏医药,2011,(15).
    [196]袁伟,陆晓和,宫玉波,周瑾.重组腺病毒载体RNA干扰阻断ICOS共刺激通路抑制大鼠角膜移植免疫排斥反应的研究[J].眼科新进展,2011,(8).
    [197]李玉红,宋文涛,廖汉林,毕勇毅CYP4F3基因RNA干扰重组慢病毒载体的构建[J].江苏医药,2011,(14).
    [198]赵云,李媛媛,张宝刚,刘秀静,徐滨,赵一诺,刘雨清,王琳.小RNA干扰降低COX-2表达对乳腺癌细胞趋化和侵袭能力的影响[J].肿瘤防治研究,2011,(7).
    [199]蒋良君,阳学风.RNA干扰技术在肝纤维化治疗中的应用[J].中国现代医药杂志,2011,(7).
    [200]许文婧,张双,张娜,杨阳,魏于全,邓洪新.RNA干扰黏着斑激酶抑制人肝癌细胞sk-hep-1生长的实验研究[J].四川大学学报(医学版),2011,(4).
    [201]尹明智,官梅,肖钢,李栒,官春云.DOF转录因子AtDof1.7RNA干扰载体的构建及拟南芥的遗传转化[J].作物学报,2011,(7).
    [202]黄健,李德怀.RNA干扰FAT10基因对舌癌细胞系Tca8113增殖和侵袭的影响[J].口腔颌面外科杂志,2011,(3).
    [203]R.C.Elders,于琳琳.RNA干扰抑制犬KIT(干细胞因子受体)表达[J].中国畜牧兽医,2011,(6).
    [204]张挺,徐东亮,周强平,鲁佩,殷长军,张炜,徐正铨,顾民.RNA干扰沉默骨桥蛋白对大鼠移植肾小管上皮细胞向间充质转分化的作用[J].南京医科大学学报(自然科学版),2011,(6).
    [205]Maggie. RNA多聚核酶能够组装合成含95个核苷酸长链的RNAs[J]基因组学与应用生物学,2011,(3).
    [206]吴雷.基于表面增强拉曼散射(SERS)技术的核酸(脱氧核酶)研究[D].吉林大学:吉林大学,2011.
    [207]张敏.靶向特异脱氧核酶对肝癌相关基因IGF-ⅡP3表达影响的研究[D].吉林大学:吉林大学,2011.
    [208]崔力凡.抗FMDV核酶的筛选及其重组成纤维细胞株的建立[D].中国农业科学院:中国农业科学院,2011.
    [209]崔力凡,吴国华,张强.核酶在疾病基因治疗中的应用研究进展[J].中国畜牧兽医,2011,(4).
    [210]刘碧瑜,张文军.丙型肝炎病毒核心基因靶向性M1 GS核酶的构建及鉴定[J].广东药学院学报,2011,(2).
    [211]王爱民,周国燕.10-23脱氧核酶的研究进展[J].中国生物制品学杂志,2011,(3).
    [212]张文军,刘碧瑜,周玉珍,林桂先,张欣,李红枝.一种HCV靶向性M1GS核酶的构建及其体外活性[J].基础医学与临床,2011,(1).
    [213]柯霞,杨玉成,洪苏玲.脱氧核酶抑制鼻咽癌细胞EBV-LMP1的表达[J].基础医学与临床,2010,(12).
    [214]Gao, Q., M. S. Park, and P. Palese.2008. Expression of transgenes from newcastle disease virus with a segmented genome. J. Virol.822692-2698.
    [215]Vigil A, Martinez O, Chua MA, and Garcia-Sastre A. Recombinant Newcastle disease virus as a vaccine vector for cancer therapy. Mol Ther. 2008;16:1883-1890.
    [216]Ge, J., G. Deng, Z. Wen, G. Tian, Y. Wang, J. Shi, X. Wang, Y. Li, S. Hu, Y. Jiang, C. Yang, K. Yu, Z. Bu, and H. Chen.2007. Newcastle disease virus-based live attenuated vaccine completely protects chickens and mice from lethal challenge of homologous and heterologous H5N1 avian influenza viruses. J. Virol.81:150-158.
    [217]Amero CD, Boomershine WP, Xu Y, Foster M 2008. Solution structure of Pyrococcus furiosus RPP21, a component of the archaeal RNase P holoenzyme, and interactions with its RPP29 protein partner. Biochemistry 41: 11704-11710.
    [218]Baird NJ, Fang X-W, Srividya N, Pan T, Sosnick TR 2007. Folding of a universal ribozyme:The ribonuclease P RNA. Q Rev Biophys 40:113-161.
    [219]Baird NJ, Gong H, Zaheer SS, Freed KF, Pan T, Sosnick TR 2010. Extended structures in RNA folding intermediates are due to nonnative interactions rather than electrostatic repulsion. J Mol Biol 397:1298-1306.
    [220]Honda T, Hara T, Nan J, Zhang X, Kimura M 2010.Archaeal homologs of human RNase P protein pairs Pop5 with Rpp30 and Rpp21 with Rpp29 work on distinct functional domains of the RNA subunit. Biosci Biotechnol Biochem 74:266-273.
    [221]Mariner PD, Walters RD, Espinoza CA, Drullinger LF, Wagner SD, et al. Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol Cell.2008;29:499-509.
    [222]Prieto JL, McStay B. Recruitment of factors linking transcription and processing of pre-rRNA to NOR chromatin is UBF-dependent and occurs independent of transcription in human cells. Genes Dev.2007;21:2041-2054.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700