基于ABAQUS的混凝土重力坝地震响应仿真分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土重力坝是一种应用极为广泛的重要坝型,其横缝的存在削弱了混凝土重力坝的整体刚度,在地震载荷作用下,其常会导致在大坝上部出现贯穿性的裂缝。强震作用下有横缝混凝土重力坝的动力响应是一个复杂的非线性过程,受到很多因素的影响,比如地震波、边界条件、库水动水压力等。为了全面系统地了解地震作用下混凝土重力坝的动力响应规律,为工程设计提供一定的参考,论文以存在多条横缝的三维整体坝体为对象,应用有限元软件ABAQUS在时域内以显式有限元方法对动力方程进行求解,进行了地震响应仿真计算方法的研究,分析了横缝对重力坝自振特性和地震响应的影响,探索了高效率和高精度的混凝土重力坝模态分析与地震响应分析的仿真方法。
     本文主要开展了以下几个方面的工作:
     (1)设计了六种计算模型,就横缝、库水以及坝体与坝基山岩之间交互作用方式对混凝土重力坝自振特性的影响进行了研究。计算结果表明:横缝削弱了坝体的刚度,表现为固有频率增大,其中基频增幅最为明显;考虑库水影响时系统的质量增大,坝体自振频率较空库模型有所降低,而其对基频的影响最为显著;按照接触考虑大坝与地基及两侧山岩的相互作用时,刚度降低,导致自振频率较按固连考虑时小。
     (2)按照是否考虑横缝以及模拟横缝的不同仿真方法设计了四种算法,分别对混凝土重力坝进行了地震响应分析,研究了采用不同的仿真算法时重力坝动位移、横缝法向张开度、动应力以及加速度响应的变化规律,探索了更符合现实的混凝土重力坝地震响应仿真计算方法。研究表明:分缝模型的动力响应明显大于不考虑横缝影响的整体模型,尤以横河向的动力响应增幅最为明显,表明横缝在混凝土重力坝地震响应仿真计算中的影响不容忽视;而对考虑横缝时的几种不同的仿真方法进行比较后,发现:按照单一坝段进行地震分析时的动力计算结果偏大;对于分别以接触与Cohesive单元模拟坝段之间的相互作用的模型,发现前者的计算结果大于后者,而后者由于模拟了真实的横缝材料,并考虑了法向拉应力,更符合现实情况。
     (3)应用ABAQUS中的子模型有限单元技术,对混凝土重力坝进行了在重力作用下的静力分析,改进了仿真方法,实现了高效和高精度的目的。并尝试将此方法运用于混凝土重力坝的地震响应分析中,虽然大大地节约了计算CPU时间,但误差较大,相信采用子程序或与其他第二方软件的相结合,可以实现子模型技术在重力坝地震响应分析中的应用。
Concrete gravity dam is an important dam type which is widely used. However, the existence of transverse joints weaken the overall stiffness of the concrete gravity dam, which often causes penetrating cracks in the upper section of the dam under earthquake action. The dynamic response of concrete gravity dam with transverse joints under severe earthquake is a complex nonlinear process, which is influenced by many factors, such as seismic waves, boundary conditions, hydrodynamic pressure and so on. In orde to understand the dynamic response law of concrete gravity dam under seismic loads comprehensively and systematically, and provide some reference for the engineering design, this paper uses the 3D whole dam model with more than one transverse joint as research object and uses the explicit finite element method in the time domain to solve the dynamic equations based on finite element software ABAQUS, studies on the simulation technology of the seismic response, analysis the effect of transverse joints on natural vibration properties and dynamic response of the gravity dam, and probes into the simulation method of high accuracy and high efficiency which can be applied in the modal analysis and seismic response analysis of ctoncrete gravity dam.
     The major work done in this paper is listed as following:
     (1)Six calculation models are designed for the study on the influence of the transverse joints, the reservoir water and the interaction with dam and dam foundation rock to the vibration performance of concrete gravity dam. The calculation results show that the transverse joints weaken the stiffness of the dam, which appears as the increase of the natural frequency, particularly the fundamental frequency; Compare with the reservoir empty model, it leads to increase the system quality and reduce the natural frequency of dam, especially the base frequency when considering the impact of the reservoir water. It will reduce the stiffness when the interaction between dam and foundation is studied as mutual contact, which makes the natural frequency of concrete gravity dam is relatively small compared to tie constraints.
     (2)Four algorithms are designed according to whether to consider the influence of transverse joints and the various simulation methods respectively to analysis the seismic response of the concrete gravity dam, study the change law of the dynamic displacements, the transverse joints aperture, the dynamic stress and the acceleration when using different simulation methods, explore the simulation method for the seismic performance analysis of concrete gravity dam which is more practical. The research indicates that the dynamic response of the model with transverse joints is significantly greater than that of integrated model, particularly the seismic response along transverse, which shows that the transverse joints can not be ignored in the analysis for the seismic responses of the concrete gravity dam; Conclusion from comparing betwween various simulation methods shows that the dynamic calculation results of single dam are too large; Besides, it is founded that the calculation results of the contact method are greater than the cohesive algorithm, which is reality-oriented because of the simulation of the true cross joint material and the consideration of the normal pulling stress.
     (3)The simulation method for static analysis of the concrete gravity dam is improved which realized for high efficiency and accuracy by the application of the sub-model technology in ABAQUS. It also gives a trial discussion of the application for this technology in the seismic response analysis of the concrete gravity dam. It saves the computing CPU time greatly, however, it also bring great errors. It is believed that it will come true for the application of the sub-model technology in the seismic response analysis of the concrete gravity dam when the subprograms or the combine with other software are applied.
引文
包世华.2005.结构动力学[M].武汉:武汉理工大学出版社:14,78~216
    陈厚群.1997.水工建筑物抗震设计规范SL203-97[S]:7,14-16
    陈厚群.2006a.混凝土大坝抗震中的力学问题[J].力学与实践,28(2):1-8
    陈厚群.2006b.坝址地震动输入机制探讨[J].水利学报,37(12):1417~1423
    陈厚群.2008.水工混凝土结构抗震研究进展的回顾与展望[J].中国水利水电科学研究院学报,6(4):245~257
    陈健云,林皋.2008.多点输入随机地震动拱坝-地基体系反应分析[J].世界地震工程,16(3):40~43
    陈龙,顾冲时,侯祥东.2004.双节点单元和接触算法分析带缝大坝形态[J].水电能源科学,22(1):56~59
    陈雯,李昕,周晶.2006.混凝土重力坝整体动力特性研究[J].世界地震工程,22(4):63~69.
    邓良军,张杰,李双宝.2005.金安桥水电站碾压混凝土重力坝抗震研究[J].工程抗震与加固改造,27(增刊):181~185
    董哲仁.2002.水工结构分析论文集[M].北京:中国水利水电出版社:178
    杜建国,林皋,谢清粮.2008.大坝-地基动力相互作用研究中的几个问题[J].水利与建筑工程学报,6(3):1-4
    杜修力,陈厚群,侯顺载.1996.拱坝系统三维非线性地震波动分析[J].地震工程与工程振动,16(3):39~47
    杜修力,涂劲,陈厚群.2000.有缝拱坝-地基系统非线性地震波动反应分析[J].地震工程与工程振动,20(1):11~20
    杜修力,王进廷.2001.动水压力及其对坝体地震反应影响的研究进展水利学报,(7):13~21
    范书立,陈健云,涂祝明.2007.横缝灌浆高度对重力坝地震反应影响的研究[J].水力发电,33(3):37~39
    郭明珠,任凤华,滕海文,苏克忠.2003.大坝强震震害特征分析[J].土木工程学报,36(11):106~109
    韩燕,黄达海.2008.碾压混凝土重力坝横缝切缝深度研究[J].三峡大学学报,30(3):26~29
    何蕴龙,贺如平,陆述远.2002.龙滩碾压混凝土重力坝地震影响分析[J].红水河,21(4):12-16
    侯顺载.2000.官地水电站大坝抗震安全[J].水电站设计,16(1):24~29
    胡志强.2003.考虑坝-基动力相互作用的有横缝拱坝地震响应分析[D].[博士学位论文].大连:大连理工大学
    焦爱萍,刘宪亮,许新勇.2007.宝泉浆砌石重力坝三维有限元动力分析[J].水利水运工程学报,(2):36~40
    解凌飞,杨丽.2007.基于增广Lagrange算法的高拱坝横缝开度接触仿真研究[J].红水河,26卷(增刊):31~36
    金峰,张楚汉,王光纶.1993.结构地基相互作用的FE-BE-IBE耦合模型[J].清华大学学报,33(2):17~24
    李德玉,叶建群,涂劲,涂祝明.2009.碾压混凝土重力坝整体三维非线性有限元地震反应分析[J].水力发电学报,28(5):79~82
    李桂庆,申向东,张雅静.2007.哈拉沁水库汇泄洪洞进水塔静动力分析[J].水力发电,33(1):31~34
    李华东,朱锡,罗忠,刘昕.2009.附连水质量的边界元法求解[J].海军工程大学学报,21(2):45~49
    李建波,陈健云,林皋.2004.求解非均匀无限地基相互作用力的有限时域阻尼抽取法[J].岩土工程学报,26(2):263~267
    李建新,王光纶,金峰.2001.横缝结合质量对拱坝结构受力的影响[J].水利发电,(10):45~48.
    李南生,楼梦麟,周晶,谢利辉.2008.拱坝横缝间附加弹簧、阻尼的减震计算[J].土木工程学报,41(5):94~99
    李南生,周晶,林皋.1999.有横缝高拱坝的动力接触模型及其数值解[J].水利学报,(12):17~22
    李雪春,陈重华,徐昕.2002.非整体拱坝结构分析研究[J].水利学报,(6):47~52
    林皋,杜建国.2005b.基于SBFEM的坝-库水相互作用分析[J].大连理工大学学报,45(5):723~729
    林皋,胡志强.2004b.拱坝横缝影响及有效抗震措施的研究[J].世界地震工程,20(3):128
    林皋.2004a.混凝土大坝抗震技术的发展现状与展望(Ⅰ)[J].水科学与工程技术,(6):1-3
    林皋.2005a.混凝土大坝抗震技术的发展现状与展望(Ⅱ)[J].水科学与工程技术,特稿(1期):1-3
    林皋.2006.混凝土大坝抗震安全评价的发展趋向[J].防灾减灾工程学报,26(1):1-12
    林皋.2009.汶川大地震中大坝震害与大坝抗震安全性分析[J].大连理工大学学报,49(5):657~666
    刘海笑,周锡.2001.结构地震反应分析中接触面问题的处理[J].天津大学学报,33(1):41~43
    刘君,陈健云,孔宪京,林皋.2003.基于DDA和FEM耦合方法的碾压混凝土坝抗震安全性分析[J].大连理工大学学报,43(6):793~798
    刘新佳,龙渝川,徐艳杰.2003.地基辐射阻尼和库水对拱坝非线性地震响应的影响[J].水利发电,29(11):31~34
    刘展,祖景平,钱英莉,周华樟.2008. ABAQUS6.6基础教程与实例详解[M].北京:中国水利水电出版社:293
    麦家煊.2005.水工建筑物[M].北京:清华大学出版社,17~75
    美国ABAQUS Inc.2004. ABAQUS有限元软件6.4版入门指南[M].庄茁主译.朱以文,肖金生,张帆,蔡元奇翻译.北京:清华大学出版社,46:187~190
    M.M.格里申.1962.水工建筑物.上卷.水利水电科学研究所译.1984.北京:水利电力出版社:108
    潘家铮.1981.水工结构分析文集[M].北京:电力工业出版社
    邱流潮,刘桦,金峰.2006.混凝土重力坝地震响应数值分析方法[J].河海大学学报(自然科学版),34(1):65~68
    石建军,孙冰,周元德,张楚汉.2005.不同横缝接触与库水模型对拱坝动力反应的影响[J].水力发电学报,24(3):34~38
    石亦平,周玉蓉.2008. ABAQUS有限元分析实例详解[M].北京:机械工业出版社:10,199-200
    舒尔曼[苏].1980.水工建筑物的抗震计算[M].杨显明等译.北京:水利出版社:1-2
    水利部长江水利委员会长江勘测规划设计研究院.2005.混凝土重力坝设计规范SL319-2005[S].北京:中国水利水电出版社:70
    唐友刚.2002.高等结构动力学[M].天津:天津大学出版社:4~5
    涂劲.2007.混凝土大坝抗震数值分析理论与工程应用[M].北京:中国水利水电出版社:1-81
    王刚,马震岳,张运良.2009.考虑纵缝影响的重力坝静动力荷载组合作用分析[J].水利学报,40(2):244~249
    王进廷,杜修力,张楚汉.2003.重力坝-库水-淤砂-地基系统动力分析的时域显式有限元模型[J].清华大学学报(自然科学版),43(8):1112~1115
    王艳华,寇磊,王博.2008.渡槽结构地震反应分析地震波选取研究[J].水利与建筑工程学报,6(4): 38~39
    西北勘测设计研究院.1997.水工混凝土结构设计规范SL/T191-96[S].北京:中国水利水电出版社:1-108
    徐艳杰,张楚汉,王光纶.金峰.2001.小湾拱坝模拟实际横缝间距的非线性地震反应分析[J].水利学报,(4):68~74
    阎毅志,张燎军,魏述和,杨具瑞.2008.混凝土坝接触面的数值模拟研究[J].中国农村水利水电,(12):92~95
    杨佑发,魏建东.2002.结构动力分析的非线性拟动力方程法[J].世界地震工程,18(2):125~128
    张璧城.1991.水工建筑物的有限元分析[M].北京:水利电力出版社:6
    张贵科,徐卫亚.2005.重力坝纵缝非连续接触的数值模拟[J].水利学报,36(8):982~987
    张子明,杜成斌,江泉.2004.结构动力学[M].第2版.南京:河海大学出版社:2-3
    赵光恒,杜成斌.1994.分缝拱坝的地震响应分析[J].河海大学学报,22(5):1~8
    赵兰浩.2006.考虑坝体-库水-地基动力相互作用的有横缝拱坝地震响应分析.[博士学位论文].南京:河海大学
    赵腾伦.2007.ABAQUS在机械工程中的应用[M].北京:中国水利水电出版社:1-3,239~242
    周建平,陈观福,党林才.2007.我国高坝抗震安全评价的现状与挑战[J].水利学报,增刊:54~59
    朱伯芳.2001.有限厚度带键槽接缝单元及接缝对混凝土坝应力的影响[J].水利学报,(2):1-7
    卓家寿,姜弘道.1979.带有夹层基岩的三维弹塑性分析[J].华东水利学院学报,(2):1-22
    Bougacha S, Tassoulas J L.1991. Seism ic response of gravity dams I:Modeling of sediments[J]. J Eng Mech,ASCE,117(8):1826-1837
    CHANG C T.1994. Nonlinear dynamic discontinuous deformation analysis with finite elemet meshed block system[D]. California:Department of Civil Engineering, University of California at Berkeley
    Cheng A H D.1986. Effects of sedment on earthquake-induced reservoir hydrodynamic response[J]. J Eng Mech,ASCE.112(7):654-663
    CUNDALL P A, STRACK O D L.1979. A discrete numerical model for granular assemblies[J]. Geotechn ique,29(1):47-65
    Dom inguez J, Gallego R, Japon B R.1997. Effects of porous sediments on seismic response of concrete gravity dams[J]. J Eng M ech, ASCE,123(4):302-311
    Dowling ML, Hall J F.1989. Nonlinear seismic analysis of arch dams[J]. Journal of Engineering Mechanics,115(4):768-789
    Fenves GL, Chopra A K.1985. Effects of reservoir bottom absorption and dam-water-foundation rock interaction on frequencry resoponse functions for concrete gravity dams[J]. Earthquaks Engng Struct Dyn,13(1):13-31
    Fenves GL, Mojtahedi S.1993. Earthquake response of an arch damwith construction joint opening [J]. Dam Engineering,4(2):63-89
    Fenves GL, Mojtahedi S, Reimer R B.1989. ADAP-88:A computer program for nonlinear earthquake analysis of concrete arch dams[R]. Report No. UCB/EERC-89/02, Earthquake Engineering Research Center, University of California at Berkeley
    GOODMAN R E, TALOR R L, BREKKE T L.1968. A model for the mechanics of jointed rock[J]. J Soil Mech Found D iv, ASCE,94:637-660
    KIM Y, AMADEIB, PAN E.1999. Modeling the effect of w ater,excavation sequence and rock reinforcement with discontinuous deformation analysis[J]. Int J Rock Mech and M in ing Sci,36(7): 949-970
    KOO C Y, CHERN J C.1998. Modification of the DDAmethod for rigid block problems[J]. Int J Rock Mech and M in ing Sci,35(6):683-693
    LIN C T, AMADEIB, JUN G J, et al.1996. Extensions of discontinuous deformation analysis for jointed rock masses[J].Int J Rock Mech and M in ing Sci,33(7):671-694
    O'Connor J PF.1985. The modeling of cracks, potential crack surfaces and construction joints in arch dams by curved surface interface element [A]. In:Proc of 15thICOLD [C]. Lausanne, Switzerland,389-406
    SH IG H, GOODMAN R E.1989. Generalization of two-dimensional discontinuous deformation analysis for forward modeling[J]. Int J Numer Anal Methods in Geomech,13:359-380
    SHYU K.1993. Nodal based discontinuous deformation analysis[D]. California:Department of Civil Engineering, University of California at Berkeley
    Weber B, Hohberg JM, BachmanH.1990. Earthquake analysis of arch dams including joint non-linearity and fluid/structure interaction [J]. Dam Engineering,1(4):267-277
    Westergaard H M.1933. Water pressures on dams during earthquakes [J]. Transactions of ASCE,98: 418-433
    ZHANG Chuhan, XU Yanjie, WANG Guanglun, et al.2001a. Earthquake behavior of arch dams [A], Spencer& Hu Earthquake Engineering Frontiers in the New M illennium[C]. Balkem a Publishers: 219-225
    ZHANG Chuhan, YAN Chengda, WANG Guanglun.2001b. Numerical simulation of reservoir sediment and effects on hydro-dynamic response of arch dams[J]. E arthquake Engng Struct Dyn,30: 1817-1837

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700