混凝土重力坝及坝后式厂房整体静动力分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国水利水电事业的发展和混凝土坝筑坝技术水平的迅速提高,在水利资源丰富的西南和西北地区正在设计修建众多高坝大库,且常采用混凝土重力坝的型式以及坝后式厂房的布置。由于地质构造的原因这些地区又是高烈度地震频发地区。在高烈度地震作用下,混凝土重力坝及厂房的抗震安全性关系到下游广大地区工农业生产和人们的生命财产的安全,因此,对混凝土重力坝及坝后厂房的地震响应分析具有重大的现实意义。本文以某水电站工程为例,采用有限元静动力分析方法,研究在不同载荷工况下,坝体及厂房的应力位移响应。主要做了以下几个方面的工作:
     1、参考国内外相关文献,综述了混凝土坝的发展概况,介绍了有限静元动力分析方法以及国内外在混凝土坝和水电站厂房方面的研究现状。
     2、利用大型通用有限元软件ANSYS,依据某水电站设计参数,对厂房坝段以及坝后式厂房建立合适的三维有限元整体模型和分块模型,计算在不同工况下坝体、背管和厂房各部分的应力和位移等工作性态。
     3、对整体模型和分块模型进行模态分析,研究其自振频率及结构振型,在模态分析的基础上,对整体模型和分块模型进行地震反应谱分析,结果表明,整体模型虽然建模、划分单元和计算的工作量都远大于独立模型,但整体模型因为可以反应厂坝的相互作用,使得结果更加符合实际,并能为厂坝结合部位的结构设计提供可靠依据;对整体模型进行地震时程分析,并与整体模型反应谱分析结果对比,分析两种方法的优缺点。
     4、考虑机组振动情况,按规范计算机组强迫振动频率,对机组运行中可能出现的振源及频率进行计算分析,对是否出现共振进行校核;考虑机组振动对结构的影响,给出机组振动下结构的最大动应力和动位移响应,从而指导厂房机组的选型和布置设计。
     5、通过厂坝结构的整体静动力分析计算,综合评价设计方案的安全可靠性。
     对厂坝联合作用下的整体地震动力分析目前研究很少,本文作了有益的尝试,得出了有一定参考价值的结论和认识。
Now with the rapid development of water conservation and concrete dam technology, many height dams and large reservoirs will be constructed in southwest and northwest regions with plentiful water resource, and the gravity dam and factory building at dam toe are often choosed, at the same time those regions has frequent earthquake because of the geologic structure. It is endanger the industrial and agricultural production, the safety of people's life and property in the large regions of downstream under the high intensity seismic action. So it's very significant that numerical analysis the response of the seismic action for the concrete gravity dam and factory building at dam toe. This paper base on an hydro-power station, use the method of static and dynamic 3-D finite element analysis, calculate the stress and displacement response of concrete dam and it's factory building under two kinds of load characteristic. The main works of this paper are as follows:
     1. According to reading the domestic and international literatures, summarized the development actuality of concrete gravity dam, introduced the relative theories and methods of dynamical analysis and the research actuality of gravity dam and hydro-power station factory.
     2. By using finite element software ANSYS, based on an hydro-power station, the holistic 3-D finite element simulation model of dam, back pipe, and factory building was built, to calculate the stress and displacement of structure under two kinds of load characteristic, and gain the maximal stress and displacement of dam, back pipe, and factory building.
     3. Through self-vibration character analysis of the separate and holistic 3-D finite element simulation model, the self-vibration frequencies and mode shapes of structure ware calculated. Based on the results, the seismic response action spectrum method was given to the three models. The results shows that the holistic model was much more difficult than separate model in model building, element meshing and calculating, but it was complex conform to reality and it can also reflect the interaction of dam and factory building. The holistic model was analyzed by dynamic time-history theory, compared with the result of seismic response action spectrum method, the advantages and disadvantages of the two methods are studied.
     4. According to the norms, the generator units forced vibration frequencies were calculated, the Operation of the units might appear of oscillator focus and frequency were analyzed, and on the whether resonance checked. Consider the impact of generator unit vibration of structure, the maximal stress and displacement of structure were calculated to direct the choice of units and the design.
     5. According to the static and seismic response analysis of gravity dam and factory building, the safety and reliability of design were comprehensive evaluated.
     Now, the holistic seismic analysis about interaction of dam and factory building is rarely researched. This paper does a useful attempt and gets some conclusions and understandings which have reference value.
引文
[1] 徐艳杰,张楚汉,金峰.非线性拱坝-地基动力相互作用的FE-BE-IBE模型[J].清华大学学报(自然科学版),1998,38(11):99-103.
    [2] 李卫平,赵荣国.2006年国外灾害地震综述[J].国际地震动态(Recent Developments in World Seismology),2007,2:11-14.
    [3] 潘家铮,李璟.中国大坝50年[M].北京:中国水利水电出版社,2000.
    [4] 潘家铮,重力坝设计[M],北京:水利水电出版社,1987.
    [5] 潘家铮.重力坝[M].北京:水利水电出版社,1983.
    [6] Wdgmann. Design and construction of dams[M]. 1918.
    [7] 麦家煊,陈铁.水工结构工程[M].北京:中国环境科学出版社,2003,12.
    [8] 张光斗,王光纶.专门水工建筑物[M].上海:上海科学技术出版社.1999,12.
    [9] 罔本舜一.抗震工程学[M].北京:中国建筑工业出版社,1978.
    [10] 龚思礼等.建筑抗震设计[M].北京:中国建筑工业出版社,1994.
    [11] 胡聿贤.地震工程学[M].北京:地震出版社,1988
    [12] 陈厚群.当前我国水工抗震中的主要问题和发展动态.振动工程学报,1997,9
    [13] 丰定国.工程结构抗震[M].北京:地震出版社.2002.
    [14] 杜成斌,洪永文.带有参数不确定性的重力坝地震响应的直接数值模拟[J].世界地震工程.22-3,2006.9.
    [15] 邱战洪,张我华,任廷鸿.地震荷载作用下大坝系统的非线性动力损伤分析[J].水利学报,36-5,p629-636.2005.5
    [16] 黄劲松,潘燕芳,闫慧玉.大朝山碾压混凝土重力坝静、动力有限元计算分析[J].武汉大学学报(工学版).36-6,2003,12.22-26.
    [17] 位敏.高地震烈度下碾压混凝土重力坝动力特性及抗震安全分析研究[D].武汉大学硕士论文.2005,5.
    [18] 唐碧华.大型坝式进水口结构的静动力数值仿真与性能评价研究[D].武汉大学硕士论文.2005,5
    [19] 李正农,杨世浩等.混凝土重力坝厂房坝段单、双孔口方案动力有限元分析与比较[J].武汉水利电力大学学报.31-2,1998,4.
    [20] 孙大伟,田斌.碾压混凝土重力坝岸坡坝段三维渗流计算[J].水利天地.2007,3:43-44.
    [21] 邹德兵,张建海等.土卡水电站坝后式厂房结构应力及稳定性研究[J].四川建筑科学研究.31-3,2005,6.
    [22] 杜丽惠,邓良军等.水口水电站厂坝接触分析[J].水力发电,29-1.2003.
    [23] 周秋景,李同春,赵兰浩,牛志国.观音岩电站厂坝静力接触分析[J].水电能源科学.2007.
    [24] 董毓新,赵德海,马震岳.厂坝间巨型压力钢管在常规荷载作用下受力特性研究[J].水力发电.2001,1.
    [25] 张曼曼,陈念水,吴曾谋,杨英.公伯峡水电站发电引水压力管道设计[J].水力发电.2004,8.
    [26] 林绍忠,刘宁,苏海东.三峡工程水电站厂坝间压力钢管取消伸缩节研究[J].水利学报,2003,2.
    [27] 李彦硕.水电站建筑物的振动[M].大连:大连理工大学出版社,1989.15-1.
    [28] 熊有志.大型水电站厂房水下结构的三维有限元整体动力分析[J].水利水电技术,1993:22-27.
    [29] 戴湘和.长江三峡电站厂房及水下结构动力计算研究[J].水电工程研究,1995,12:18-21.
    [30] 赖维刚,郑立群.水电站厂房上部结构的空间分析[J].重庆建筑,2002,3(12):12-14.
    [31] 马震岳.三峡水电站主厂房振动分析[J].三峡大学学报,2004,26(2):111-115.
    [32] 中华人民共和国电力行业标准.水工建筑物抗震设计规范[S].DL5073-2000.北京:中国电力出版社.2000.
    [33] 顾淦臣.土石坝地震工程[M].南京:河海大学出版社.1989.10
    [34] 李瓒,陈兴国,郑建波,王光纶.混凝土拱坝设计[M].北京:中国电力出版社.2000,3
    [35] 万文智,窦兴旺.关于地震动输入机理的分析与探讨[J].大坝观测与土工测试,2000,12.
    [36] 夏颂佑.冶勒沥青 混凝土心墙堆石坝三维非线性动力分析报告[R].1994
    [37] 郝文化.ANSYS土木工程应用实例[M].北京:中国水利水电出版社.2005,1
    [38] 彭宣茂.陕西汉江喜河水电站厂房机组支承结构动力有限元分析研究[R].南京:河海大学土木学院.2005,4.
    [39] 中华人民共和国电力行业标准.水工建筑物荷载设计规范[S].DL5077-1997.北京:中国电力出版社.1998.
    [40] 曾桂香,何耀民,胡少伟.基于ANSYS的碾压混凝土重力坝抗震性能分析[J].世界地震工程.2007,3:110-114.
    [41] 刘明宏,张宪宏.地基弹性对重力坝地震反应的影响[J].云南水电技术.1994,3:1-6.
    [42] Li Zhengnong, Li Quiqing, MengJifu. Dynamic analysis for power house section of Three Gorges dam. 11WCEE,Aca2~pulco, MEXICO, 1996, June:23 28
    [43] 焦爱萍,刘宪亮,许新勇.宝泉浆砌石重力坝三维有限元动力分析[J].水利水运工程学报.2007,3:36-40.
    [44] 靳沾.水工建筑物设计工作回顾[J].水科学与工程技术.2006年增刊.
    [45] 邱流潮,刘桦,金峰.混凝土重力坝地震响应数值分析方法[J].河海大学学报(自然科学版).2006,1:65-68.
    [46] Ren Q. Development of theory and methods on high dam structural analysis[A]. New developments in dam engineering[C]. London, UK: A. A. Balkema publishers. 2004.63-74.
    [47] 刘宪亮,董毓新,何长利.大型坝后式水电站厂坝联结形式的优选[J].水利学报.1995,8:39-45
    [48] 黎勇,栾茂田,林皋.有缝重力坝动力非线性数值计算模型及其应用[J].世界地震工程.2004,3:1-9.
    [49] Murthy K S R K and Mukhopadhyay M. Adaptive finite element analysis of mixed-mode fracture problems containing multiple crack-tips vdth an automatic mesh generator [J]. International Journal of Fracture, 2001,108:251-274.
    [50] Newmark N M. Effects of earthquakes on dams and embankments [J]. Geotechnique. 1965,15(2):139-160.
    [51] 邵长江,钱永久.Koyna混凝土重力坝的塑性地震损伤响应分析[J].振动与冲击.2006.
    [52] 阳武,黄耀英.混凝土坝自振频率研究分析[J].红水河.2003,9.
    [53] ANSYS结构分析手册[M].ANSYS公司北京办事处,2000.
    [54] 王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西安:西北工业大学出版社.2000.
    [55] 李浩月,周田朋,刘相新.ANSYS工程计算应用教程[M].北京:中国铁道出版社.2003.
    [56] Bougacha S, Tassoulas J L. Seismic response ofgrivaty dams Modeling of sediments[J]. J. Eng. Mech.ASCE, 1991, 117(8): 1826-1837.
    [57] Bougacha S, Tassoulas J L. Seismic response of grivaty dams: Effects of sediments [J]. J. Eng. Mech.ASCE, 1991, 117(8):1839-1850.
    [58] Chavez JW, Fenves GL. Earthquake analysis of concreat grivaty dams including base sliding [J]. Earthquake Engng. Struct.Dyn. 1995, 24(5):673-686.
    [59] 李炎.当前我国水电站(混流式机组)厂房结构振动的主要问题和研究现状[J].水利水运工程学报.2006.3:74-78.
    [60] 李雪春,马力.水电站坝后式厂房水下结构整体有限元分析[J].勘测设计施工.
    [61] 金仁祥.复杂场地高混凝土重力坝抗滑稳定系统研究[J].岩石力学与工程学报.2004,3.
    [62] 邱流潮,刘桦.混凝土坝-基岩地震动力相互作用时域有限元分析[J].岩石力学与工程学报.2005,10:3713-3717.
    [63] Praluater H J, Sehu~llerG I. On advanced Monte Carlo Simulation procedures in stochastic structural dynamics [J]. Intemational Journal of Nolinear Mechanics,1997,32(4):735-744.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700