电镀Ni-Sn-P合金镀层的腐蚀性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电沉积Ni-Sn-P合金镀层具有良好的耐蚀性、焊接性、延展性、结合力和易修复性,在工业上有着广泛的应用前景,且由于其具有典型、系统的腐蚀过程,可作为研究腐蚀系统的模型。因此,电沉积Ni-Sn-P合金镀层的研究具理论研究意义和重要使用价值。
     本文首先利用电化学方法和腐蚀失重方法研究了不同Sn、P含量Ni-Sn-P合金在10%H_2SO_4溶液和人工海水中的腐蚀性能,并利用SEM、XPS、XRD及EDS分析了合金的晶体结构和腐蚀产物。
     研究结果表明:高Sn含量的Ni-Sn-P在10%H_2SO_4溶液和人工海水中的耐蚀性优于化学镀Ni-P合金和SUS304不锈钢,其耐蚀性随着合金中Sn元素含量的增加而逐渐提高;Ni-Sn-P合金在10%H_2SO_4溶液中发生均匀腐蚀,Ni元素优先溶解,Sn、P元素在合金表面富集,形成一层由SnO_2、Ni_3(PO_4)_2组成的钝化膜;Ni-Sn-P合金在人工海水中发生均匀腐蚀,Ni、Sn元素优先溶解,P元素在合金表面富集,形成一层由SnO_2、Ni_3(PO_4)_2、NiO和Ni_2O_3组成的钝化膜,其中SnO_2能很好的抵御人工海水中氯离子的穿透效应。
     在此基础上,本文研究了热处理的温度和所处的气氛对Ni-Sn-P合金耐蚀性的影响。实验结果表明,在氮气气氛下热处理的Ni-Sn-P合金在10%H_2SO_4溶液中的耐蚀性随着热处理温度的提高而降低;合金在人工海水中的腐蚀行为与在硫酸中不同,低温热处理的合金在人工海水中的耐蚀性有所提高,随着温度升高,合金的耐蚀性逐渐降低。但是当热处理温度为500℃的时候,合金在人工海水中的耐蚀性出现了明显的提高。
     在空气气氛下,低温(200℃、300℃)热处理会降低Ni-Sn-P合金的耐蚀性,高温(400℃、500℃)热处理会使合金表面生成一层由SnO、SnO_2、NiO、Ni_2O_3和P_2O_5组成的氧化膜,阻碍腐蚀介质与合金的接触,对合金起到保护作用,从而提高合金的耐蚀性。
Ni-Sn-P alloy coating has been widely applied in the industries because it has good properties in corrosion resistance conductivity and reparability, etc. And as its corrosion process is typical and systemic, it has been usually used as the model to study the corroding system. So it is valuable to study the Ni-Sn-P alloy coating.
     In this paper, the electrochemical methods and corrosion weight loss methods were used to research the corrosion resistance of Ni-Sn-P alloy coating in 10%H_2SO_4 and artificial sea water. SEM, XPS, XRD and EDS were used to analyze the crystal structure and corrosion products of Ni-Sn-P alloy coating.
     Results of the study have shown that Ni-Sn-P alloy coating with high content of Sn has batter corrosion resistance than Ni-P alloy coating and SUS304 stainless steel, and the corrosion resistance of Ni-Sn-P alloy improved as the Sn content increased.In 10%H_2SO_4, the uniform corrosion can take place on the surface of Ni-Sn-P alloy coating. The element of Ni dissolved preferentially, with the element of P, Sn enriched on the surface of Ni-Sn-P alloy coating. As a result of this, a layer of passive film composed of SnO_2 and Ni_3(PO_4)_2 formed on the surface of Ni-Sn-P alloy, which can protect the alloy from corrosion. In artificial sea water, also the uniform corrosion can take place on the surface of Ni-Sn-P alloy coating. But the element of Ni and Sn dissolved preferentially, with the element of P enriched on the surface of Ni-Sn-P alloy coating. Then a layer of passive film composed of SnO_2、Ni_3(PO_4)_2、NiO and Ni_2O_3 formed on the surface of Ni-Sn-P alloy, of which, SnO_2 can resist the penetration effect of Cl- effectively.
     Besides of this, we have researched the influence of heat treatment with different atmosphere and temperatures on the corrosion resistance of Ni-Sn-P alloy coating. The results have shown that as the heat treatment temperature increased in nitrogen atmosphere, the corrosion resistance of Ni-Sn-P alloy coating in 10%H_2SO_4 was reduced. In artificial sea water, the corrosion resistance of Ni-Sn-P alloy coating was improved with low temperature (200℃) heat treatment, and then as the heat treatment temperature increased, its corrosion resistance reduced. But when the heat treatment temperature was 500℃, the corrosion resistance of Ni-Sn-P alloy coating was improved effectively.
     The corrosion resistance of Ni-Sn-P alloy coating was reduced with low-temperature (200℃, 300℃) heat treatment in air atmosphere; But high-temperature (400℃, 500℃) heat treatment in air atmosphere will lead to a layer of thick and dense oxide film composed of SnO, SnO_2, NiO, Ni_2O_3 and P_2O_5 formed on the surface of Ni-Sn-P alloy coating, which can separate the corrosive solution and the Ni-Sn-P alloy, protecting the alloy from corrosion.
引文
[1]王受谦,杨淑贤.防腐蚀涂料与涂装技术[M].北京:化学工业出版社,2002.
    [2]龚敏.金属腐蚀控制理论及腐蚀控制[M].北京,化学工业出版社,2009.
    [3]彭小玲,付卉.浅谈几种常用金属的腐蚀机理和抗腐蚀性能[J].江西水利科技.2008,34(1):69-70.
    [4]施利炳.金属的腐蚀与防护[J].物理测试.2003(3):41-43.
    [5]吕群.金属腐蚀机理与腐蚀形态[J].九江师专学报(自然科学版).1997,15(5):71-75.
    [6]刘秀晨,安成强.金属腐蚀学[M].北京,国防工业出版社.2002:99-108.
    [7]李荻.电化学原理[M].北京:北京航空航天大学出版社,1999,8:399-417.
    [8]査全性.电极过程动力学导论[M].北京:科学出版社,2002:320-328.
    [9]王振刚.金属钝化及在工业生产中的应用[J].上海商学院学报.2007,8(2):183-185.
    [10]王曰义.金属的典型腐蚀形貌[J].装备环境工程.2006,3(4):31-37.
    [11]张承忠.金属的腐蚀与保护[M].北京:冶金工业出版社.1985:147-179.
    [12]李兵.金属的腐蚀与防护[J].金属世界.2005(4):42-44.
    [13]刘道新.材料的腐蚀与防护[M].西安:西北工业大学出版社.2006:320-322.
    [14]保罗·克鲁克.镍合金的耐腐蚀应用[J].化肥设计.2008,46(2):62-64.
    [15]Lou H.Y,Wang F.H,Zhu S.L,et. al. Oxide formation of K38G superalloy and its sputtered micrograined coating [J]. Surface and Coatings Technology. 1994, 63(1-2): 105-114.
    [16]Wang F.H, Oxid. Met. 1997(48): 215.
    [17]Wang F.H, Lou H.Y, Zhu S.L, et. al. Oxid. Met. 1996(45): 39.
    [18]Wang F.H, Oxid. Met. 1997(47): 247.
    [19]Intrui R.B, Szklarska-Smialowska Z, Corrosion 1992(48): 398.
    [20]Li Liu, Ying Li, Fuhui Wang. Influence of micro-structure on corrosion behavior of a Ni-based superalloy in 3.5% NaCl[J]. Electrochimica Acta. 2007(52): 7193-7202.
    [21]王丹,张国英,何君琦,张辉.非晶腐蚀行为的现状[J].沈阳师范大学学报(自然科学版).2006,24(4):411-414
    [22]胡勇,许明艳,王震宇.非晶态合金的特性及发展[J].水利电力机械.2003,25(3):25-31
    [23]姚素薇,张卫国,蒋晓飞,郭鹤桐.非晶态合金镀层的耐蚀性能[J].天津大学学报.1999,32(3):374-377.
    [24]李纠,姜秉元.镍基非晶合金镀层性能研究[J].电镀与精饰.2006,28(1):1-4.
    [25]李雪松,王金波,杜立辉.热处理对化学镀Ni-P合金耐蚀性及晶体结构的影响[J].电镀与环保.2007,27(2):20-22.
    [26]邱欢,王为.电镀镍-磷合金的研究进展[J].电镀与精饰.2007,29(3):28-31.
    [27]卢燕平.镍-磷合金镀层在盐酸溶液中的耐蚀性[J].材料保护.1991,24(1):17-21.
    [28]Gao Y,Zheng Z.J,Zhu M,Luo C.P. Corrosion resistance of electrolessly deposited Ni-P and Ni-W-P alloys with various structures[J]. Materials Science and Engineering A. 2004(381):98-103.
    [29]刘仙,班春燕.化学镀Ni-P合金工艺及镀层耐蚀性的研究[J].钢铁研究.2002,(5):35-38.
    [30] Bernhard Elsener,Maura Crobu,Mariano Andrea Scorciapino,et. al. Electroless deposited Ni–P alloys: corrosion resistance mechanism[J]. J Appl Electrochem. 2008(38):1053-1060.
    [31]邵光杰,秦秀娟,李慧等.电沉积N i-P合金镀层耐蚀性的研究[J].电镀与精饰.2001,23(3):5-7.
    [32]陈永言,黄清安,黄少波,杨业智.镍磷合金电镀层耐蚀性的研究[J].材料保护.1994(9):1-3.
    [33]高进,孙金厂,崔明铎.Ni-P合金化学镀非晶态合金的耐蚀性研究[J].表面技术.2001,30(5):36-38.
    [34]周小琴.影响化学镀Ni-P合金镀层耐蚀性的因素[J].时代教育.2008,(2):49-51.
    [35]方其先,刘新宽,马明亮,王伊卿.化学镀Ni-P合金耐蚀性的研究[J].腐蚀与防护.1998,19(2):67-68.
    [36]Song Y.W,Shan D.Y,Han E.H. Corrosion behaviors of electroless plating Ni-P coatings deposited on magnesium alloys in artificial sweat solution[J]. Electrochimica Acta. 2007(53):2009-2015
    [37]Bielinski J, Skudlarska E. Buffer and complex former in theprocess of external electroless Ni–Mo–P precipitation [J]. Oberflache Surf,1985, 26 (3): 76-82.
    [38]王宏智,杨金爽,李剑等.电镀Ni-P和Ni-Sn-P合金的研究概况[J].电镀与精饰,2008,30(4):11-14.
    [39]宋长生.液相沉积Ni-Sn-P合金镀层的热力学探讨[J].腐蚀与护,2003,24 (3):99-101.
    [40]闫洪.化学镀NiOSnOP合金的结构和耐蚀性[J].航空工艺技术.1998,(3):25-27
    [41]林忠华,林琳,杜金辉,吕元振.镍-锡-磷三元合金镀层及其应用[J].石油化工腐蚀与防护.2005,22(6):51-54
    [42] W.X. Zhang,Z.H. Jiang,G.Y. Li,Q. Jiang,J.S. Lian.Electroless Ni–Sn–P coating on AZ91D magnesium alloy and its corrosion resistance[J].Surface & Coatings Technology.2008(202):2570-2576.
    [43]司秀丽,吴丰,褚松竹.化学镀Ni-Sn-P三元合金的工艺和性能的研究[J].功能材料.1995,26(2):189-192.
    [44]Zhang Bangwei,Xie Haowen.Effect of alloying elements on the amorphous formation and corrosion resistance of electroless Ni-P based alloys[J].Material Science and Engineering.2000,281(1-2):286-291.
    [45]于金库,邵光杰,兰英斌等.非晶态Ni-Sn-P合金的腐蚀行为[J].腐蚀防护.1997,18(4):153-154,158.
    [46]于金库,王玉林,沈德久等.非晶态Ni-Sn-P合金的研究[J].表面技术.1996,25(6):7-10.
    [47]于金库,王玉林,唱立疆等.化学镀非晶态Ni-Sn-P合金耐蚀性的研究[J].表面技术.1995,24(4):9-16.
    [48]Yu Jinku,Corrosion Behavior of Electroless Amorphous Ni-Sn-P Alloys,Corrosion & Protection,1997.9~10
    [49]卞清泉,李学洪,张强华.Sn含量对Ni-Sn-P合金镀层耐腐蚀性能的影响[J].化学工程师.2009(7):65-66.
    [50]Balaraju J N,Millath Jahan S,Anjana Jain et al.Structure and phase transformation behavior of electroless Ni-P alloys containing tin and tungsten[J].Journal of Alloys and Compounds.2007,436(1-2):319-327.
    [51] Haowen Xie,Bangwei Zlmng,Qiaoqin, Yang. Preparation, structure and corrosion properties of electroless amorphous Ni-Sn-P alloys[J]. Transactions of the Institute of Metal Finishing. 1999, 77 (3): 99-102.
    [52]Shimauchi H, ozawa S, Tamura K. Preparation of Ni–Sn alloys by an electroless-deposition method[J]. J Electrochem Soc, 1994, 141 (6): 1471-1476.
    [53]宋长生.热处理对Ni-Sn-P化学镀层结构和性能的影响(Ⅲ)[J].连云港化工高专学报.1998,14(1):9-11.
    [54]宋长生,王国荣.热处理对化学镀Ni-Sn-P镀层结构和性能的影响[J].电镀与精饰.2000,22(1):9-11.
    [55]王继荫,单国友.电沉积非晶态Ni-P合金的腐蚀行为[J].中国腐蚀和防护学报.1988,3(3):240-246.
    [56]郝龙,程庆,黄文全等.不锈钢化学镀Ni-P合金在H_2SO_4溶液中的腐蚀行为[J].中国腐蚀和防护学报.2009,9(1):55-58.
    [57]孙冬柏,杨德钧.化学镀Ni-P合金在氯化物溶液中的化学钝化[J].腐蚀科学与防护技术.1994,6(2):131-135.
    [58]吴化,李廷取,李雪松.化学镀镍2磷合金镀层耐腐蚀性能的研究[J].电镀与精饰.2008,30(10):10-12.
    [59]张永忠,樊建忠,张奎.化学镀镍层的耐蚀性[J].表面技术.1998,27(3):23-25.
    [60]余强,司云森,曾初升.交流阻抗技术及其在腐蚀科学中的应用[J].化学工程师.2005(9):35-36.
    [61]刘钓泉,简初.交流阻抗法测量金属腐蚀速度:交流阻抗技术在腐蚀研究中的应用(一)[J].广东化工.1987(2):35-39.
    [62]刘钓泉,简初.交流阻抗法评定金属——涂层系统:交流阻抗技术在腐蚀研究中的应用(二)[J].广东化工.1987(2):52-55.
    [63]刘钓泉,简初.交流阻抗法评定铝阳极氧化膜封闭质量—交流阻抗技术在腐蚀研究中的应用(三)[J].广东化工.1987(2):45-48.
    [64]张信义,邓宗钢.镍合金化学镀层的阳极行为及局部腐蚀[J].材料保护.1995,28(5):5-6.
    [65]李道华.钢铁表面Cu-Sn-P/Ni-Sn-P合金复合镀层的结构和性能[J].西华师范大学学报(自然科学版).2004,25(2):180-184.
    [66]孙冬柏,杨德钧,马洁.化学镀Ni-P合金在氯化物溶液中的化学钝化[J].腐蚀科学与防护技术.1994,6(2):131-136.
    [67]朱小龙,林乐耘,严宇民.Cu-Ni合金海水暴露腐蚀产物AES和XPS深度剖析[J].材料科学与进展.1992,6(3):218-222.
    [68]宋玉强,王引真,何艳玲.化学镀Ni-P镀层高温热处理后耐蚀性的研究[J].材料保护.2003,36(5):31-33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700