锆基大块非晶合金的热稳定性及晶化动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非晶合金在热力学上处于亚稳态,受热时会发生晶化,这种晶化使得非晶合金原有的结构和性能消失,从而影响到非晶合金的工程应用。因此,非晶合金的热稳定性和晶化动力学研究具有重要的理论和实际意义。本文以三种大块非晶合金Zr60Al15Ni25,Zr65Al10Ni10Cu15,Zr52.5Al10Ni10Cu15Be12.5为研究对象,利用X射线衍射法(XRD)和差示扫描量热法(DSC)等实验手段系统地研究了锆基大块非晶合金的热稳定性及其晶化动力学。主要研究方法及结论如下:
     (1)利用铜模吸铸法制备了两种大块非晶合金Zr65Al10Ni10Cu15和Zr52.5Al10Ni10Cu15Be12.5,并运用X射线衍射法研究了他们的相变规律。结果表明,Zr65Al10Ni10Cu15合金在683K时开始晶化,晶化相分别为四方相Zr2Cu、简单六方相Zr6NiAl2,面心立方相Zr2Ni,四方相Zr5Al3和斜方晶相Ni10Zr7;Zr52.5Al10Ni10Cu15Be12.5大块非晶合金在748K时开始晶化,晶化相分别为六方相ZrBe2、斜方晶相ZrNi、四方相Zr2Al3和单斜晶相ZrCu,表明Be元素的添加提高了Zr65Al10Ni10Cu15的晶化温度,阻止了四方相Zr2Cu和简单六方相Zr6NiAl2在低温条件下的析出,提高了热稳定性。通过等温DSC分析,Be元素的添加能够延迟四元非晶合金Zr65Al10Ni10Cu15的晶化时间,并且五元非晶合金具有较大的晶化热焓,说明五元非晶合金在晶化过程中放出更大的热量。运用JMA(Johnson-Mehl-Avrami)方程,计算得到Be元素添加前后两种非晶合金的Avrami指数分别为1.575~1.953和1.712~1.898,说明两种非晶合金具有相似的晶化机制,同为受扩散控制的形核率随时间增加而下降的晶化机制;Zr52.5Al10Ni10Cu15Be12.5和Zr65Al10Ni10Cu15的晶化激活能分别为431.7kJ/mol和213.1kJ/mol,前者比后者高23%,这也说明Be元素的添加提高了四元非晶合金的热稳定性。
     (2)利用铜模吸铸法制得Zr60Al15Ni25大块非晶合金,运用差示扫描量热法结合X射线衍射法研究了它的变温晶化行为。通过Kissinger方法求得合金的相变激活能Eg、Ex、Ep分别为539.9kJ/mol、213.1kJ/mol、261.2kJ/mol,表明Zr60Al15Ni25大块非晶合金具有很好的热稳定性;原位XRD研究了Zr60Al15Ni25的晶化行为,发现Zr原子在低温状态下的扩散困难迟滞了两三元相Zr6NiAl2和Zr5Ni4Al的析出,从而提高了合金热稳定性。计算了合金在不同退火温度下的结晶度,在晶化初期,由于原子活性较小,扩散与重排困难,结晶度较低;随着温度的进一步升高,原子扩散系数增大,大量的晶核从非晶基体中析出,结晶度迅速变大;在高温状态下,因为剩余非晶相越来越少,温度对结晶度的贡献变小。
     (3)分别通过铜模吸铸法和甩带法制备了Zr65Al10Ni10Cu15块体和条带非晶合金,运用恒速升温DSC研究了不同制备工艺对其热稳定性的影响。研究发现,与快淬的条带非晶相比,块体非晶表现为更低的Tg和Tx值,但具有较宽的过冷液相区ΔTx。分别运用Kissiger法和Doyle法计算了两种制备状态下Zr65Al10Ni10Cu15非晶合金的相变激活能,结果表明条带非晶具有更高的玻璃转变和晶化激活能,说明条带非晶合金具有更好的热稳定性。
Amorphous alloys are metastable on thermodynamics, which will crystallize as be heated. Their original structures and properties will disappear due to crystallization, the disappearance will influence their engineering application. So the study of their thermal stability and crystallization kinetics wil be of great importance. In this thesis, the thermal stability and crystallization kinetics of bulk amorphous alloys Zr60Al15Ni25, Zr65Al10Ni10Cu15 and Zr52.5Al10Ni10Cu15Be12.5 have been systema- tically investigated by X-ray diffraction method (XRD) and differential scanning calorimetry( DSC). The main experimental results and conclusions are listed as follows:
     (1) Plate-like Zr65Al10Ni10Cu15 and Zr52.5Al10Ni10Cu15Be12.5 bulk amorphous alloys have been prepared by suction casting into a copper mold. The effect of Be addition on thermal stability and crystallization behavior of Zr65Al10Ni10Cu15 bulk amorphous alloy has been investigated by XRD combined with isothermal DSC. XRD results shows that it will crystallize at 683K, with the formation of tetragonal phase Zr2Cu, hexagonal Zr6NiAl2, face-centred cubic Zr2Ni, tetragonal Zr5Al3 and orthorhombic Ni10Zr7. Zr52.5Al10Ni10Cu15Be12.5 bulk metllic glass crystallizes at 748K and leads to the formation of hexagonal ZrBe2, orthorhombic ZrNi phase, tetragonal phase Zr2Al3 and orthorhombic ZrCu, the delay of crystallization of the latter can explain that the addition of Be will enhance the stability of Zr65Al10Ni10Cu15 bulk amorphous alloy. By isothermal DSC analysis, we found that Be addition to the master alloy can increase the incubation period, and the crystallization enthalpy after Be addtion is larger than its master alloy, which indicates that it will release more energy in the crystallization course of the new alloy. By using JMA equation, Avrami exponent n can be got with the value of 1.575~1.953 and 1.712~1.898 for the two alloys, it can be found that they crystallize in the same crystallization mechanisms, namely, controled by diffusion and nucleation rate decreases with time. The activation energy are 431.7kJ/mol for Zr52.5Al10Ni10Cu15Be12.5 bulk amorphous alloy, 23% higher than the master alloy, which also indicates the Be addition to Zr65Al10Ni10Cu15 can improve its thermal stability.
     (2) Bulk amorphous alloy Zr60Al15Ni25 has been produced by suction casting into a copper mold. Its thermal stability and crystallization behavior have been investigated by XRD and DSC. Phase transformation activation energy Eg, Ex and Ep calculated by Kissiger method are 539.9kJ/mol, 213.1kJ/mol and 261.2kJ/mol, and it shows that Zr60Al15Ni25 bulk amorphous alloy possesses of high thermal stability. In-situ XRD analysis indicates that the difficulty to form ternary phases Zr6NiAl2 and Zr5Ni4Al is the main reason for its high thermal stability. By calculating its degree of crystallinity at different temperatures, we have discovered that it would tend to smaller values at low temperatures, but it would rise rapidly with temperature; crystallization efficiency would decline at higher temperatures because of the less available amorphous phase.
     (3) The bulk and ribbon samples of Zr65Al10Ni10Cu15 amorphous alloys have been prepared by suction-casting in a copper mold and single roller melt-spinning technique. Their thermal stability has been investigated by DSC. The results indicate that the bulk amorphous alloy has lower Tg and Tx, but a wider supercooled liquid regionΔTx. Using Kissinger and Doyle plots, phase transformation activation energy can be evaluated. It showed that amphous ribbon has larger glass transition and crystallization activation energy, which explains the ribbon possesses higher thermal stability in comparison to the bulk sample.
引文
[1] Luborsky F E.非晶态金属合金[M].柯成,唐与谌,罗阳,译.北京:冶金工业出版社,1989.
    [2] Brenner A,Couch D E,Williams E K. Electrodepositon of Alloys Phosphous with Nickel or Cobalt [J].J.Res.Natn.Bur.Stand,1950,44:109~119.
    [3] Duwez P,Willens R H, Klement W J. Continuous Series of Metastable Solid Solutions in Silver-Copper Alloys[J].Appl.Phy, 1960,31:1136~ 1137.
    [4] Daveis H A. Luborsky F E. Amorphous Metallic Alloys. London: Butterworths, 1983.8
    [5] Chen H.S. Thermodynamic Considerations on the Formation and Stability of Metallic Glasses [J]. Acta Metallurgica,1974,22(12): 1505~1511.
    [6] Drehman A J, Greer A L, Turnbull D. Bulk Formation of a Metallic Glass: Pd40Ni40P20 [J].Appl.Phys.Lett.,1982,41(8):716~717.
    [7] Inoue A, Kita K, Zhang T, et al. An Amorphous La55Al25Ni20 Alloy Prepared by Water Quenching[J]. Mater. Trans. JIM,1989,30(9): 722~725.
    [8]黄劲松,刘咏,陈仕奇等.锆基非晶合金的研究进展与应用[J].中国有色金属学报,2003,13(6):1321~1332.
    [9] Kimura H, Wang L, Inoue A. Formation, Thermal Stability and Mechanical Properties of New amorphous Al89Fe10Zr1 Alloy[J]. Materials Transactions, JIM,39(8):866~869.
    [10] Pryds N H. Bulk Amorphous Mg-based Alloys[J]. Materials Science and Engineering-Structural Materials Properties Microstructure and Processing, 2004:186~193.
    [11] Kim Y C, Kim W T, Kim D H. A Development of Ti-based Bulk Metallic Glass[J]. Materials Science and Engineering-Structural Materials Properties Microstructure and Processing, 2004:127~135.
    [12] Xu D H, Duan G, Johnson W L. Unusual Glass-forming Ability of Bulk Amorphous Alloys Based on Ordinary Metal Copper[J]. Phys Rev Lett, 2004,92(24):245504.
    [13] Mchenry M E, Willard M A, Langhlin D E. Amorphous and Nanocrystalline Materials for Applications as Soft Magnets[J]. Progress in Materials Science, 1999,44(4):291~433.
    [14] Makino A, Inoue A, Mizushima T. Soft Magnetic Properties of Fe-based Bulk Amorphous Alloys[J]. Materials Transactions JIM, 2000,41(11):1471~1477.
    [15] Lu Z P, Liu C T, Carmichael C A, et al. Bulk Glass Formation in a Fe-based Fe-Y-Zr-M(M=Cr,Co,Al)-Mo-B System[J].2004,19(3):921~ 929 .
    [16] Xu D H, Lohwongwatana B, Duan G, et al. Bulk Metallic Glass Formation in Binary Cu-rich Alloy Series Cu100-xZrx(x=34,36,38.2, 40at.%) and Mechanical Properties of Bulk Cu64Zr36 Glass[J]. Acta Materialia,2004,52(17):2621~2624.
    [17] Park E S, Kim D H. Formation of Ca-Mg-Zn Bulk Glassy Alloy by Casting into Cone-shaped Copper Mold[J]. Journal of Materials Research,2004, 19(3):685~688.
    [18] Inoue A, Katsuya A. Multicomponent Co-based Amorphous Alloys with Wide Supercooled Liquid Region[J]. Materials Transactions JIM,1996, 37(6): 1332~1336.
    [19] Peker A, Johnson W L. A Highly Processable Metallic Glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5[J].Appl.Phys.Lett.1993:63(17):2342~2344.
    [20] Inoue A, Nishiyama N, Kimura H. Preparation and Thermal Stability of Bulk Amorphous Pd40Cu30Ni10P20 Alloy Cylinder of 72 mm in Diameter [J]. Mater.Trans,JIM,1997,38(2):179~183.
    [21] Inoue A, Zhang T, et al. Cu-Based Bulk Glassy Alloy with High Tensile Strength of over 2000Mpa[J]. Journal of Non-Crystalline Solids,2002, 304(1-3): 200~ 209.
    [22] Inoue A, Shen B L, Koshiba H, Et Al. Ultra-High Strength above 5000Mpa and Soft Magnetic Properties of Co-Fe-Ta-B Bulk Glassy Alloys[J]. Acta Materialia,2004,52(7):1631~1637.
    [23] Lu Z P, Liu C T, Thompson J R, et al. Structural Amorphous Steels[J]. Physical Review Letters,2004,92(24):245503-1~245503-4.
    [24] Shen J, Chen Q, Sun J, et al. Exceptionally High Glass-Forming Ability of an FeCoCrMoCBY alloy[J]. Applied Physics Letters,2005, 86:151907-1~ 151907-3.
    [25] Schraers J, Johnson W L. Ductile Bulk Metallicglass[J]. Physical Review Letters,2004,93(25):255506-1~255506-4.
    [26] Zhao Y. Amorphous Zirconium Retains Microstructure up to 1600F[J]. Adv.Mater.Proc,2004,162(10):13~14.
    [27] Ma H, Shi L L, Xu J, et al. Discovering Inch-Diameter Metallic Glasses in Three-Dimensional Composition Space[J]. Applied Physics Letters, 2005,87:181915-1~181915-3.
    [28]肖华星.大块非晶合金的发展历程[J].常州工学院学报,2008,21(6):1~5.
    [29] Zheng Z B. Theory of the Amorphous Material in the Solid State[M]. Beijing:Science Press,1987,142~152.
    [30] Nishyama N, Inoue A. Glass-Forming Ability of Bulk Pd40Ni10- Cu30P20[J].Mater Trans JIM 1996,31(10):1531~1539.
    [31] Johnson W L. Bulk Glass-Forming Metallic Alloys: Science and Technology[J].MRS Bull,1999,24(10):42.
    [32]祁红璋,赵晖,邱嘉杰.非晶合金制备[J].上海有色金属,2008,29(1):37~41.
    [33]王玉良,张文泉,姚可夫.大块非晶合金的研究动态和应用前景[J].中国材料科技与装备,2009,3:5~8.
    [34]贾彬彬,张文丛,夏龙等.非晶态合金制备方法[J].轻合金加工技术,2006,34(10):20~24.
    [35] Inoue A. Calculations of Mixing Enthalpy and Mismatch Entropy for Ternary Amorphous Alloys [J].Materials Transactions.JIM, 2000,41(11): 1372~ 1378.
    [36]冯娟,刘俊成.非晶合金制备方法[J].铸造技术,2009,30(4):486~488.
    [37] Ott T, Fan C, Li J,et al. Structure and Properties of Zr-Ta-Cu-Ni-Al Bulk Metallic Galsses and Metallic Glass Matrix Composites[J]. Journal of Non-Crystalline Solids,2003,317(1-2):158~163.
    [38] Donghua Xu, Gang Duan, William L Johnson, et al. Formation and Properties of New Ni-Based Amorphous Alloys with Critical Casting Thickness up to 5 mm[J]. Acta Materialia,2004,52(12):3943~3947.
    [39] Shen B L, Inoue A. (Fe,Co,Ni)-B-Si-Nb Bulk Glassy Alloy with Super-High Strength and Some Ductility[J]. Journal of Materials Research,2005, 20(1):1~5.
    [40]张涛,门华等.Cu-Zr-Ti块体非晶合金的形成及其力学性能[J].北京航空航天大学学报,2004,30(10):925~929.
    [41] Rao X, Si P C, Wang J N, et al. Preparation And Mechanical Properties of a New Zr-Al-Ti-Cu-Ni-Be Bulk Metallic Glass[J]. Materials Letters,2001, 50(5-6): 279~283.
    [42]惠希东,陈国良.块体非晶合金[M].北京:化学工业出版社,2007:155.
    [43] Inoue A, Shibata T, Zhang T. Effect of Additional Elements on Glass Transition Behavior and Glass Formation Tendency of Zr-Al-Ni-Cu Alloys[J]. Materials Transactions,JIM,1995,36(12):1420~1426.
    [44] Inoue A, Kawamura Y, Saotome Y. High Strain Rate Superplasticity of Supercooled Liquid for Amorphous Alloys[J]. Materials Science Forum,1997, 233-234:147~154.
    [45] Inoue A. Stabolization of Metallic Supercooled Liquid and Bulk Amorphous Alloys[J]. Acta Mater,2000,48:281~304.
    [46]陶平均,杨元政.大块非晶材料的性能及其应用[J].轻合金加工技术,2006,34:45~55.
    [47]陈国钧,彭伟锋,陈殿金等.块体非晶合金的形成、性能和应用[J].磁性材料及器件,2005,36(5):10~16.
    [48] Inoue A. Bulk Amorphous Alloys(Practical Characteristics and Applications), Trans Tech Publications LTD,1998,141.
    [49] Nagendra N, Ramamurty U, Goh T T, et al. Effect of Crystallinity on the Impact Toughness of a La-Based Bulk Metallic Glass[J]. Acta Materialia,2000, 48(10): 2603~2615.
    [50] Inoue A. Microstructure and Soft Magnetic Properties of Nanocry- stalline Fe-Zr-B-Al, Fe-Zr-B-Al-Si Alloys with Zero Magneto- striction[J]. Mater Trans JIM,1996,37:78.
    [51] Inoue A, Gook J S. Effect of Additional Elements on the Thermal Stability of Supercooled Liquid in Fe72-XAl5Ga2P11C6B4Mx Glassy Alloys[J].Mater Trans JIM,1996,37:32.
    [52]闫相全,宋晓艳,张久兴.块体非晶合金材料的研究进展[J].稀有金属材料与工程,2008,37(5):931~935.
    [53]邵光杰,秦秀娟.Zr-Ti-Cu-Ni-Be大块非晶合金腐蚀行为研究[J].物理测试,2002,1:34~36.
    [54]胡勇,许明艳,王震宇.非晶态合金的特性及发展[J].水利电力机械,2003,25(3):25~31.
    [55]王成,张庆生,江峰等.非晶合金Zr55Al10Cu30Ni5在3.5%NaCl溶液中的电化学行为[J].金属学报,2002,38(7):765~769.
    [56]郭贻诚,王震西.非晶态物理学[M].北京:科学出版社,1984:139.
    [57]郑兆勃.非晶固态材料引论[M].北京:科学出版社,1987:187.
    [58]王一禾,杨膺善等.非晶态合金[M].北京:冶金工业出版社,1989:93.
    [59]田永君,曹茂盛,曹传宝.先进材料导论[M].哈尔滨:哈尔滨工业大学出版社,2005:131.
    [60]吴益文,丁鼎,华沂等.Fe-Si-B非晶条带加热时的晶化过程及对性能的影响[J].上海金属,2007,29:22~24.
    [61] Perez P, GarcéS G, GonzaléZ, et al. Change in Mechanical Properties during Crystallization of Amorphous Mg83Ni9Y8[J]. Materials Science and Engineering A,2007, 462:211~214.
    [62] Das K, Bandyopadhyay A, Gupta Y M. Effect of Crystallization on the Mechanical Properties of Zr56.7Cu15.3Ni12.5Nb5Al10Y0.5 Bulk Amorphous Alloy[J]. Materials Science and Engineering A,2005,394: 302~311.
    [63] Han T K, Zhang T, Inoue A, et al. Thermal and Mechanical Properties of Amorphous Zr65Al7.5Ni10Cu12.5Ag5 Alloy Containing Nanacry- stallineCompoud Particles[J]. Materias Science and Engineering A,2001,304-306: 892~896.
    [64]王玉,郭金彪,袁学韬等.热处理对非晶Ni-P电镀层结构与性能的影响[J].材料保护,2008,41(10):54~56.
    [65]袁子洲,包石磊,佟亚东等.晶化对Co43Fe20Ta5.5B31.5非晶合金磁性能的影响[J].稀有金属材料与工程,2009,38(5):851~856.
    [66] Zhang W, Fujita K, et al. Synthesis of Fe-Co-Nd-B Amorphous Alloys with Glass Transition and Their Crystallization-Induced Hard Magnetic Properties[J]. Mater Trans JIM,1999,10:1123.
    [67]庄艳歆,赵德乾等.锆基大块非晶合金玻璃转变和晶化的动力学效应[J].中国科学(A辑),2000,5:445.
    [68]肖华星,陈光.大块非晶晶化研究的现状和动态[J].兵器材料科学与工程,2003,26(1):65~68.
    [69]柳林,孙民等.Zr-Cu-Ni-Al-Nb大块非晶合金的晶化动力学行为、力学性能及电化学腐蚀行为研究[J].物理学报,2006,55(4):1930-1935.
    [70] Lu Z P, Liu C T. Role of Minor Alloying Additions in Formation of Bulk Metallic Glasses: A Review[J]. Journal of Materials Science, 2004, 39(12): 3965~3947.
    [71] Wang W H, Bian Z, Wen P, et al. Role of Addition in Formation and Properties of Zr-Based Bulk Metallic Glasses[J].Intermetallic,2002, 10: 1249~1257.
    [72] Jang J S C, Chen Y W, Chang L J, et al. Crystallization and Fractrure Behavior of the Zr65-xAl7.5Cu17.5Ni10Six Bulk Amorphous Alloys[J]. Materials Chemistry and Physics,2005,89:122~129.
    [73] Yan Z J, Li J F, Wang H H, et al. Effect of Repeated Melting of Ingots on the Glass-Forming Ability of Zr-Based Alloys[J]. Materials Letters2003,57: 2829~2833.
    [74] Yavari A R, Moulec A L, Inoue A. Metastable Phases in Zr-Based Bulk Glass-Forming Alloys Detected Using a Synchrotron Beam in Transmission[J]. Materals Science And Engineering A,2001,304-306: 34~38.
    [75] Gebert A, Eckert J, Chultz L. Effect of Oxygen on Phase Formation and Thermal Stability of Slowly Cooled Zr65Al17.5Cu17.5Ni10 Metallic Glass[J]. Acta.Mater., 1998,46:5475~5782.
    [76] Malek J. The Applicablility of Johnson-Mehl-Avrami Model in the Thermal Analysis of the Crystallization Kinetics of Glasses[J]. Thermochimica Acta, 1995,267(1):61~73.
    [77] Wang W H, Dong C, Shek C H. Bulk Metallic Glasses[J]. Material Science and Engneering, 2004,44:45~89.
    [78] Inoue A, et al. Preparation of Bulky Zr-Based Amorphous Alloys by a Zone Melting Method[J]. Mater Trans JIM,1994,12:923~937.
    [79] Kang H G, Park E S, Kim W T, et al. Fabrication of Bulk Mg-Cu-Ag-Y Glassy Alloy by Squeeze Casting[J]. Mater Trans JIM, 2001,41:846~850.
    [80] Senkov O N, Miracle D B. Effect of the Atomic Size Distribution on Glass Forming Ability of Amorphous Metallic Alloys[J].Materials Research Bulletin, 2001, 36(12):2183~2198.
    [81] Takeuchi A, Inoue A. Classification of Bulk Metallic Glasses [J].Materials Transactions, 2005, 46(12):2817~2829.
    [82] Inoue A. Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys[J]. Acta Materialia, 2000, 48(1):279~306.
    [83] Wang X L, Almer J, Liu C T,et a1. In-Situ Synchrotron Study of Phase Transform Ation Behaviors in Bulk Metallic Glass by Simulation Diffraction and Small Angle Scattering[J]. Pby.Rev.Lett. 2003,91:265~501.
    [84] Inoue A, Zhang T, Masumoto T. Zr-Al-Ni Amorphous Alloys with High Glass Transition Temperature and Significant Supercooled Liquid Region[J]. Materials Transactions, 1990,31(3):177~183.
    [85] Kissinger H E. Variation of Peak Temperature with Heating Rate in Differential Thermal Analysis[J].Journal of Research of the National Bureau of Standard, 1956,57(4):217~221.
    [86] Takeuchi T, Inoue A. Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and its Application to Characterization of the Main Alloying Element [J]. Materials Science and Engineering A,2007, 449~451:599~604.
    [87] Matsubara E, Tamura T, Waseda Y, et al.Structural Study of Zr60Al15Ni25 Amorphous Alloys with a Wide Supercooled Liquid Region by the Anomalous X-Ray Scattering Method [J].Materials Transactions JIM, 1992, 33(10): 873~878.
    [88] Li J F, Huang Z H, Zhou Y H. Crystallization of Amorphous Zr60Al15Ni25 Alloy [J]. Intermetallics, 2007, 15:1013~1019.
    [89] Takeuchi A, Inoue A. Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element[J].Materials Transactions, 2005, 46(12): 2817~ 2829.
    [90] Imafuku M, Saito K, Kanehashi K,et al. Change in Environmental Structure around Al in Zr60Ni25Al15 Metallic Glass upon Crystallization Studied by Nuclear Magnetic Resonance[J].Journal of Non-Crystalline Solids, 2005, 351: 3587~3592.
    [91]洪波,姜传海,王新建等. Ni-P非晶薄膜的晶化相与相变动力学的XRD分析[J].金属学报,2006,42(7):699~702.
    [92] Shapaan M, Bárdos A, Varga L K, et al. Thermal Stability and Glass Forming Ability of Iron-phosphorus Amorphous Alloys[J].Materials Science and Engineering A,2004,366:6~9.
    [93] Qiu K Q, Zhang H F, Wang A M, et al. Glass-forming Ability and Thermal Stability of Nd70-xFe20Al10Yx alloy[J]. Acta Materialia, 2002,50:3567~3578.
    [94] Kumar G, Eckert J, Schultz L, et al. Formation and Thermal Stability of Cluster Structure in Nd55Cu15Ni10Co5Al15 Bulk Amorphous Alloy[J], Materials Letters,2002,53:305~315.
    [95]姜训勇,徐惠彬,宫声凯等.用Kissiger方法测定非晶材料晶化激活能时应注意的问题[J].理化检测-物理分册,2000,36(6):255~257.
    [96] Ozawa T. Kinetic Analysis of Derivative Curves in Thermal Analysis[J]. Journal of Thermal Analysis,1970,2:301.
    [97]蒲健,王敬丰,甘章华等.块体Pd77.5Cu6Si16.5非晶合金的晶化动力学研究[J].稀有金属,2003,27(6):709~713.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700