厌氧生物除磷及其微生物种群结构特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过厌氧培养基试验,在厌氧条件下,考察始末总磷的浓度,研究了不同泥源、不同磷源、不同起始磷浓度、不同氮源、不同初始氮磷比、不同碳源、不同初始碳磷比对厌氧除磷的影响,并对各影响因素稳定时期的微生物群落结构进行跟踪研究。试验结果表明:
     以猪粪、鸡粪、SBR污泥、EGSB厌氧污泥、ASBR污泥和具有同步脱氮生物化学除磷的污泥为泥源的培养基试验中, ASBR污泥为泥源时对总磷去除量最高,其次为EGSB污泥为泥源的培养基。不同泥源稳定培养状态下微生物多样性最丰富,样品相似性不高,其中以ASBR污泥和EGSB污泥为泥源的厌氧培养基的相似性最高。
     以磷酸氢二钾为磷源时的磷去除效果最佳其次为磷酸二氢钾,最差为六偏磷酸钠。采用磷酸二氢钾为磷源时,随着磷浓度的升高,总磷的去除量增加,当总磷含量高于50mg/L时,总磷去除量不随初始磷浓度的升高而升高,维持16mg/L左右。不同磷源及不同初始磷浓度培养基稳定培养状态下微生物多样性较丰富,磷源培养基样品相似性不高,磷浓度培养基样品相似性较高,磷源试验中以磷酸氢二钾和亚磷酸钠为磷源的厌氧培养基的相似性最低55.4%,磷浓度试验中初始磷浓度为50mg/L时与其它浓度的厌氧培养基的相似性均为70%以上。
     以氯化铵为氮源时的总磷磷去除率最高,其次为乙酸氨,最差为硝酸钠。采用氯化铵为氮源时,初始氮磷比为1.0时总磷的去除率最高。不同氮源及不同初始氮磷比培养基稳定培养状态下微生物多样性较丰富,样品相似性不高,氮源试验中以氯化铵和蛋白胨为氮源的厌氧培养基的相似性最低44.3%,氮磷比试验中初始氮磷比为0.5和1.0情况下的厌氧培养基的相似性为最差仅为59.7%。
     以甲醇为碳源时磷去除效果最佳,其次为啤酒和葡萄糖,最差为乙酸钠。不同碳磷比对厌氧培养基系统中总磷和COD去除的影响较大,随着碳磷比的增加,厌氧培养中总磷和COD的去除有所增加,但当达到一定程度时,随着碳磷比的增加,总磷去除率降低,COD去除率增高。5种不同碳源培养基稳定阶段的微生物多样性较丰富,样品相似性较高;8种不同初始碳磷比培养基稳定阶段的微生物多样性较丰富,样品相似性不是很高;初始碳磷比为8、12、16时厌氧培养基样品相似性较高,初始碳磷比为24、30、40时厌氧培养基样品相似性次之。
     随着培养条件的优化,厌氧培养基总磷的去除率逐渐升高;培养基微生物多样性丰富,相似性相差整体上差异性很大;随着培养条件的优化微生物种群结构在逐渐的变化,微生物种群数逐渐减少,结合常规试验结果可知,条带4、7、12、13、17所代表的微生物种群是厌氧除磷产磷化氢的优势种群,可以用于后续测序种群鉴定。
In the condition of anaerobic envinronment, research the effects of different mud, different Phosphor and the original concentration of P, different Nitrogen and nitrogen-phosphorus ratio, different Carbon and carbon-phosphorus ratio on the anaerobic phosphorus removal through the anaerobic culture medium experiment, and combine to fall structure progress to follow a search to the microorganisms of each impact factor in stabilization time. And results are as follows.
     The phosphorus removal efficiency is highest when the mud is EGSB anaerobic sludge or ASBR sludge, and it is better to remove P within the culture medium of ASBR sludge than with the EGSB sludge, compared with the shortly simultaneous nitrification and denitrification P removal sludge mixed by pig manure and fowl dung, SBR sludge and the simultaneously biochemical nitrogen and phosphorus removal sludge. Microbial diversity are of great abundance and its similarity is low when they are stably cultured in various mud source, among which the similarity between ASBR and EGSB is the most.
     It has the best result to remove P when using the dipotassiun hydrogen phosphate, the monopotassiun phosphate is the second, and the sodium hexametaphosphate is the worst of the three. If using the monopotassium phosphate, as the concentration of P goes up, the P removal quantity increases. However, when the total P is more than 50mg/L, the P removal which keeps 20mg/L will not goes up as the concentration increases. Different phosphorus source and various initial concentrations of phosphorus culture media are cultured stably rendering rich microbial diversity, low similarity of phosphorus source culture media samples, and high similarity of concentration of phosphorus culture media samples. Among all experiments of phosphorus source, we found that anaerobic medium using dipotassiun hydrogen phosphate and sodium phosphite as phosphorus resource have the lowest similarity 55.4%, besides, in the test of initial phosphorus concentration, the initial phosphorus concentration is 50mg/L had the medium high similarity with the other initial phosphorus concentration which are more than 70%
     It has the best results to remove P when using the ammonium chloride as N source, the ammonium acetate is the second, and the sodium nitrate is the worst of the three. If using the ammonium chloride as N source,it has the best results to remove P when the nitrogen-phosphorus ratio is 1.0.Different nitrogen source and initial Nitrogen-Phosphorus ratios are cultured stably rendering rich microbial diversity, low similarity of nitrogen source culture media samples. Among all experiments of nitrogen source, we found that anaerobic medium using ammonium chloride and peptone as nitrogen source have the lowest similarity 44.3%, besides, in the test of nitrogen-phosphorus ratio, the initial nitrogen-phosphorus ratio that are respectively 0.5 and 1.0 have the lowest anaerobic medium similarity which is just 59.7%.
     It has the best results to remove P when using the methanol as C source, the beer and the glucose is the second, and the sodium acetate is the worst of the three. The different carbon-phosphorus ratio has a big impact on the total phosphorus removal and COD removal in the anaerobe culture system,as the carbon-phosphorus ratio increases, the total phosphorus removal and COD removal in the anaerobe culture system will increase until it reaches certain degree that the removement will decrease as the carbon-phosphorus ratio increases.Five kinds of various carbon sources cultured stably rendering rich microbial diversity, high similarity. Eight kinds of various carbon sources cultured stably rendering rich microbial diversity and the similarity is not high, similarity between the anaerobic culture mediums with the carbon- phosphorus ratio 8、12 and 1.5 is the higher than that of 24、30and 40.
     As the condition of culture optimizes,in the condition of each best effect factor,the phosphorus removal in the anaerobic culture medium is raising;the microbialpopulation variety is abundant , the similarity is discrepancy as a whole;As the condition of culture optimizes,the microbialpopulation structure is changing gradually,the amount of the microbialpopulation are reducing gradually.Combine the result of routine experiments, the microbialpopulation which band 4 7 12 13 and 17 stands for are dominant microbialpopulation that remove P to produce phosphine in anaerobic condition, which can be used to the follow-up sequencing to identify the population.
引文
[1]向律成,郝虎林,杨肖娥等.多年生漂浮植物对富营养化水体的响应及净化效果研究[J].水土保持学报,2009,23(05):152-155.
    [2]刘李乔,刘伟利.浅谈水体的富营养化[J].水利天地,2004,2:31-31.
    [3]于虹漫,冷云.浅谈蓝藻水华的危害与防治[J].内陆水产,2003,28(12):31-31.
    [4]张雁秋,许翱天编著.废水生物处理及其反应动力学[M].徐州:中国矿业大学出版社,2002.
    [5]耿红.水体富营养化和蓝藻对轮虫影响的生态毒理学研究[D].中国科学院研究生院博士论文,2006
    [6]樊树红,水体富营养化的探究[J].黑龙江科技信息,2010,28(10):8.
    [7]张英雄,许淑华,李晶.磷对环境的污染及防治对策[J].化工环保,2002,22(2):68-70.
    [8]刘用场.水体富营养化的发生、危害及防治[J].福建农业科技,2003,34(6):48-49.
    [9]郑兴灿,李亚新编著.污水除磷脱氮技术[M].北京:中国建筑工业出版社,1998: 5.
    [10]郑蓓,交替式曝气生物滤池组合系统生物除磷试验研究[D].重庆大学博士论文,2007
    [11]李军,杨秀山,彭永臻.微生物与水处理工程[M].北京:化学工业出版社,2002.
    [12]王锐刚.活性污泥法除磷动力学研究[D].中国矿业大学博士论文,2009.
    [13]丁文明,黄霞.废水吸附法除磷的研究进展[J].环境污染治理技术与设备,2002,3(10):23-27
    [14]徐丰果,罗建中,凌定勋.废水化学除磷的现状与进展[J].工业水处理,2003,23(5):18-2
    [15] Doyle,J.D,and Parsons,S.A.Struviteformation eontrolandrecovery [J]. Water Research,2002,36(16):3925-3940.
    [16]侯红娟,周琪等,城市污水除磷技术发展[J] .四川环境,2004,23(6)41-44.
    [17]梁继东,周启星,孙铁珩.人工湿地污水处理系统研究及性能改进分析[J].生态学杂志,2003,22(2):49-55.
    [18]高治国,杨严,陈文通.污水生物除磷技术的发展进程[J].辽宁化工,2011,40(2)134-136.
    [19]王宝贞,王琳.水污染治理新技术—新工艺、新概念、新理论[M].北京:科学出版社,2004:24-25.
    [20]张兆君.生物除磷机理及除磷微生物[J].安徽农业科学,2010, 38(8):4205-4207.
    [21] J.B.Heymann.The biochemistry for enhance phosphorus removal by activated sludge[J].Water Science and Technology, 1985,17 (11/ 12):303-304.
    [22] Arun V,Mino T,Matsuo T.Biological mechanisms of acetate uptake mediated by carbohydrate consumption in excess phosphate removal systems[J].Water Res. 1988,22(5):565-570.
    [23]高廷耀,夏四清,周增炎.城市污水生物脱氮除磷机理研究进展[J].上海环境科学,1999,18(1):16-18.
    [24]祝贵兵.生物除磷:设计与运行手册[M].彭永臻译.北京:中国建筑工业出版社,2005.
    [25]沈雨,黄勇,李大鹏等.强化生物除磷系统主要微生物研究进展[J].水处理技术,2010,36(5)14-17.
    [26]行智强,陈银广,杨海真.影响强化生物除磷的关键因素研究进展[J].环境保护科学,2006,32(1):31-33.
    [27]马勇,彭永臻.城市污水厂处理系统运行及过程控制[M].北京:科学出版社,2007.
    [28]张辰,张欣,杜炯.上海市白龙港污水处理厂改造工程设计[J].给水排水,2008,34(4):16-19.
    [29]徐华灿,王锡清.HYBRID工艺在污水处理厂改造中的应用[J].给水排水,2008,34(6):34-36.
    [30] Burow L C,Kong Y H, Nielsen J L,et al.Abundance and ecophysiology of defluviicoccus spp. glycogen accumulating organisms in full-scale wastewater treatment processes[J].Microbiology,2007,153:178-185.
    [31] Carlos M López-Vázquez,Christine M Hooijmans,Damir Brd-janovic,et al.Factors affecting the microbial populations atfull-scale enhanced biological phosphorus removal(EBPR) wastewater treatment plants in The Netherlands[J]. Water Res,2008,42:2349-2360.
    [32] Kong Y H,Xia Y,Nielsen J L,et al.Ecophysiology of a group ofuncultured Gammaproteobacterial glycogenaccumulating organisms in full-scale enhanced biological phosphorus removalwastewater treatment plants[J].Environ Microbiol. 2006,8(3):479-489.
    [33] Adrian Oehmen,Aaron M Saunders,M Teresa Vives,et al.Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources[J]. Biotechnol,2006,123:2-32.
    [34] Adrian Oehmen,Paulo C Lemos,Gilda Carvalho,et al.Advances in enhanced biological phosphorus removal:from micro to macro scale[J].Water Res. 2007,41:2271-2300.
    [35]魏新全,王宏成,强化生物除磷工艺中聚磷菌和聚糖菌竞争影响因素的研究进展[J].中国西部科技,2011,10(8)16-17
    [36] Oehmen,A,Lemos,PC,Carvalho,G,Yuan,2,Keller,J,Blaekall,L.L,andReis,M.A.M.Advaneesinenhaneed biologieal PhosPhorusre- moval: Frommierotomaero seale[J].WaterReseareh,2007,41(11):2271 -2300.
    [37] Thomas,M,Wright,P,Blackall,L,Urbain,V, andKeller, J.O Ptimisation of Noosa BNRP lant to imProve Performance and reduce operating eosts[J] . WaterSeenee and Teehnol,2003, 47(12):141-148.
    [38]成小英,李世杰.长江中下游典型湖泊富营养化演变过程及其特征分析[J].科学通报,2006,51(7):848-855.
    [39]郑平,冯孝善.废物生物处理[M].北京:高等教育出版社,2006.
    [40] MeCarty,P.L,and Smith,D.p.Anaerobic wastewater treatment. [J] Environ Seienee and Technology 1986,20(12):1200-1206.
    [41]斯皮思,李亚新,马志毅.工业废水的厌氧生物技术[M]:北京:中国建筑工业出版社.2001.
    [42] RudafovK I. Die reduktion dermineralischen phosphate auf Biologi-schem wege[J]. ZentblBaktParasitKdeAbtII,1927,70: 202-214.
    [43] LiebertF. ReduzierenMikroben phosphate[J].
    [44] Zentbl Bak l ParasitKde Abt II,1927,72: 369-374.Archangel skij A D, Kopcenova E V. Note on organicsu- bstances, phosphorus and vanadium deposits in theBlack Sea. Isv[ J]. Akad Nauk SSSR, 1930: 205-512.
    [45] Archangel skij A D, Kopcenova E V. Phosphine inBlack Sea sediments In: GmelinsHandbuch derAnor-ganishen Chemie-Phosphor[J]. Verlag Chemie Wein-heim,1965,16(A): 145-147.
    [46] Tsubota G. Phosphate reduction in the paddy field[J]. I. Soil Plant Food,1959,5: 10-15 .
    [47] Dévai I,Felf?ldy L, Wittner I et al. Detection of phosphine: new aspects of the phosphorus cycle in the hydrosphere[J]. Nature, 1988, 333(26):343-345 .
    [48] Gassmann G,Schorn F. Phosphine from harbor surface sediment[J].
    [49] Glindemann D,Bergmann A. Spontaneous Emission of Phosphine from Animals Naturwissenschaften, 1993, 80(2): 78-80 Slurry Treatment Processing[J]. Zentralbl Hyg Umweltmed. 1995, 198(1): 49-56.
    [50] Eismann F, Glindemann D, Bergmann A, et al. Soils as source and sink of phosphine[J]. Chemosphere, 1997, 35(3): 523-533
    [51] Liu Ji-ang, Cao Haifeng, Zhuang Yahui, et al. Phosphine in the urban air of Beijing and its possible sources[J]. Water Air and Soil Pollution, 1999, 116: 597-604
    [52] Jenkins R O,Morris T A,Craig P J, et al. Phosphine generation by mixed-and monoseptic2cultures of anaerobic bacteria[J]. Sci Total Environ, 2000, 250: 73-81.
    [53]俞志明,宋秀贤.基质结合态磷化氢:胶州湾沉积物中新发现的一种磷化物存在形式[J].科学通报,2002, 47 (20) : 1596-1599.
    [54]丁丽丽,朱益新,梁瀚文等.大型UASB系统磷化氢分布及磷平衡研究[J].南京大学学报(自然科学版),2005,41(6):620-626.
    [55]朱益新,丁丽丽,任洪强等.结合态磷化氢在厌氧微生物产酸过程中的释放行为[J].环境科学,2005, 26(4):139-142.
    [56] Gassmann G, Glindemann I. Phosphane (PH3) in thebiosphere[J]. Angew Chem Int Edit, 1993, 32: 761-763.
    [57]王卓艺.污水处理系统中磷的转化途径[J].科技情报开发与经济,2007,17 (32):154-156.
    [58] Roels J,Verstraete,W.Biological formation of volatile phosphorus compounds[J]. Biores .Techno l.2001,79 :243-250.
    [59]卢永等,PCR-DGGE在水处理微生物群落多样性分析中的应用[J].化学与生物工程,2009,26(5):55-58
    [60]张洪勋,王晓谊,齐鸿雁.微生物生态学研究方法进展[J].生态学报, 2003, 23(5):988-994.
    [61]洪义国,孙谧,张云波等.16S rRNA在海洋微生物系统分子分类鉴定及分子检测中的应用[J].海洋水产研究,2002,23(1):58-63.
    [62]杨朝晖,基于分子生态学技术的环境微生物群落结构与功能的研究[D].湖南大学博士论文, 2007.
    [63]许春红. Carrousel 2000型氧化沟工艺调试过程中微生物学研究.郑州大学硕士学位论文,2006.
    [64]黄春晓. PCR-DGGE技术及其在环境工程生物处理中的应用[J].中原工学院,2007,18(1)72-75.
    [65]张宝涛,王立群,伍宁丰等. PCR-DGGE技术及其在微生物生态学中的应用[J].生物信息学,2005,4(3):132-134.
    [66] MuyzerG,deWaalEC,UitterlindenAG.Profiling of eomPlex mierobial PoPulation by denaturing gradient gel eleetrophoresis analysis of Polymerase Chain reaetion-amplified genes eneoding for 16SrRNA.APPlied Environmental Mierobiology,1993,59(3):695-700.
    [67] Zhou S,Wei C,Ke L,et al.PCR-DGGE as a supplemental method verifying dominance of culturable microorganisms from activated sludge[J]. Microbiol Biotechnol,2010,20(11):1592-1596.
    [68] Shen S M,Hwang H Y,Fang H Y.Tracking biological pollution sourcesusing PCR-DGGE technology at Ta-An Beach[J].Water Sci Technol,2010,62(10): 2235-2245.
    [69] Mrázek J,KoppováI,Kopecny J,et al.PCR-DGGE-based study of fe - cal microbial stability during the long-term chitosan supplementationof humans[J]. Folia Microbio(lPraha),2010,55(4):352-358.
    [70] JURETSCHKO S, LOYA, LEHNER A, et al. The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach[J]. Systematic Appl Microbiol,2002, 25:84-99.
    [71] YOU S J, HSU C L, CHUANG S H, et al. Nitrification efficiency and nitrifying bacteria abundance in combined AS-RBC and A2O system[J]. Water Research, 2003, 37:2281-2290.
    [72]许春红,买文宁,赵继红.PCR- DGGE研究厌氧复合床反应器中微生物种群多样性[J].河南科学,2006,24(5):754-756.
    [73] Liang D W,Zhang T,Fang H H P,et al. Anaerobic degradation of dimethyl phthalate in wastewater in a UASB reactor[J]. Wa-ter research, 2007,41 (13):2879-2884.
    [74] Huang A,Chen H, Chen L,et al. Effects of Cd(Ⅱ) and Cu(Ⅱ)on microbial characteristics in 2-chlorophenol-degradation anae-robic bioreactors[J]. Journal of Environmental Sciences,2008,20(6):745-752.
    [75] Li J,Hu B,Zheng P, et al. Filamentous granular sludge bulkingin a laboratory scale UASB reactor[J]. Bioresource Technology,2008,99(9):3431-3438.
    [76] Liu X, Ren N,Yuan Y. Performance of a periodic anaerobic baf-fled reactor fed on Chinese traditional medicine industrial wastewater[J]. Bioresource Technology,2009,100(1):104-110.
    [77]陈谊,孙宝盛,张斌等.不同MBR反应器中硝化菌群落结构的研究,中国环境科学2010,30(1):69-75.
    [78]魏勇,王红宁,廖党金等.PCR-DGGE技术用于猪场沼气池细菌群落分析的条件优化[J].农业环境科学学报,2011,30(3):599-604.
    [79]郭飞宏,郑正,张继彪等.PCR-DGGE技术分析塔式蚯蚓生态滤池微生物群落结构[J].中国环境科学2011,31(4):597-602.
    [80] BOON N, TOP E M, VERSTRAETE W, et al.Bioaugmentation as a tool to protect the structure and function of an activated-sludge microbial community against a 3-chloroaniline shock load[J]. Appl Environ Microbiol, 2003,69: 1511-1520.
    [81] ZhangD, ZhangDM, Liu YP, et al·Community analysis of ammonia oxidizer in the oxygen-limited nitritation stage of OLAND system by DGGE of PCR amplified 16SrDNAfragments and FISH [ J]·J Environ Sci, 2004, 16: 834-842.
    [82]胡宝兰,郑平,胡安辉,等.Anammox反应器的启动及其菌群演变的研究[J].农业工程学报,2005,21(7):107-110.
    [83]苏俊峰,马放,王弘宇,等.利用PCR-DGGE技术分析生物陶粒硝化反应器中微生物群落动态[J].环境科学学报,2007,27(3):386-390.
    [84] Moura A,Tacáo M,Henriques I,et al. Characterization of bacte-rial diversity in two aerated lagoons of a wastewater treatmentplant using PCR-DGGE analysis[J]. Microbiol Res, 2007,6:5.
    [85] Liu X, Ren N,Yuan Y. Performance of a periodic anaerobic baf-fled reactor fed on Chinese traditional medicine industrialwastewater[J]. Bioresource Technology, 2009,100(1):104-110.
    [86] Li A J,Yang S F,Li X Y, et al. Microbial population dynamicsduring aerobic sludge granulation at different organic loadingrates[J]. Water Res, 2008,42(13): 3552-3560.
    [87]高孟春,梁方圆,杨丽娟等,PCR-DGGE解析阴离子交换膜生物反应器反硝化过程中微生物群落结构变化[J].中国海洋大学学报,2010,40(4):79-84.
    [88]刘然,彭剑峰.厌氧折流板反应器(ABR)中微生物种群演替特征[J].环境科学研究,2010,23(6):741-747.
    [89] Schmid M.Molecular evidence for genuslevel diversity of bacteria capable of catalyzing anaerobic ammonium oxidation[J].Syst Appl Microbiol, 2000,23(1): 93-106.
    [90] GiehF,SehubertK,BrunsA,etal.SPeeificdeteetion,isolation,and charaeterization of selected,Previouslyune ulturedmembers of the fresh water baeterio Plankton eommunity.APPlied Environmental Mierobiology,2005,71(5):5905 -5909.
    [91] Liu S, Yang F, Gong Z,et al. Application of anaerobic ammoni-um-oxidizing consortium to achieve completely autotrophic am-monium and sulfate removal[J]. Bioresource Technology,2008,99(15):6817-6825.
    [92] Hirasawa J S,Sarti A,Del Aguila N K,et al. Application of mo-lecular techniques to evaluate the methanogenic archaea and an-aerobic bacteria in the presence of oxygen with different COD∶s ulfate ratios in a UASB reactor[J]. Anaerobe, 2008,14(4):209-218.
    [93]张佩兰,荣宏伟,张可方等.不同泥源磷源对厌氧除磷的影响[J].广东化工, 2011,38(1):118-119.
    [94]郭夏丽,郑平,梅玲玲.厌氧除磷种源的筛选与厌氧除磷条件的研究[J].环境科学学报,2005,25(2):238-241.
    [95]周康群,刘晖,孙彦富等.厌氧条件总磷还原为磷化氢种泥筛选及功能菌株鉴定[J].生态环境,2007,16(6):1669-1673.
    [96]崔迪.低温生物强化系统中微生物群落结构解析[D] .哈尔滨工业大学博士论文,2009
    [97]张翠丽,李轶冰,卜东升等.牲畜粪便与麦秆混合厌氧发酵的产气量、发酵时间及最优温度[J].应用生态学报,2008,19(8):1817-1822.
    [98] Wang G,Gaval H N,Skiadas I V,et al.Wet explosion of wheat straw and codigestion with swine manure:Effect on the methaneproductivity[J].Waste Management,2009,29:2830-2835.
    [99]赵庆良,李巍,徐永波等,厌氧附着生长反应器处理氨氮和硫酸盐废水的研究,黑龙江大学自然科学学报[J]. 2007,28(4):441-446.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700