基于SPM的超高密度信息存储关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的磁存储、光存储和半导体存储受到超顺磁效应、衍射现象和最小光刻单元的限制而存在各自的物理极限,基于扫描探针显微术(SPM)的信息存储技术能够突破传统存储技术的物理极限,有望成为下一代的高密度存储技术,但目前存在读取速率低和探针寿命短等问题。针对上述问题,本论文将压电功能材料锆钛酸铅(PZT)薄膜应用于SPM技术中,提出了新型的“热-压电-机械”数据存储方法,并对其机理进行了详细论述。
     用于“热-压电-机械”数据存储的读写头是由压电悬臂梁探针组成的阵列,论文中用减小几何尺寸的方法设计了一种低刚度高谐振频率的悬臂梁式压电探针,以非矩形不等截面多层复合结构的悬臂梁作为探针的力学模型,通过理论推导获得探针的弹性常数为4N/m,谐振频率为245kHz。以探针自由端部集成的微型加热器为中心研究了探针的热学特性,研究表明加热器热量散失的主要方式为通过梁体传导到基体,次要方式为传导到空气中,而对流和辐射对热量散失带来的影响可以忽略。
     数据写入过程是针尖和介质相互作用的过程,结合存储介质聚甲基丙烯酸甲酯(PMMA)的材料特性和数据写入机理,建立了包含力学接触分析、热传导分析、粘弹性分析以及运动流体界面追踪分析在内的六步模型来描述整个数据写入过程,并用该模型对单个数据写入过程进行了数值模拟,模拟结果显示在加热和加载力共同作用下最终形成中央凹陷50nm周围凸起十几纳米的数据斑。模拟同时表明数据斑周围的凸起是将介质在流体状态挤出所致,而介质受热膨胀的影响很小。
     从电荷灵敏度的角度研究了数据读出,通过增加悬臂梁弹性层厚度、剥离部分钝化层以及为PZT加直流偏压等方法可提高电荷灵敏度,并以此优化了探针结构和数据读出过程。
     利用微加工方法加工和制备了存储系统的部分关键结构和材料。通过各向异性刻蚀法获得了高宽比为1.56,尖端曲率半径小于50mm的单晶硅针尖结构,通过旋涂法获得了厚度为200nm左右表面粗糙度低于2nm的PMMA薄膜,通过等离子体增强化学气相沉积法(PECVD)获得了低应力的氮化硅薄膜以及非晶硅薄膜。
     对上述内容进行深入研究的结果表明“热-压电-机械”的存储方式在保证高密度的前提下,具有更高的读写速率,更长的探针寿命和更低的器件功耗,能够解决目前存在的读取速率低、探针寿命短等问题,在推动超高密度信息存储技术实用化方面具有重要意义。
Traditional magnetic storage, optical storage and semiconductor storage have their own physical limitations because of the superparamagnetic effect, diffraction and minimum lithography element size. Scanning probe microscopy (SPM) based data storage technology is an ideal high-density data storage technology, which can break through the physical limitations of the traditional storage technology. But low data rate and short probe lifetime are the problems faced nowadays. This dissertation applies piezoelectric material, lead zirconate titanate (PZT), into SPM technology, brings up the novel "thermo-piezoelectric-mechanical" method for data storage and describes its mechanism in detail.
     Piezoelectric cantilevers array is the key part in the storage system for "thermo-piezoelectric-mechanical" storage. In this dissertation, a novel piezoelectric cantilever probe with low stiffness and high resonance frequency was structural designed by decreasing its geometric dimensions. A multi-layered cantilever with non-rectangle and unequal sections is abstracted as the mechanics model of the probe. By theoretical analysis, the spring constant and the resonance frequency of the cantilever probe was calculated as 4 N/m and 245 kHz respectively. The microheater integrated on the free end of the cantilever is the main object of thermal analysis. The results show that heat dissipation is mainly by conduction along the cantilever body to the substrate, partly by conduction into air, while convection and radiation could be neglected.
     Data writing process is the interaction between tip and storage medium. Based on the material properties of polymethyl methacrylate (PMMA) and data writing mechanism, a six-stepped model was set up to describe the whole data writing process. This model includes mechanical contact analysis, thermal conduction analysis, viscoelasticity analysis and tracing of moving interface integrated with volume of fluid analysis. The result of numerical simulation for the single data pit writing process shows that under the thermal and mechanical loading, a 50nm depth center-depressed and more than 10nm peripheral-heaved data pit was formed. The pilling up around the pit is caused by extruding fluid status media instead of thermal expanding.
     The research of data reading out is concentrated on the piezoelectric charge sensitivity. The charge sensitivity could be better through the following ways: increasing the thickness of the elastic layer of the cantilever, peeling off part of passivation layer and applying DC bias to PZT. The probe structure and data reading out process were also optimized.
     Some experimental researches were executed on the fabrication and preparation for the key structures and main materials involved in the storage system. Anisotropic wet etching was used to fabricate single-crystalline silicon tip, which has an aspect ratio of 1.56 and curvature radius of less than 50nm. Spin coating was used to prepare 200nm-thick PMMA thin film, which roughness is less than 2nm of Ra value. Plasma enhanced chemical vapor deposition (PECVD) was used to prepare low-stressed silicon nitride thin films and amorphous silicon thin films.
     All above research results show that besides high storage density, "thermo-piezoelectric-mechanical" storage has higher data access rate, longer probe lifetime and lower power consumption. This storage method could resolve the problems of low data rate and short probe lifetime and promote the utilization of ultra-high-density data storage technology.
引文
[1] Deskstar 7K250 hard disk drives specifications. Hitachi hard disk data sheet 2006 [cited 2006-09-27]; Available from: http://www.hitachigst.com/hdd/support/d7k250/d7k250.htm.
    [2] Sadik C. Esener, Introduction-Optical Storage, in WTEC Panel on the Future of Data Storage Technologies. 1999. p. 2.
    [3] 王业亮,郭海明,刘虹雯,等.纺米尼度的数据存储[J].科学通报,2002,47(17):1281-1289.
    [4] H. N. Bertram and M. Williams. SNR and density limit estimates: a comparison of longitudinal and perpendicular recording [J]. IEEE Trans. Magn., 2000, 36(1):4-9.
    [5] 黄致新,许小红,晋芳,等.硬盘用高度垂直磁记录簿膜研究进展[J].信息记录材料,2002,3(2):47-52.
    [6] Seagate 'Gets Vertical' And Demonstrates Record Storage Areal Density And Performance. 2002 [cited 2004-6-20]; Available from: http://www.seagate.com/cda/newsinfo/newsroom/releases/artiele/0,1121,1555,00.html.
    [7] Komag Announces New Benchmarks in Perpendicular Magnetic Recording. 2003 [cited 2004-6-20]; Available from: http://www.komag.com/press/press_030818__pmr.html.
    [8] Richard Ball. Hard Disk Density Doubled. 2005 [cited 2006-9-27]; Available from: http://www.edn.com/article/CA515662.html?partner=enews.
    [9] Stan Beer. Toshiba 200GB 2.5 inch drive sets storage density record. 2006 [cited 2006-9-27]; Available from: http://www.itwire.com.au/content/view/4536/53/.
    [10] Evan Blass. Seagate claims world record for magnetic recording density. 2006 [cited 2006-9-27]; Available from: http://www.engadget.com/2006/09/17/seagate-claims-world-record-for-magnetic-recording-densit y/.
    [11] The Giant Magnetoresistive Head: A giant leap for IBM Research. [cited 2006-9-29]; Available from: http://www.research.ibm.com/research/gmr.html.
    [12] 胡松青,杨渭.巨磁电阻应用的现状与展望[J].青岛大学学报,2003,16(1):69-72.
    [13] Keiichi Nagasaka, Arata Jogo, Takahiro Ibusuki, et al. CPP-GMR Technology for Future High-Density Magnetic Recording [J]. FUJITSU Sci. Tech. J., 2006, 42(1): 149-157.
    [14] H. Pozidis, P. Bachtold, J. Bonan, et al. Scanning Probes Entering Data Storage: From Promise to Reality [C]. in IEEE Conference on Emerging Technologies - Nanoelectronics. Singapore: 2006, 39-44.
    [15] 徐端颐.光盘存储系统设计原理[M].第一版.国防工业出版社.2000,北京.
    [16] 陈小洪,高正平.磁光存储技术原理[M].第一版.电子科技大学出版社.1994,成都.
    [17] 王现英,张约品,沈德芳,等.超高密度磁光存储及其介质研究进展[J].物理,2002,31(12):779-783.
    [18] Tetsuhiro Sakamoto, Goro Fujita, Yoshihiro Takemoto, et al. 15 Gbit/inch~2 areal density Optical Disk using the DWDD medium with Blue LD recording [C]. in Optical Data Storage, Proc. of SPIE (4090): 2000, 153-159.
    [19] Seagate Swings "HAMR" to Increase Disc Drive Densities by a Factor of 100. 2002 [cited 2004-6-20]; Available from: http://www.seagate.corn/cda/newsinfo/newsroom/releases/article/0,1121,1503,00.html.
    [20] 刘继桥,刘之景,王克逸.近场光学高密度存储研究进展[J].自然杂志,2002,24(6):330-334.
    [21] Tom D. Milster. Near-Field Optics: A New Tool for Data Storage [C]. in Proc. of IEEE, Vol. 88, No.9:2000.1480-1490.
    [22] 董怡,金伟其.超高密度光存储技术[J].激光与红外,2005,35(8):543-547.
    [23] 金国藩.超高密度光存储技术[M].现代光学与光电子学的进展.科学技术出版社.2003,天津.
    [24] 袁大军,周拥军,蒋中伟,等.双光子激光三维微细加工及信息存储技术[J].微纳电子技术,2003(7/8):173-176.
    [25] 马文波,吴谊群,顾冬红,等.双光子吸收有面材料及其在三维数字老存储中的应用[J].化学进展,2004,16(4):631-637.
    [26] 廖专崇,黄俊义.存储技术的现状与未来[J].电子产品世界,2004(1):51-55.
    [27] 台电产品介绍.[cited 2006-10-2]; Available from: http://www.teclast.com/topic.php?action=product&channelID=70&topicID=140&productID=346 &keyword=.
    [28] Kanguru 64GB Flash Max Drive. [cited 2006-10-2]; Available from: http://www.tigerdirect.com/applications/SearchTools/item-details.asp?EdpNo=2074958.
    [29] Antony van Leeuwenhoek [cited 2006-08-31]; Available from: http://www.ucmp.berkeley.edu/history/leeuwenhoek.html.
    [30] Ernst Ruska, The Nobel Prize in Physics 1986. [cited 2006-08-31]; Available from: http://nobelprize.org/nobel_prizes/physics/laureates/19g6/ruska-autobio.html.
    [31] G. Binning and H. Rohrer. Scanning tunneling microscope [J]. Helv. Phys. Aeta, 1982, 55:726.
    [32] G. Binnig, C. F. Quate and Ch Gerber. Atomic Force Microscope [J]. Physical Review Letters, 1986, 56(9):930-934.
    [33] 白春礼,田芳,罗克.扫描力显微术[M].第一版.科学出版社.2000,北京.
    [34] 项仕标,张天浩,苏玉玲,等.近场扫描光学显微镜及其探针技术研究新进展[J].分析测试学报,2004,23(1):119-124.
    [35] Toshiharu Saiki and Yoshihito Narita. Recent Advances in Near-field Scanning Optical Microscopy [J]. JSAP International, 2002(5):22-29.
    [36] M. Y. Ali and N. P. Hung. Surface Roughness of Sputtered Silicon. II. Model Verification [J]. Materials & Manufacturing Processes, 2001, 16(3):315-329.
    [37] 游俊富,王虎,赵海山.扫描探针显微镜在粗糙度、纳米尺寸、表面形貌观测方面的应用[J].现代科学仪器,2003(2):9-12.
    [38] Jiaru Chu, Zhanjie Wang and Ryutaro Maeda. Measurements of Piezoelectric Coefficient of Pb(Zr, Ti)O_3 Thin Film Using α Piezoelectric Microcantilever [J]. Jpn. J. Appl. Phys., 1999, 38(12A):L1482-L1484.
    [39] 黄文浩,陈宇航,党学明.基于SPM技术的表面纳米计量[J].微纳电子技术,2004(1):1-9.
    [40] Christopher C. Umbach and Jack M. Blakely. Development of a sub-picoampere scanning tunneling microscope for oxide surfaces [J]. Applied Surface Science, 2001,175-176:746-752.
    [41] Peter R. Hoyt, Mitchel J. Doktycz, Robert J. Warmack, et al. Spin-column isolation of DNA-protein interactions from complex protein mixtures for AFM imaging [J]. Ultramicroseopy, 2001, 86(1-2):139-143.
    [42] D. M. Eigler and E. K. Schweizer. Positioning single atoms with a scanning tunnelling microscope [J]. Nature, 1990, 344:524-526.
    [43] Jeong Woo Park, Deug Woo Lee, Noboru Takano, et al. Diamond Tip Cantilever for Micro/Nano Machining based on AFM [J]. Materials Science Forum, 2006, 505-507:79-84.
    [44] Stephan Kramer, Ryan R. Fuierer and Christopher B. Gorman. Scanning Probe Lithography Using Self-Assembled Monolayers [J]. Chem. Rev., 2003, 103:4367-4418.
    [45] Gang Luo, Guoyong Xie, Yongyi Zhang, et al. Scanning probe lithography for nanoimprinting mould fabrication [J]. Nanotechnology, 2006, 17:3018-3022.
    [46] A. Houel, D. Tonneau, N. Bonnail, et al. Direct patterning of nanostructures by field-induced deposition from a scanning tunneling microscope tip [J]. J. Vac. Sci. Technol. B, 2002, 20(6):2337-2345.
    [47] 袁哲俊.使用SPM的纳米级加工技术新进展[J].纳米技术与精密工程,2004,2(1):45-49.
    [48] Benjamin W. Chui. Microcantilevers for Atomic Force Microscope Data Storage [M]. Kluwer Academic Publishers. 1999.
    [49] H. J. Mamin, S. Chiang, H. Birk, et al. Gold deposition from a scanning tunneling microscope tip [J]. J. Vac. Sci. Technol. B, 1991, 9(2):1398-1402.
    [50] H. Takahashi, A. Onoe, T. Ono, et al. Diamond probe with silicon-based piezo strain gauge for high density data storage using scanning nonlinear dielectric microscopy [C]. in Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05. The 13th International Conference on: 2005, 1338-1341.
    [51] Dong Weon Lee, Takahito Ono and Masayoshi Esashi. Recording on PZT and AglnSbTe thin films for probe-based data storage [C]. in MEMS 2002. The 15th IEEE International Conference on: 2002, 685-688.
    [52] Dong-Ween Lee, Takahito Ono, Takashi Abe, et al. Fabrication of microprobe array with sub-100 nm nano-heater for nanometric thermal imaging and data storage [C]. in MEMS 2001. The 14th IEEE International Conference on: 2001,204-207.
    [53] Hyunjung Shin, Seungbum Hong, Jooho Moon, et al. Read/write mechanisms and data storage system using atomic force microscopy and MEMS technology [J]. Ultramicroscopy, 2002, 91:103-110.
    [54] Ruschlikon. "Millipede" small-scale MEMS prototype shown at CeBIT. [http://www.zurich.ibm.eom/news/05/millipede.html] 2005 [cited 2005 May 19th].
    [55] H. Jonathon Mamin, Robert P. Ried, Bruce D. Terris, et al. High-Density Data Storage Based on the Atomic Force Microscope [J]. PROCEEDINGS OF THE IEEE, 1999, 87(6): 1012-1027.
    [56] William P. King, Thomas W. Kenny, Kenneth E. Goodson, et al. Design of Atomic Force Microscope Cantilevers for Combined Thermomechanical Writing and Thermal Reading in Array Operation [J]. J. Microelectromech. Syst., 2002, 11(6):765-774.
    [57] G. Binnig, M. Despont, U. Drechsler, et al. Ultrahigh-density atomic force microscopy data storage with erase capability [J]. Appl. Phys. Lett., 1999, 74(9):1329-1331.
    [58] P. Vettiger, G. Cross, M. Despont, et al. The "Millipede"-Nanotechnology Entering Data Storage [J]. IEEE Transactions on Nanotechnology, 2002, 1(1):39-55.
    [59] H. Pozidis, W. Haberle, D. Wiesmarm, et al. Demonstration of Thermomechanical Recording at 641 Gbit/in~2 [J]. IEEE Transactions on Magnetics, 2004, 40(4):2531-2536.
    [60] Young-Sik Kim, Hyo-Jin Nam, Seong-Moon Cho, et al. PZT cantilever array integrated with piezoresistor sensor for high speed parallel operation of AFM [J]. Sensors and Actuators A, 2003, 103:122-129.
    [61] Caroline Sunyong Lee, Hyo-Jin Nam, Young-Sik Kim, et al. Microcantilevers integrated with heaters and piezoelectric detectors for nano data-storage application [J]. Appl. Phys. Lett, 2003, 83(23):4839-4841.
    [62] Hyo-Jin Nam, Young-Sik Kim, Caroline Sunyong Lee, et al. Integrated Nitride Cantilever Array with Si Heaters and Piezoelectric Detectors for Nano-Data-Storage Application [C]. in 18th IEEE International Conference on Micro Electro Mechanical Systems. Miami Beach, Florida, USA: 2005, 247-250.
    [63] Wang Yuelin, Li Xinxin, Li Tie, et al. Nanofabrication based on MEMS technology [J]. Sensors Journal, IEEE, 2006, 6(3):686-690.
    [64] Zunxian Yang, Ying Yu, Xinxin Li, et al. Nano-mechanical electro-thermal probe array used for high-density storage based on NEMS technology [J]. Microelectronics Reliability, 2006, 46:805-810.
    [65] 杨尊先,于映,林丽华,等.新型纳机电热探针阵列器件数据存储技术研究[J].仪器仪表学报,2006,27(7):693-697.
    [1] 李远,秦自楷,周志刚.压电与铁电材料的测量[M].第一版.科学出版社.1984,北京.
    [2] 鲁健.PZT铁电薄膜的溶胶-电雾化制备研究[D],(博士学位论文).中国科学技术大学.2004.
    [3] 郑立荣,陈逸清,林成鲁,等.新型铁电存贮器和铁电薄膜的脉冲激光淀积[J].物理,1995,24(1):43-47.
    [4] Hyunjung Shin, Seungbum Hong, Jooho Moon, et al. Read/write mechanisms and data storage system using atomic force microscopy and MEMS technology [J]. Ultramicroscopy, 2002, 91:103-110.
    [5] Korbinian Kunz, Peter Enoksson and Goran Stemme. Highly sensitive triaxial silicon accelerometer with integrated PZT thin film detectors [J]. Sens. Actuators A: Phys., 2001, 92(1-3): 156-160.
    [6] Yoshikazu Hishinuma and Eui-Hyeok Yang. Large Aperture Deformable Mirror with a Transferred Single-Crystal Silicon Membrane Actuated Using Lagre Stroke PZT Unimorph Actuators [C]. in The 13th International Conference on Solid-State Sensors, Actuators and Microsystems. Seoul, Korea: 2005, 1167-1170.
    [7] Takayuki Shibata, Kazuya Unno, Eiji Makino, et al. Fabrication and characterization of diamond AFM probe integrated with PZT thin film sensor and actuator [J]. Sensors and Actuators A: Physical, 2004, 114(2-3):398-405.
    [8] P. F. Indermuhle, G. Schurmann, G. A. Racine, et al. Fabrication and characterization of cantilevers with integrated sharp tips and piezoelectric elements for actuation and detection for parallel AFM applications [J]. Sensors and Actuators A: Physical, 1997, 60(1-3): 186-190.
    [9] P. Vettiger, G. Cross, M. Despont, et al. The "Millipede"-Nanotechnology Entering Data Storage [J]. IEEE Transactions on Nanotechnology, 2002, 1(1):39-55.
    [10] H. J. Mamin. Thermal writing using a heated atomic force microscope tip [J]. Appl. Phys. Lett, 1996, 69(3):433-435.
    [11] Benjamin W. Chui. Microcantilevers for Atomic Force Microscope Data Storage [M]. Kluwer Academic Publishers. 1999.
    [12] 吴绍勇.压电探针表面信息并行读取若干关键技术研究[D],(硕士学位论文).中国科学技术大学.2007.
    [13] 李磊.基于压电悬臂梁的SFM反馈控制与信号检测系统研制[D],(硕士学位论文).中国科学技术大学.2004.
    [1] 许晓慧,鲁健,朱龙洋,等.基于激光多普勒技术的PZT薄膜压电性能测试研究[J].光学精密工程,2005,13(6):658-663.
    [2] Jian Lu, Jiaru Chu, Yan Yang, et al. Fabrication of thick Pb(Zr, Ti)O_3 (PZT) films by modified sol-gel methods for application in MEMS [J]. Journal of Micromechatronics, 2004, 2(3-4): 159-171.
    [3] 赵钢,褚家如,徐藻.硅基片微型通孔加工技术[J].微细加工技术,2004(2):60-65.
    [4] Michel Despont, Ute Drechsler, R. Yu, et al. Wafer-Scale Microdevice Transfer Interconnect- Its Application in an AFM-Based Data-Storage System [J]. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2004, 13(6):895-901.
    [5] H. Pozidis, W. Haberle, D. Wiesmann, et al. Demonstration of Thermomechanical Recording at 641 Gbit/in~2 [J]. IEEE Transactions on Magnetics, 2004, 40(4):2531-2536.
    [6] Robert P. Ried, H. Jonathon Mamin, Bruce D. Terris, et al. 6-MHz 2-N/m Piezoresistive Atomic-Force-Microscope Cantilevers with INCISIVE Tips [J]. Journal of Microelectromechanical Systems, 1997, 6(4):294-302.
    [7] Jiaru Chu, Toshihiro Itoh, Chengkuo Lee, et al. Novel high vacuum scanning force microscope using a piezoelectric cantilever and the phase detection method [J]. J. Vac. Sci. Technol. B, 1997, 15(4):1551-1555.
    [8] Chengkuo Lee, Toshihiro Itoh, Ryutaro Maeda, et al. Characterization of micromachined piezoelectric PZT force sensors for dynamic scanning force microscopy [J]. Rev. Sci. lnstrum., 1997, 68(5):2091-2100.
    [9] T ltoh and T Suga. Development of a force sensor for atomic force microscopy using piezoelectric thinfilms [J]. Nanotechnology, 1993, 4:218-224.
    [10] Toshihiro Itoh, Ryutaro Azumi and Tadatomo Suga. Piezoelectric Microcantilever Array for Multiprobe Scanning Force Microscopy [J]. IEICE TRANS. ELECTRON., 1997, E80-C(2):269-273.
    [11] 倪振华.振动力学[M].第一版.西安交通大学出版社.1989.
    [12] L. Gan, B. Ben-Nissan and A. Ben-David. Modelling and finite element analysis of ultra-microhardness indentation of thin films [J]. Thin Solid Films, 1996, 290-291:362-366.
    [13] Osamu Tabata, Ken Kawahata, Susumu Sugiyama, et al. Mechanical property measurements of thin films using load-deflection of composite rectangular membranes [J]. Sensors and Actuators, 1989, 20(1-2):135-141.
    [14] Material Properties of Pt Film. [cited 2004-6-21]; Available from: http://www.memsnet.org/material/platinumptfilm/.
    [15] Material Properties of Au Film. [cited 2004-6-21]; Available from: http://www.memsnet.org/material/goldaufilm/.
    [16] G. Binnig, M. Despont, U. Dreehsler, et al. Ultrahigh-density atomic force microscopy data storage with erase capability [J]. Appl. Phys. Lett., 1999, 74(9): 1329-1331.
    [17] P. Vettiger, G. Cross, M. Despont, et al. The "Millipede"-More than 1000 Tips for Parallel and Dense Data Storage [C]. in TRANSDUCERS'01: 2001, 1054-1057.
    [18] E. Eleftheriou, T. Antonakopoulos, G. K. Birmig, et al. Millipede-A MEMS-based Scanning-Probe Data-Storage System [J]. IEEE Transactions on Magnetics, 2003, 39(2):938-945.
    [19] Si_3N_4 Properties. [cited 2005-12-28]; Available from: http://www.accuratus.com/silinit.html.
    [20] Benjamin W. Chui. Microcantilevers for Atomic Force Microscope Data Storage [M]. Kluwer Academic Publishers. 1999.
    [21] Air Property Calculator. 23 Oct 2000 [cited 2006-10-29]; Available from: http://users.wpi.edu/~ierardi/FireTools/air_prop.html.
    [22] Laminar Forced Convection Over an Isothermal Plate. 2006 [cited 2006-12-31]; Available from: http://www.efunda.com/formulae/heat_transfer/convection_forced/overview_forced.cfm.
    [23] Aaron A. Geisberger, Niladri Sarkar, Matthew Ellis, et al. Electrothermal Properties and Modeling of Polysilicon Microthermal Actuators [J]. Journal of Microelectromechanical Systems, 2003, 12(4):513-523.
    [24] Material Properties of Si_3N_4 Bulk. [cited 2004-6-21]; Available from: http://www.memsnet.org/material/siliconnitridesi3n4bulk/.
    [25] Properties of SiO_2 and Si_3N_4 at 30OK. 2004 [cited 2005-12-28]; Available from: http://www.semiconfareast.com/sio2si3n4.htm.
    [1] 焦剑,雷渭嫒.高聚物结构、性能与测试[M].化学工业出版社.2003,北京.
    [2] 于同隐,何曼君,卜海山,等.高聚物的粘弹性[M].上海科学技术出版社.1986,上海.
    [3] P.Vettiger, G. Cross, M. Despont, et al. The "Millipede"-Nanotechnology Entering Data Storage [J]. IEEE Transactions on Nanotechnology, 2002, 1(1):39-55.
    [4] Polymethylmethacrylate (PMMA, Acrylic ) - Material Information. [cited 2006-10-29]; Available from: http://www.goodfellow.com/csp/active/static/A/Polymethylmethacrylate.HTML.
    [5] Material Properties of Si Bulk. [cited 2004-6-21]; Available from: http://www.memsnet.org/material/siliconsibulk/.
    [6] Dachen Chu, Maxat Touzelbaev, Kenneth E. Goodson, et al. Thermal conductivity measurements of thin-film resist [J]. J. Vac. Sci. Technol. B, 2001, 19(6):2874-2877.
    [7] Polymer Data File: Polymethyl Methacrylate - PMMA(Acrylic). 2004-3-24 [cited 2005-12-10]; Available from: http://www.tangram.co.uk/TI-Polymer-PMMA.html.
    [8] Air Property Calculator. 23 Oct 2000 [cited 2006-10-29]; Available from: http://users.wpi.edu/~ierardi/FireTools/air_prop.html.
    [9] 刘儒勋,王志峰.数值模拟方法必运动界面追踪[M].第一版.中国科学技术大学出版社.2001,合肥.
    [10] 李磊.基于压电悬臂梁的SFM反馈控制与信号检测系统研制[D],(硕士学位论文).中国科学技术大学.2004.
    [11] 伍建新,庄志强.PLZT驰豫铁电陶瓷偏压压电效应的研究[J].中国陶瓷,1999,35(3):9-12.
    [1] Anja Boisen, Ole Hansen and Siebe Bouwstra. AFM probes with directly fabricated tips [J]. J. Micromech. Microeng., 1996, 6:58-62.
    [2] A. Boisen, J. P. Rasmussen, O. Hansen, et al. Indirect tip fabrication for Scanning Probe Microscopy [J]. Microelectronic Engineering, 1996, 30:579-582.
    [3] Irena Zubel and Irena Barycka. Silicon anisotropic etching in alkaline solutions I. The geometric description of figures developed under etching Si (100) in various solutions [J]. Sens. Actuators A: Phys., 1998, 70:250-259.
    [4] MicroChem PMMA Data Sheet.
    [5] 杨景超.基于PECVD技术的氮化硅薄膜应力优化研究[D],(硕士学位论文).中国科学技术大学.2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700