桥门式起重机箱梁结构与加劲肋的耦合机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桥门式起重机的主梁是整机结构最重要的部分,且占据了整机结构的很大部分重量。其广泛应用于港口码头、货场搬运、结构安装等,在国民经济中起着至关重要的作用,为促进全社会的发展做出了突出贡献。欧式起重机偏轨箱梁大隔板的布置间距比我国大,结构简洁、轻便、寿命长、可靠性高。因此,对其主梁结构的研究具有非常重要的实际意义。
     本文研究对象为偏轨箱型双梁桥式起重机主梁结构及其横向加劲肋,研究工具为ANSYS有限元分析软件,研究的主要工作内容为:编写主梁的APDL参数化计算程序,包括建模、加载、约束、刚度计算、强度计算、屈曲稳定性计算及约束扭转计算;研究载荷作用于主梁跨中时,箱梁横向加劲肋和箱梁自身尺寸参数之间在偏轨箱梁的刚度、强度、屈曲稳定性及约束扭转等方面的耦合机理。研究过程为:编写APDL参数化计算程序—根据研究的需要建立相应有限元模型—进行有限元计算—对计算结果进行总结。
     针对某一偏轨箱型双梁桥式起重机主梁,研究结果表明:加劲肋间距对主梁抗弯刚度的影响很小,且无明显规律;加劲肋间距为某一值时(这里为4.8m),主梁下翼缘板各节点应力曲线汇交于某点,下翼缘板跨中应力分布最均匀,平均值为70.0875MPa;箱梁主腹板厚度与其稳定性间的函数关系可用幂函数表达,表达式为y=288.69X2.7922,相关系数0.9988;若箱梁腹板高度增大,其屈曲特征值将减小;若箱梁加劲肋间距增大,其特征屈曲值将减小,且随加劲肋间距的增大其特征屈曲值减小的过程逐渐变缓。针对本箱梁,加劲肋间距在2.0m-6.0m范围内,箱梁特征屈曲值下降较为平缓,且下降趋势近似为线性;加劲肋间距增大会导致箱梁抗扭刚度减小,但影响不大;无约束扭转载荷下,加劲肋间距从1.6m-6m这一段,随着加劲肋间距的增大,主梁跨中下翼缘板节点应力反而减小;加劲肋间距与箱梁下翼缘板跨中任一节点对应的约束扭转应力为近似线性关系。
     本论文选题结合国家自然科学基金项目(51175442),研究结果为桥门式起重机箱梁结构加劲肋的设计提供了参考依据,尤其在考虑偏轨箱梁屈曲稳定性和约束扭转应力影响时参考意义更大。
Bridge gantry crane are widely used to direct the movement of materials and equipment installation. It is widely used in ports, freight yard handling, structure installation, etc, plays a vital role in the national economy, have made outstanding contributions to promote the development of the whole society. The Continental Crane off-track box girder partition layout spacing ratio of large, simple structure, lightweight, long life, high reliability.Therefore, the research of crane girder structure and stiffeners has very important practical significance.
     The object of this paper is a partial rail box type double girder overhead crane main beam, research tool is ANSYS finite element analysis software. The research ideas:to write a single main beam APDL parametric procedures, procedures include:modeling, loads, constraints, stiffness calculation, strength calculation, buckling stability and restrained torsion; analysis using ANSYS software loads in the main beam cross, box coupling mechanism between the beam transverse stiffeners and box girder size parameters with off-track box girder stiffness, strength, buckling stability and restrained torsion. The course of the study:write APDL parameterized calculation program-according to the research needs to establish the corresponding finite element model-finite element method-summary of the calculation results.
     The main beam of a partial rail box type double girder overhead crane, the results show that:the stiffener spacing has little effect on the main beam bending stiffness, and no obvious rule; Stiffener spacing of a certain value (4.8m), the main beam under the flange plate of each node stress curves intersect a certain point, midspan stress of the bottom flange plate in the most uniform stress distribution, average70.0875MPa; the functional relationship between the box girder web thickness and its stability with power function, expression is y=288.69x2.7922,the correlation coefficient is0.9988; if the box girder web height increases, the buckling characteristics value will decreases;if the box girder stiffener spacing increases, its buckling value will decrease, and with the stiffener spacing increases the process gradually slowing down. The box girder stiffener spacing of2.0m to6.0m range, the box girder feature buckling value decreased more gentle, and the downward trend approximately linear;stiffener spacing increases will result in the box girder torsional rigidity decreases, but little impact; unconstrained torsion load, stiffener spacing from1.6m to6m this period, with the increase of stiffener spacing, the main beam midspan flange plate node hand, reduce stress; the stiffener spacing box girder bottom flange plate inter-node corresponding constrained torsion stress is approximately linear relationship.
     The thesis topics combines National Natural Science Foundation project of China (51175442), the results of the study, especially considering partial rail box girder buckling stability and restraint torsional stress influence, the reference value is greater.
引文
[1]程文明,李亚民,张则强.桥式起重机与门式起重机轻量化设计的关键要素[J].中国工程机械学报,2012;10(1):41-49
    [2]童乐为,王新毅,陈以一,顾敏,范重,彭翼.国家体育场焊接方管桁架双弦杆KK型节点实验研究[J].建筑结构学报,2007;28(2):49-53
    [3]于彩波,方明.箱型粱横隔板的设置[J].内蒙古公路与运输,2003;4(4):19-20
    [4]《钢结构设计手册》编辑委员会[编].钢结构设计手册[M].中国建筑工业出版社,2004
    [5]张质文,王金诺等.起重机设计手册[M].北京:中国铁道出版社,1998
    [6]王金诺,于兰峰.起重运输机金属结构[M].北京:中国铁道出版社,2002
    [7]程文明,王金诺,邓斌.门式起重机结构参数与动态指标耦合关系[J].西南交通大学学报,2002;37(6):651-654
    [8]杨春松,程文明,王小慧,唐连生.混合遗传算法在桥式起重机结构优化中的应用[J].起重运输机械,2006(10):21-23
    [9]刘哲明.30t/42m门型起重机力学分析及结构参数优化[D].中南大学,2007
    [10]魏国前,叶国平.基于现代设计方法的LDA起重机主梁设计[J].机械设计与制造,2009;(5):81-83
    [11]张晓丽,杨建强,常春影,董威.多目标模糊优化方法及其在工程设计中应用[J].大连理工大学学报,2005;45(3):375-378
    [12]Wang Q X, Zhang X F, Sun C B. Lightweight design and research of box girder for double girder bridge crane[A]. In:4th International Conference on Mechanical and Electrical Technology[C], Universiti Putra Malaysia,2012:478-481.
    [13]杨真.桥式起重机金属结构的轻量化设计研究[D].南京理工大学,2012;44-57.
    [14]曲庆璋,章权,季求知,梁兴复.弹性板理论[M].北京:人民交通出版社,2000;35-36.
    [15]周昌玉,贺小华.有限元分析的基本方法及工程应用[M].化学工业出版社,2006
    [16]王勖成.有限单元法[M].清华大学出版社,2003
    [17]龚曙光,谢桂兰,黄云清ANSYS参数化编程与命令手册[M].北京.机械工业出版社,2009
    [18]张洪信,赵清海ANSYS有限元分析完全自学手册[M].机械工业出版社,2008
    [19]宋志安,于涛,李红艳.机械结构有限元分析[M].国防工业出版社,2010
    [20]博弈创作室.APDL参数化有限元分析技术及其应用实例[M].中国水利水电出版社,2005
    [21]杨怡,刘济科.浅梁弯曲挠度经典计算公式的精度分析[J].华南理工大学学报,2008;36(6):30-34.
    [22]周东华,孙丽莉,樊江,赵志曼,刘永芳.组合梁挠度计算的新方法—有效刚度法[J].西南交通大学学报,2011;46(4)
    [23]邹云盛,武学文,刘晋浩.门式起重机桥架静刚度的测定方法[J].森林采运科学,1992:38-42.
    [24]王兴东.国产某轿车车身刚度优化[D].吉林大学,2008
    [25]徐传亮.刚度理论在工程结构设计中的应用.建筑与土木工程[D].同济大学,2007
    [26]魏国前,董海涛,范勤.基于GB/T 3811—-2008的大跨度桥式起重机主梁校核[J].起重运输机械,2010(2):16-19.
    [27]陈飞宇,魏国前,夏绪辉.单梁桥式起重机整机结构力学性能研究[J].机械设计与制造,2012;12(9):126-128.
    [28]范利格,陈江义,秦东晨,张雅阁.箱形主梁结构强度分析方法研究[J].煤矿机械,2012;33(11):60-62.
    [29]张岩,孙佰聪.十吨双梁桥式起重机有限元分析[J].品牌与标准化,2012(12):40-41.
    [30]黄文翰.基于有限元法的门座起重机结构强度分析[J].质量技术监督研究.,2012(3):36-39.
    [31]滕媛媛.起重机金属结构极限状态法设计研究[D].上海海事大学,2012
    [32]彭欢佳.平面k型管板节点抗弯刚度及节点板稳定承载力研究[D].湖南大学,2009
    [33]付为刚,程文明,濮德璋,任扬志.复合受载下简支矩形板屈曲分析的微分求积法[J].机械设计与研究,2012;28(5):103-106.
    [34]杨峰,王忠民,韩玉强.切向均布随从力作用下的矩形薄板稳定性分析[J].锻压技术2012;37(4):43-45.
    [35]莫时旭,钟新谷,赵人达.刚性基底上弹性约束矩形板的屈曲行为分析[J].工程力学,2005;22(2):174-178.
    [36]李华,赵永刚,吴高都,魏丽婷.用加劲肋加强的四边简支矩形板屈曲[J].科学技术与工程,2010(18):4530-4533.
    [37]郭耀杰,陈焰周.压缩和弯曲共同作用下薄板屈曲分析与计算[J].武汉理工大学学报,2008;30(2):58-61.
    [38]宋波,王利,罗晓玲,孙北东,许晓慧.大型反应器加劲薄钢板结构屈曲性能[J].北京科技大学学报,2010;32(8):1094-1100.
    [39]于金琪.横隔板设置对小箱梁的作用[J].四川建筑,2009;(1):135-136.
    [40]鲍永方,黄文彬.矩形箱梁约束扭转理论的分析与比较[J].工程力学,1997(3):132-137.
    [41]Wenming Cheng, Weigang Fu, Zeqiang Zhang, Min Zhang.The B ionic Lightweight Design of the Mid-rail Box Girder Based on the Bamboo Structure[J]. Przeglad Elektrotechniczny, 2012,88(9B):113-117.
    [42]钱稼茹,赵作周,彭明英,范重,彭翼.国家体育场扭曲箱形构件抗弯实验[J].建筑结构学 报,2007;28(2):112-119.
    [43]Bradford M A. Buckling of longitudinally stiffened plates in bending and compression. Canadian Journal of civil engineering,1989; 16(5):607-614
    [44]宋书博.抗损结构中构件扭转稳定性(构件屈曲强度)分析[D].哈尔滨工程大学,2006
    [45]Frank, K H. Helwig T A. Buckling of webs in unsymmetric plate girders. Engineering Journa,l Second Quarter,1995; 43(2):43-53
    [46]Roberts T M, Shahabian F.U ltimate resistance of Slender Web panels to combined bending shear and patch loading. JConstructSteelRes,2001; 57:779-790
    [47]Babuska I.Error estimate for the combined h and p versions of finite element method.SIAM J. Number. Analysis.1981
    [48]Tucher W.Stuckey L D Jr.The Roles of Modeling and Simulation at Being. Transactions.1998
    [49]王晓峰.任意截面空间薄壁梁的有限元模型[D].北京交通大学,2009
    [50]Wilson E L Incompatiable displacement models.In:Numerical and Computer Method in Structural Mechanics..1973
    [51]Rao S S.The Finite Element Method in Structural Mechanics.1982
    [52]Application of Finite Strip Method to the Box Girders Buckling Analysis.Manko, Zbigniew Source:Prace Naukowe Instytutu Inzynierii Ladowej Politechniki Wroclawskiej,28 Konf n 9 Pt 2, p 37-43,1981 Language:Polish
    [53]牟小林,李利波.大跨度箱型梁结构设计与有限元分析[J].机械研究与应用,2009(2):37-39.
    [54]曹文熬,赵静一,王彪,禹娜娜.工字梁与箱型梁抗弯强度分析[J].冶金设备,2010(6):13-16.
    [55]焦宏涛.基于ANSYS的900t级高速铁路架桥机主结构设计研究[D].西南交通大学,2006
    [56]须雷.起重机的现代设计方法[J].起重运输机械,1996(8):3.7.
    [57]蔚春燕,陈军.薄壁杆件结构力学分析的方法探讨[J].黑龙江科技信息,2010(21):251.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700