表面沉积局限面积NiTi薄膜的PZT材料的频率响应特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用模板,采用磁控溅射法在PZT基体上溅射沉积局限面积的NiTi SMA薄膜,运用SEM、显微硬度测试与阻抗分析等研究了所制备材料的显微组织结构、力学性能及电学性能。
     实验发现,当模板型腔间距固定为L=1mm、型腔宽度M≤2.0mm时,非连续NiTi SMA薄膜组织具有良好的等轴晶组织结构。在固定薄膜间距1mm条件下,随M的增加, NiTi SMA薄膜的组织从等轴晶结构向柱状晶结构变化。
     制备材料的力学性能测试表明,随型腔宽度M递增,膜基结合强度依次减小;等轴晶NiTi SMA薄膜试样的断裂韧性较柱状晶试样提高2倍以上;沉积有等轴晶NiTi SMA薄膜试样的阻尼材料的阻尼值较PZT材料略有下降。
     制备材料的介电性能测试显示,沉积有等轴晶结构的NiTi SMA薄膜的PZT材料与纯PZT相比,两者的介电损耗水平接近,介电常数较纯PZT升高17.7%,NiTi SMA薄膜的沉积对于PZT材料的介电性能并无损害。
     构建起了基于所制备的NiTi SMA/PZT材料传感的适于建筑工程结构健康状态监测的“监测系统”:该系统中传感器由所制备的NiTi SMA/PZT材料构成,传感器以粘贴方式与建筑结构集成;通过由采集卡、电荷放大器及滤波器等构成的电路系统进行数据的采集与处理;采用Visual B 6.0自主编制的软件系统进行测试系统的监控。监测结果表明,此监测系统的响应范围处于半径800mm的范围,反应速度在毫秒级,响应频率在0-1000赫兹,适于监测建筑工程结构的裂纹损伤状态。
     本论文采用激励试验进行建筑梁结构裂纹损伤状态测试;采用频谱分析方法探讨所构建的“监测系统”的裂纹状态评价机制。固定频率激励状态下,响应特征峰的位置状态变化直接反映结构裂纹状态变化;偏心激励产生的响应特征峰随裂纹远离结构中心峰强降低。荷载车辆运动激励响应测试发现,载车监测车速与实际车速基本接近;信号能量密度随载车配重的增加呈现出非线性的增加,出现裂纹时,能量密度下降,随着裂纹的逐步扩展,能量总值递减。
The composite deposited confining NiTi SMA thin films on the PZT substrate was prepared by magnetron sputtering method with the specially designed mask. The microstructure, mechanical and electric properties of the prepared composite was studied with SEM, XRD, microhardness tester and impedance analyzer.
     It is found that the NiTiSMA thin films with the width of no more than 2mm and the mutual distance of 1mm exhibit the best equiaxed crystal structure after crystallization. With the increasing of the width of the NiTiSMA thin film, the microstructure of the NiTiSMA thin films gradually changes to columnar crystal structure under mutual distance of 1mm between the NiTiSMA thin films.
     The results of mechanical testing show that the binding force between the NiTiSMA thin film and PZT substrate decreases with increasing of the cavity width, and the fracture toughness of the prepared composite is greater twice than that of the composite deposited continuous NiTi SMA thin film on the PZT substrate. Compared with the pure PZT, the damping values of the prepared composite decrease slightly.
     The results of the dielectric measurement show that the prepared composite has similar dielectric loss to the pure PZT, but its dielectric coefficient is higher than pure PZT. So the deposited NiTi SMA thin films have no damage to electrical properties of the PZT.
     The structural health monitoring system based on the prepared NiTiSMA/PZT composite was constructed as following: the sensors of the system were made of the prepared composite; the sensors were stick on the building structure; the dates were collected and disposed through the electrical system composed of acquisition card, charge amplifier and filter; the system software was finished using VB language, and finally the function of the system was realized. The monitoring results indicate that response radius of the system is 800mm, reaction speed of the system is in millisecond, and response frequency of the system is in range of 0-1000 Hz. So the system is suitable for monitoring architectural engineering structure crack damage status.
     In the paper, the crack damage statuses of the construction were tested by the exciting means, and the evaluation mechanism of the crack damage statuses for the constructed structural health monitoring system was discussed by the spectral analysis method. The experiment results show that,in the fixed exciting frequency, the location state’s changes of the responses peaks directly reflect the changes of the crack state in the structure, and the peak height at the frequency of 9.5Hz reduces with the increasing of the distance between the exciting position and the geometrical center of the structure. Under the excitation of the vehicle load, it is found that the monitoring speed is close to the actual speed, and the values of the signal energy density is advanced nonlinearly in nonexistence of crack with the increasing the loaded weight, but that is opposite in existence of crack.
引文
[1] Takagi T.A concept of intelligent materials [C]. U S-Japan Workshop on Smart/Intelligent Materials Systems,Technmic Publishing Company Inc,1990,3-10.
    [2] Rogers C A.Intelligent materials systems-the dawn of a new materials age [J]. Journal of Intlligent Material Systems and Structure, 1993, 4(1):1-8.
    [3] G W Housner,L A Bergman,et al. Structure Control: Past,Present,and Future[J]. Journal of Engineering Mechanics, 1997, 123(9):897-791.
    [4]黄尚廉.智能结构系统一减灾防灾的研究前沿[J].土木工程学报, 2000, 33(4):1-5.
    [5]郭健.基于小波分析的结构损伤识别方法研究[D].浙江:浙江大学,2004.
    [6]刘贵明.无损检测技术[M].北京:国防工业出版社,2006.
    [7]陶宝祺,刘果,袁慎芳.智能材料结构的研究进展[J].南京航空航天大学学报, 1995, 27 (1) : 14-26.
    [8]赵晓燕.基于压电陶瓷的结构健康监于损伤诊断[D].大连:大连理工大学2008.
    [9]李惠.大型桥梁结构智能健康监测系统集成技术研究[J].土木工程学报,2006(2):42-44.
    [10]裘进浩,边义祥,季宏丽等.智能材料结构在航空领域中的应用[J].航空制造技术, 2009(3):26-29.
    [11] Kin-tak Lau,Libo Yuan,Li-min Zhou,et al,Strain monitoring in FRP laminates and concrete beams using FBG[J]. Composite Structures. 2001(51):9-20.
    [12] X.G.Tian, X.M.Tao. Torsion measurement using fiber bragg grating sensors [J]. Experimental Mechanies. 2001(41):248-253.
    [13] Amjad J.Aref, Sreenivas AlamPalli. Vibration characteristics of a fiber-reinforced Polymer bridge superstructure [J]. Composite Structures. 2001(52):467-474.
    [14] A.Mufti, et al. Field assessment of fiber-optic Bragg strain sensors in the Confederation Bridge [J]. CivilEng. 1997(24):963-966.
    [15] Giurgiutiu V, Zagrai A, Bao J. Piezoelectic wafer embedded active sensors for aging aircraft structural health monitoring[J].Structural Health Monitoring, 2002,1(1):41-46.
    [16]马如璋,蒋民华,徐祖耀.功能材料学概论[M].北京:冶金工业出版社,1999.
    [17]田中哲郎.压电陶瓷材料[M].陈俊彦,王余君译.北京:科学出版社,1982.
    [18]赵坚强,岳振星,王伟强.准同型相界附近PZT压电陶瓷电致疲劳性能研究[J].功能材料,2006,12:73-75.
    [19] Wasak T, Sintering of Pb(Zr,Ti)O3 solid solution[J].Japanese Journal Applies Physics, 1965(3):190-194.
    [20]张兢,徐霞,王玉菡等.基于压电陶瓷动态信息的结构损伤检测技术[J].重庆工学院学报(自然科学版) 2007,21(5):11-714.
    [21]束德林.工程材料力学性能[M].北京:机械工业出版社, 2003.
    [22] Chen X M, Yang B. A new approach for toughening of ceramics [J]. Materials Letters, 1997,33(3-4):237-240.
    [23] Yang B, Chen X M. Alumina ceramics toughened by a piezoelectric secondary phase [J]. Journal of the European Ceramic Society, 2000, 20(11):1687-1690.
    [24] Li J Y, Dai H, Zhong X H, et a1. Lanthanum zirconate ceramic toughened by BaTiO3 secondary phase [J]. Journal of Alloys and Compounds, 2008, 452(2):406-409.
    [25]刘艳改,周玉,贾德昌. LiTaO3颗粒增韧AI203陶瓷复合材料的制备与性能[J].材料工程. 2002(6):40-42.
    [26] M Takahashi, T Fujiwara, H Hayashi, et al. Mechanical and Eletromechanical Properties of Tetragonal ZrO2 Fiber/PZT Composites [J], J. Cream.Soc.Jpn, 1994, 102(10): 944-948.
    [27]黄世峰,常钧,刘福田等.压电陶瓷/硫铝酸盐水泥复合材料的压电性及介电性[J].硅酸盐学报, 2004, 32(9):1082-1087.
    [28]刘晓芳,熊传溪,李月明等. PZT/PVDF体系压电复合材料的介电和压电性能研究[J].陶瓷学报,2004, 25(3):153-156.
    [29]张旭,谢锡善,董建新等. Ni2Cr2Mo2Nb合金的阴极溅射行为[J].中国有色金属学报, 2001,11(2):179-182.
    [30] Baumgartner C R. Adhesion of electrolessly deposited nickel on lead zirconate titanate ceramic[J].J Am Ceram Soc,2005,72(6):890-895.
    [31] Swirbel T.Zero defect sputter deposition metallization method for high volume manufacturing of grafted multi layer thin film: modules, components, hybrids, and manufacturing technology [J].IEEE Transactions on, 1993, 16(1):1-5.
    [32]鲁燕萍,高陇桥. AlN陶瓷的薄膜金属化及其与金属的焊接研究[J].真空科学与技术学报,2001,20(3):190-193.
    [33] YIN Shuijia. Handbook of Physical Chemical[M]. Beijing:High Education Press , 2000.62-78.
    [34]康晋锋,陈新,王佑祥.正常态金属与氧化物高温超导薄膜界面扩散特性的研究[J].物理学报,1995,44(11):1831-1838.
    [35]陈燕俊,孟亮,周世平等.不同温度下Ag/ Cu复合界面的扩散处理[J].材料科学与工程,2001,19(1):56-59.
    [36] Walker J A, Gabriel K J, Mehregany M. Sens Actuators A, 1990, 21—23:243.
    [37] Busch J D, Johnson A D, Lee C H, et a1. J Appl Phys, 1990, 68:6224.
    [38] Quandt E, Holleck H. Shape memory thin films of the system Ti2(Ni2Pd2Cu) [C] . Materials for Smart SystemⅡ. Pittsburgh PA, USA, 1997. 465 - 470.
    [39] Walker J A, Gabriel K J. Thin-film processing of TiNi shape memory alloy[J]. Sensors and Actuators, 1990, A21 (1-3): 243-246.
    [40] Lee A P, Ciarlo D R, Krulevitch P A, et al. A practical micro gripper by fine alignment, eutectic bonding and SMA actuation [J]. Sensors and Actuators, 1996, A54:755 - 759.
    [41] Skrobanek K D, Kohl M, Miyazaki S. Stress-optimised shape memory microvalves[A]. Proceedings of the IEEE Microelectromechanical Systems (EMES) [C]. Piscataway, NJ, USA, 1997. 256 - 261.
    [42] Johoson A D, Martynov V. Applications of shape-memory alloy thin film [A]. The International Organization on Shape Memory and Superelastic Technologies [C].California, USA, 1997. 246 - 256.
    [43] Gottschalk M. Thin film NiTi alloy powers silicon microvalve [J]. Design News, 1993, 49 (13): 127 - 129.
    [44] Krulevitch P A, Lee A P, Ramsey P B, et al. Thin film shape memory alloy microactuators [J]. Journal of Microelectromechanical Systems, 1996, 5 (4): 270 - 281.
    [45] Mercado P G, Jardine A P. Thin film multilayers of ferroelastic TiNi-ferroelectric PZT Fabrication and characterization[J]. Journal of Intelligent Material Systems and Structures, 1995, 6 (1): 62 - 70.
    [46] T.J. Zhu, X.B. Zhao, L. Lu. Pb(Zr0.52Ti0.48)O3/TiNi multilayered hetero-structures on Si substrates for smart systems[J]. Thin Solid Films. 2006,5(15):1445-1449.
    [47] Shen X, Yu Y, Li Y. Study of RAINBOW actuator and its integration with SMA[J]. Journal of Intelligent Materia Systems And Structures, 2008, 19(3):277-281.
    [48]刘庆锁,刘智勇,朱穗东等. Sol-Gel法制备NiTiSMA/FC多层薄膜复合材料的组成结构研究[J].天津工业大学学报. 2003, 22(2):37-39.
    [49] Liu QS, Wu XP. Preparation of NiTi SMA/PZT Heterogeneity Composite Based on PZT by Magnetron Sputtering Method[J] . Rare Metal Materials and Engineering, 2009, 38:428-431.
    [50]吴小萍,刘庆锁,陆翠敏等. PZT基NiTi SMA/ PZT复合材料的组织结构及其压电性能研究[J],材料工程,2008,S1:227-229.
    [51]卢雪梅,刘庆锁,何烜坤等. NiTi薄膜对压电陶瓷材料阻尼性能的影响[J],上海交通大学学报, 2010,44(5):708-710.
    [52] Kim Ick-jun, Lee Hee-Woong. Fabriction of TiNi/ PZT heterostructure films for smart systems [J]. Scripta Material, 2001, 44: 525 - 530.
    [53] R.M.S. Martins, N. Schell, etal. Growth of sputter-deposited Ni-Ti thin films: Effect of a SiO2 buffer layer [J]. Materials Science & Processing, 2006, 84:285–289.
    [54]高晓云,陆翠敏,刘庆锁等. NiTi基体上沉积铁电陶瓷PZT复合材料的振动响应特性[J].机械工程材料,2007,9(31):58-60.
    [55] Ken K.Ho, Gregory P.Caman. Sputter deposition of NiTi thin film shape memory alloy using a heated target [J]. Thin Solid Films, 2000, 370:18-29.
    [56] S.Z.Hua, Q.M.Su, M.Wuting. Transformation induced by stress in SMA thin films[J]. MRS Symp.Proc., 1994, 308:128-135.
    [57]许晓慧,唐建洪,陈丽娟. PZT铁电薄膜介电性能测试研究[J].压电与声光, 2010, 32(2):293-296.
    [58]Quamnin Su., Susan Z.Hua. Maufred Wuting. Martensitic transformation in Ni50Ti5O films[J]. Journal of Alloys and Compounds,1994,211-212:460~463.
    [59]邱平善,黄渭馨,洪成珠.玻璃基底上NiTi薄膜制备及特性[J].哈尔滨理工大学学报,1997, 2(5):24-27.
    [60] J.RChu, YWLai, TN.Lin, et al. Deposition and characterization of TiNi-base thin films by sputtering[J], Materials Science and Engineering, 2000, A 277:11-17.
    [61]贾俊辉,戚震中.表面膜附着力的压痕法测定[J].机械工程材料, 1988, 6: 31-33.
    [62]杨扬.大型桥梁结构健康监测系统概述[J].四川兵工学报,2008, 1(29):19-31.
    [63]黄世峰,徐荣华,刘福田等.水泥基功能复合材料研究进展及应用[J].硅酸盐通报,2003,4:58-63
    [64] K.D.Bennet, L.R.Mclaughlin .Monitoring of corrosion in steel structures using optical fiber sensors[J]. Smart Structure and Materials .SPIE 1995 March Volume2446.
    [65] Van det Ziel. Noise: Source, characterization, Measurement[M]. Prentice-Hall,Inc. 1970
    [66] Brown. Introduction to Random Signal Analysis and Kalman Filtering[M]. John Wiley& Sons.Inc. 1983.
    [67]郑大为.桥梁检测中的振动分析及应用[D].辽宁工程技术大学,2007.
    [68]吴廷斌,漆睿,王文杰. NiTi形状记忆合金薄膜的残余应力[J].上海交通大学学报,2001,35(3): 436-439.
    [69]王力衡,黄运添,郑海涛.薄膜技术[M].北京:清华大学出版社, 1991.
    [70]徐恒钧,刘国勋.材料科学基础[M].北京:北京工业大学出版社,2006.
    [71]李宗全,陈湘明.材料结构与性能[M].浙江:浙江大学出版社,2004.
    [72]韦习成,李健,袁成清.磁控溅射TiN界面结合强度的压痕法测试[J].摩擦学学报,2000,20(3): 229-231.
    [73]金玉萍,钟良.影响刀具化学镀层结合力的因素分析[J].工艺与检测, 2008,12,199-120.
    [74]冯锐,师昌绪,刘志国.材料科学导论[M],北京:化学工业出版社, 2002.
    [75] Lee T C, Lau W S. Some characteristic of electric discharge machining of conductive ceramics[J] . Materials and Manufacturing Processes, 1991, 6(4):635-648
    [76]张世文,刘仓理,李庆忠.复杂应力状态下材料层裂特性探讨[J]. HIGH ENERGY DENSITY PHYSICS, 2008, 2: 54-58.
    [77] Mauro D, Donatello C, Roberto M. Implementation and testing of passive control devices based on shape memory alloys [J].Earthquake Engineer in and Structural Dynamics, 2000, 29(7) : 945- 968.
    [78] Thielicke E, Obermeier E. Mir-actuators and their technologies [J], Mechatronics, 2000, 10: 431-455.
    [79]吴廷斌,王文杰,董荆山等, NiTi形状记忆合金薄膜的残余应力[J],上海交通大学学,2001,35(3):436-439.
    [80] Ben Poquette, T.A.Asare etc. High Damping in Piezoelectric Reinforce Metal Matrix Composites [J], Journal of Alloys and Compounds, 2004(2):281-288,
    [81] Wang YN, Huang YN, Shen HM. Mechanical And Dielectric Loss Related To Ferroelectric And Relaxer Phase Transitions And Domain Walls [J], Chinese Journal Of Materials Research, 1994, 8 (1):2-10.
    [82]岳鹏,郑正奇,张洁等. PZT/PVDF复合材料的制备及介电性能[J].功能材料与器件学报, 2008, 14(5): 931-934.
    [83]张启伟.桥梁健康监测中的损伤特征提取与异常诊断[J] .同济大学学报,2003 ,31 (3) :258- 262.
    [84]禾苗,杨威,陈骁等.基于快速傅里叶变换的复地震道分析及应用[J].成都航空职业技术学院学报,2010,1:61-65.
    [85]秦志英,董桂西.偏心激励多刚体振动系统的Lagrange方程建模[J].机械强度,2007,29(4):544-547.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700