黄萎病菌诱导下海岛棉全长cDNA文库构建与抗病相关基因克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄萎病(Verticillium wilt)是影响世界棉花生产的主要病害之一。育种实践证明,培育抗病品种是控制棉花黄萎病的经济有效途径。研究证明海岛棉Pima90-53对黄萎病具有高度抗性;对其抗黄萎病相关基因进行克隆研究不仅有利于阐明品种抗病机制,而且对棉花抗黄萎病的分子育种具有重要价值。本研究以海岛棉Pima90-53为材料,构建其在黄萎病菌诱导下的根系cDNA文库,并依据文库克隆棉花抗黄萎病相关基因。主要结果如下:
     1.构建了黄萎病菌诱导下的海岛棉Pima90-53根系的全长cDNA文库
     采用SMART技术成功构建了黄萎病菌诱导下的Pima90-53根系全长cDNA文库,该文库基础库容量为1.28×106PFU,重组率94%,扩增后文库滴度大于1010PFU·mL-1,插入片段平均长度1.1kb。经随机测序共获得45条cDNA序列,利用Blastx程序进行同源分析,4个contigs与假定抗病相关基因同源性较高;3个contigs没有注释,可能为新基因。
     2.利用文库筛选和RACE技术相结合,克隆了一个新的GbWRKY1基因
     利用构建的cDNA文库,结合RACE技术,获得了一个新WRKY基因(GbWRKY1)(GenBank No. JF831361)。GbWRKY1基因cDNA全长1971bp,包括5′端非编码区271bp,3′端非编码区230bp,含有1个可能的polyA加尾信号:AATAAT;基因开放阅读框为1470bp,编码一个由489个氨基酸构成的多肽。
     生物信息学分析发现GbWRKY1包括2高度保守的WRKY基本结构域和锌指结构,属于WRKY家族第Ⅰ类,与VvWRKY2、 AtWRKY4和AtWRKY3蛋白的同源性分别为62%、61%和59%;GbWRKY1属可溶性蛋白,无信号肽和跨膜结构域,包含N-糖基化位点、蛋白激酶C磷酸化位点、N端肉豆蔻酰化位点、酪蛋白激酶II磷酸化位点、依赖cAMP和cGMP蛋白激酶磷酸化位点等。
     GbWRKY1基因含有3个内含子,具有有保守的GT-AG剪切位点,分别为599bp、81bp、325bp。克隆得到GbWRKY1的1762bp启动子,包含植物病原诱导性启动子调控元件(RAV1AAT、Box-W1、ARE、W-box、CGTCA-motif、ERE、 TGACG-motif)与非生物胁迫应答元件(HSE、 TC-rich repeats、WRKY71OS、WBOXNTERF3、MYCATERD1)。
     构建了基因融合表达载体pCamE-GbWRKY1-GFP,基因枪转化洋葱内表皮细胞,结果显示转化pCamE-GbWRKY1-GFP表皮细胞的细胞核出现绿色荧光,GbWRKY1蛋白定位于细胞核。
     3. Northern杂交分析了GbWRKY1在黄萎病菌接种后的表达模式,揭示了基因与棉花抗黄萎病的联系;实时定量PCR分析了GbWRKY1在不同激素处理下的表达模式,为解析基因作用机制提供了依据;构建了GbWRKY1超表达与RNAi载体,获得了转基因T3拟南芥
     Northern杂交分析GbWRKY1表达模式发现,基因在Pima90-53的根、茎和叶组织均有表达;在受黄萎病菌、SA、MeJA和ACC的诱导后呈现不同的表达模式。在黄萎病菌诱导后,GbWRKY1基因在接种后出现持续高表达,在8h出现表达高峰,并持续高表达至接菌后12h。SA诱导后,其表达量在12h降到最低,24h基本恢复正常水平;MeJA诱导后,GbWRKY1表达量上升,在12h达到高峰,24h出现下降;ACC诱导12h,GbWRKY1表达呈现明显上升,并持续到24h。
     构建了GbWRKY1基因超表达和反义载体pCamE-GbWRKY1、pCamE-iGbWRKY1,通过农杆菌介导法转化拟南芥,经潮霉素筛选和PCR检测,获得了GbWRKY1过表达转基因T3拟南芥。
Verticillium wilt is one of the most serious diseases which influence the cottonproduction in the world. Breeding for resistant cultivars has been proved the mosteffeetive way to control this disease. Previous researches indicated that,Pima90–53possessing resistance to Verticillium wilt genes. Cloning the resistance genes or therelated genes is important to understand disease resistance mechanism and molecularbreeding. In this study, a cDNA expression library of Pima90-53(G. barbadense)was constructed after inoculation with defoliating strain of Verticillium dahliae.cDNAlibrary screening and RACE technique were used, structure and expression of thetarget sequences were analysed in order to obtain disease-resistant related gene.Theresults are as follows:
     1. Construction and characterization of full-length cDNA expression libraryfrom Pima90-53root induced by Verticillium dahliae
     The SMART technology was used to construct a full-length cDNA Library ofPima90-53root tissue after inoculation with defoliating strain of Verticillium dahliae.The capacity of the primary cDNA library was1.28×106PFU, the titer of theamplified cDNA library was more than1010PFU·mL-1and the recombination ratiowas94%. The average insert size of the cDNA library was about1.1kb. Fourty-fivesequences were obtained. Blastx was used to homologue searching for thesesequences. Four ESTs sequences showed homologue to putative genes related todisease resistance, and three EST failed to show significant homology to any proteinsin the public databases, suggesting that they represent novel sequences.
     2. A novel GbWRKY1gene was isolated by cDNA library screening and RACEtechnique
     GbWRKY1gene was isolated by cDNA library screening and RACE (GenBankaccession No. JF831361). The1971bp GbWRKY1cDNA sequence contained a271bp5′-UTR, a230bp3′-UTR and a polyA polyadenylation signal,as well as an openread frame of1470bp encoding a489amino acids. The deduced GbWRKY1proteincontains two characteristic WRKY domains and two zinc finger motifs. It couldclearly be assigned to GroupⅠ. Alignment of the putative GbWRKY1protein withrelated sequences indicated that it had the highest sequence homology with theVvWRKY2(amino acid identity62%), AtWRKY4(61%) and AtWRKY3(59%). The putative GbWRKY1protein contained N-glycosylation site, Protein kinase Cphosphorylation site, N-myristoylation site, and so on. It was soluble protein and nosignal peptide and transmembrane domains.
     In GbWRKY1, there were three introns which contained conservative GT-AGcleavage site with size of599bp,81bp and325bp, respectively. A1762bp fragmentof the GbWRKY1promoter was obtained using PCR from Pima90-53genome. Weidentified pathogen/elicitor-related elements including RAV1AAT, Box-W1, ARE,W-box, CGTCA-motif, ERE and TGACG, abiotic stress responsive element includingHSE, TC-rich repeats, WRKY71OS, WBOXNTERF3and MYCATERD1. It suggeststhat GbWRKY1may play a role in the response to environmental stress.
     We constructed an expression vector containing the GbWRKY1-GFP fusiongene driven by the CaMV35S promoter. Afterwards, the35S::GbWRKY1-GFPvector and the control35S::GFP vector were directly introduced into onion epidermiscells by particle bombardment. Those transiently expressed GbWRKY1-GFP fusionproteins were found exclusively in the nucleus, whereas GFP occurred in both thenucleus and cytoplasm. Therefore, these results indicated that the GbWRKY1proteinis indeed localized to the nucleus.
     3. Understanding expression patterns of GbWRKY1by inoculation andhormone treatment, the plant expression vector pCamE-GbWRKY1wasconstructed and successfully transferred into Arabidopsis thaliana
     Quantitative real-time PCR showed that GbWRKY1expressed in all tissues ofroot, stem and leaf. The GbWRKY1gene expression pattern was different afterinoculation and hormone treatment. GbWRKY1was induced and reached to a peak at8h after inoculation with Verticillium dahliae and maintained at high level within12h. After SA treatment, the expression levels declined at8h, dropped to the nadir at12h, and then increased normal lever at24h. MeJA treatment induced the GbWRKY1expression quickly accumulated and reached maximum level at12h, the expressionlevels declined at24h. For ACC treatment, GbWRKY1expression increasedobviously at12h, and maintained at high level within24h.
     The plant overexpression and antisense vector pCamE-GbWRKY1andpCamE-iGbWRKY1were constructed and then transferred into Arabidopsis thalianavia Agrobacterium-madiated method. Seven transgenic plants were verified byeffective selection for hygromycin B resistance and PCR.
引文
1.谭联望.北方棉区棉花黄萎病暴发原因及治理对策[J].中国棉花,1994,21(7):2-4
    2.简桂良,邹亚飞,马存.棉花黄萎病连年流行的原因及对策[J].中国棉花,2003,30(3):13-14
    3.喻树迅,范术丽.我国棉花遗传育种进展与展望[J].棉花学报,2003,(2):120-124
    4.马峙英,李兴红,孙济中,等.棉花黄萎病菌致病力分化与寄主抗病性遗传研究进展[J].棉花学报,1996,8(4):172-176
    5. Roberts, C L. Heritability of Verticillium wilt tolerance in crosses of American Upland cotton[J]. Crop Sci.,1972,12:63-66
    6. Verhalen, L M. A quantitative genetic study of Verticillium wilt resistance among selectedlines of Upland cotton [J]. Crop Sci.,1971,11:407-412
    7.潘家驹.棉花育种学[M].北京:中国农业出版社,1998,230~233
    8. Glazebrook, J. Genes controlling expression of defense responses in Arabidopsis [J]. Curr.Opin. Plant Biol.,2001,4(4):301-308
    9. Scki M, Narusaka M, Kamiya A, et al. Functional annotation of a full-length ArabidopsiscDNA collection [J]. Science,2002,296(5565):141-145
    10. Sekim, Carnici P, N, Ishiyama Y, et al. High efficiency cloning of Arabidopsis full-lengthcDNA by biotinylated CAP trapper [J]. The Plant Journal,1998,15(5):707-720
    11. Kikuch I S, Satoh K, Nagata T, et al. Collection, mapping, and annotation of over28,000cDNA clones from Japonica rice [J]. Science,2003,301:376-379
    12. Carninci P, Waki K, Shiraki T, et al. Targeting a complex transcrip tome: The construction ofthe mouse full-length cDNA encyclopedia [J]. Genome Research,2003,13:1273-1289
    13. Stapleton M, Liao G, Brokstein P, Hong L, Carninci P, Shiraki T, Hayashizaki Y, Champe M,etal, The Drosophila gene collection: Identification of putative full-length cDNAs for70%of D.melanogaster genes [J]. Genome Res,2002,12(8):1293-1230
    14. Maruyama K, Sugano S. Oligo-capping: a simple method to replace the cap structure ofeukaryotic mRNAs with oligoribonucleotides [J]. Gene,1994,138(1-2):171-174
    15. Edery I, Chu L L, Sonenberyg N, Pelletier J. An efficient strategy to isolate full-lengthcDNAs based on an mRNA cap retention procedure (CAPture)[J]. Moecularl Cell Biology,1995,15:3363-3371
    16. Chenchik A, Moqadam F, Siebert P. RNA: Isolation, Analysis and Synthesis [M]. New York:Wiley-Liss,1996,273-321
    17. Carninci P, Kvam C, Kitamura A, et al. High efficiency full length cDNA cloning bybiotinylated CAP trapper [J].Genomics,1996,37(3):327-336
    18. W M Schmidt, M W Mueller. CapSelect: A highly sensitive method for5-CAP-dependentenrichment of full-length cDNA in PCR-mediated analysis of mRNAs [J]. Nucleic Acids Res.,1999,27(21): e31
    19. Fimove V A, Chakhmakhcheva O G, Archdeacon J, et al. Detection of the5'-cap structure ofmessenger RNAs with the use of the CAP-jump ing approach [J]. Nucleic Acids Research,2001,29:4751-4759
    20. Liu L F, Chang C C, Liu M Y, et al. Genetic characterization of the mRNAs encoding[alpha]-bungarotoxin: isoforms and RNA editing in Bungarus multi-cinctus gland cells [J].Nucleic Acids Research,1998,26(24):5624-5629
    21.傅作申,程远国,张玉静,等.用长距PCR法构建恶性疟原虫cDNA表达文库[J].热带医学杂志,2002,2(3):225-229
    22.高健,许晓风,乌慧玲,等.特异种质烟草全长cDNA文库的构建及质量分析[J].安徽农业大学学报,2004,31(1):22-25
    23.刘文华,王义良,陈慧萍,等.玫瑰红绿海葵触手cDNA表达文库的构建和初步分析[J].生物工程学报,2002,18(6):749-753
    24. Wellenreuther R, Schupp I, Poustka A, Wiemann S. The German cDNA consortium. SMARTamplification combined with cDNA size fraction in order to obtain large full-lenth clones [J].BMC Genomics,2004,5(1):36
    25. Carninci P, Kvam C, Kitamura A, et al. High efficiency full length cDNA cloning bybiotinylated CAP trapper [J].Genomics,1996,37(3):327-336
    26. http://dbtss.hgc.jp/docs/oligocap.htmL
    27. Agrawal G K, Rakwal R, Iwahwshi H, et al. Isolation of novel rice(Oryza sativa L.) multiplestress responsive MAP kinase gene,osMSRMKZ,whose mRNA accumulates rapidly inresponse to environmental cues [J].Biochemical and Biophysical Research Communications,2002,294(5):1009-1016
    28. Niu J S, Yu L, Chen P D, et al. cDNA library construction and identification of Triticumaestivum-Hymaldia villosa6VS16AL translocation line [J]. Journal of Nanjing AgricultureUniversity,2001,24(l):5-8
    29. Christensen A B, Cho B H, Naesby M, et al. The molecular characterization of two barleyproteins establishes the novel PR-17family of pathogenesis-related proteins [J]. MolecularPlant Pathology,2002,3(3):135-144
    30. Hill M K, Lyon K J, Lyon B R. Identification of disease reponse genes expressed inGossypium hirsutum upon infection with pathogen Verticillium dahliae [J]. Plant Mol Bio.,1999,40:289-296
    31. Zhang L, Li FG, Liu CL, et al. Construction and analysis of cotton (Gossypium arboreum L.)drought-related cDNA library [J]. BMC Res Notes,2009,120:1-8
    32. L.Zhu, X.Zhang, L.Tu, et al. Identification and characterization of two novel dirigent-likegenes highlyexpressed in cotton (G. barbadense) during inoculation of Verticillum daliae [J].Journal of Plant Pathology,2007,89(1):25-29
    33.贺亚军,郭旺珍,张天真.棉花6个小分子质量热激蛋白基因的序列、表达与定位[J].作物学报,2008,34(9):1574-1580
    34. Klaus Maleck, Aaron Levine, Thomas Eulgem, et al. The transcriptome of Arabidopsisthaliana during systemic acquired resistance [J]. Nat Genet,2000,26:403-410
    35. Rabbani MA, Maruyama K, Abe H, et al. Monitoring expression profiles of rice genes undercold, drought, and high salinity stresses and abscisic acid application using cDNA microarrayand RNA get-blot analyses[J]. Plant Physiol,2003,133(4):175-1767
    36.何新建,陈建权,张志刚等.通过cDNA微阵列鉴定水稻(Oryza sativa L.)盐胁迫应答基因[J].科学通报,2002,6(32):488-493
    37. Paula Fernandez, Julio Di Rienzo, Luis Fernandez, et al. Transcriptomic identification ofcandidate genes involved in sunflower responses to chilling and salt stresses based on cDNAmicroarray analysis [J]. BMC Plant Biology,2008,8:11-28
    38. Caitriona Dowd, Iain W. Wilson, Helen McFadden. Gene Expression Profile Changes inCotton Root and Hypocotyl Tissues in Response to Infection with Fusarium oxysporum f. sp.Vasinfectum [J]. Molecular Plant-Microbe Interactions,2004,6(17):654-667
    39. Kotaraja, Rajeevkumarvarshiney, Thiel Thomas, et al. Generation and comparisons ofEST-derived SSRs and SNPs in barley (Hordeum Vulgare L)[J]. Hereditas,2001,135:145-151
    40.李宏伟,高丽锋,刘曙东等.用EST-SSRs研究小麦遗传多样性[J].中国农业科学,2005,38(1):7-12
    41. Ishiguro S, Nakamura K. Characterization of a cDNA encoding a novel DNA-binding protein,SPF1,that recognizes SP8sequences in the5' upstream regions of genes coding for sporaminand β-amylase from sweet potato [J]. Mol Gen Genet,1994,244(6):563-571
    42. J. Schmutz, S.B. Cannon, J. Schlueter, J. Ma, et al. Genome sequence of the palaeopolyploidsoybean [J]. Nature,2010,463:178–183
    43. Mangelsen J., Kilian, K.W., Berendzen U.H., et al. Phylogenetic and comparative geneexpression analysis of barley (Hordeum vulgare) WRKY transcription factor family revealsputatively retained functions between monocots and dicots [J]. BMC Genomics2008,9:194-130
    44. S.P. Pandey, I.E. Somssich, The role of WRKY transcription factors in plant immunity [J].Plant Physiol,2009,150:1648–1655
    45. Y. Song, C.R. Ai, S.J. Jing, et al. Research progress on function analysis of rice WRKY gene[J]. Rice Sci.2010,17:60–72
    46. J.J. Liu, A.K. Ekramoddoullah, Identification and characterization of the WRKY transcriptionfactor family in Pinus monticola[J]. Genome,2009,52:77–88
    47. I. Ciolkowski, D. Wanke, R. Birkenbihl, et al. Studies on DNA-binding selectivity of WRKYtranscription factors lend structural clues into WRKYdomain function [J]. Plant Mol. Biol.,2008,68:81-92
    48. Maeo K, Hayashi S, Kojima-Suzuki H, et al. Role of conserved residues of the WRKYdomain in the DNA-binding of tobacco WRKY family proteins.Biosci Biotechnol Biochem[J].2001,65(11):2428-2436
    49. Eulgem T, Rushton PJ, Schmelzer E, et al. Earlynuclear events in plant defence signalling:Rapidgene activation by WRKY transcription factors [J]. EMBOJ,1999,18:4689-4699
    50. Eulgem T, Somssich IE. Networks of WRKY transcription factors in defense signaling [J].Curr Opin Plant Biol.,2007,10(4):366-371
    51. Ishihama N, Yoshioka H. Post-translational regulation of WRKY transcription factors in plantimmunity [J]. Curr Opin Plant Biol.,2012,15(4):431-437
    52. Yang B, Jiang Y Q, Muhammad H Rahman, et al. Identification and expression analysis ofWRKY transcription factor genes in canola (Brasssica napus L.) in response to fungalpathogen s and hormone treatments [J]. BMC Plant Bio,2009,9:68-86
    53. Hu Y, Dong Q, Yu D. Arabidopsis WRKY46coordinates with WRKY70and WRKY53inbasal resistance against pathogen Pseudomonas syringae [J]. Plant Sci.,2012,185-186:288-297
    54. Meng Y, Wise RP. HvWRKY10, HvWRKY19, and HvWRKY28regulate MLa-triggeredimmunity and basal defense to barley powdery mildew [J]. Mol Plant Microbe Interact.,201225(11):1492-1505
    55. Hwang SH, Yie SW, Hwang DJ. Heterologous expression of OsWRKY6gene in Arabidopsisactivates the expression of defense related genes and enhances resistance to pathogens [J].Plant Sci.,2011,181(3):316-323
    56. Kim KC, Lai Z B, Fan B F, et al. Arabidopsis WRKY38and WRKY62transcription factorsinteract with histone deacetylase19in basal defense [J]. Plant Cell,2008,20(9):2357-2371
    57. X ing D H, Lai Z B, Zh eng Z Y, et al. Stress and pathogen-induced Arabidopsis WRKY48isa transcriptional activator that represses plant basal defense [J]. Mol P lant,2008,1:459-470
    58. Zhibing Lai, KM Vinod, Zuyu Zheng, et al. Roles of ArabidopsisWRKY3and WRKY4transcription factors in plant responses to pathogens [J]. BMC Plant Biol,2008,8:68-81
    59. Hu J, Barlet X, Deslandes L, et al. Transcriptional responses of Arabidopsis thaliana duringwilt disease caused by the soilborne phytopathogenic bacterium, Ralstonia solanacearum.PloS ONE,2008,3(7): e2589
    60. Zhu Z, Shi J, Cao J, et al. VpWRKY3, a biotic and abiotic stress-related transcription factorfrom the Chinese wild Vitis pseudoreticulata [J]. Plant Cell Rep.,2012,31(11):2109-2120
    61. Dong J, Chen C, Chen Z. Expression profiles of the ArabidopsisWRKY gene superfamilyduring plant defense response [J]. Plant Mol Biol,2003,51(1):21-37
    62. Birkenbihl RP, Diezel C, Somssich IE. Arabidopsis WRKY33is a key transcriptional regulatorof hormonal and metabolic responses toward Botrytis cinerea infection [J]. Plant Physiol.,2012,159(1):266-285
    63. Liu X, Bai X, Wang X, et al. OsWRKY71, a rice transcription factor, is involved in ricedefense response [J]. J Plant Physiol,2007,164(8):969-979
    64. Qiu D, Xiao J, Ding X, et al. OsWRKY13mediates rice disease resistance by regulatingdefense-related genes in salicylate and jasmonate-dependent signaling [J]. MPMI,2007,20(5):492-499
    65. Peng X, Hu Y, Tang X, et al. Constitutive expression of rice WRKY30gene increases theendogenous jasmonic acid accumulation, PR gene expression and resistance to fungalpathogens in rice [J]. Planta.,2012,236(5):1485-1498
    66. Li J, Brader G, Palva ET. The WRKY70transcription factor: A node of convergence forjasmonate-mediated and salicylate-mediated signals in plant defense [J]. Plant Cell,2004,16(2):319-331
    67. Y.P. Qiu, S.J. Jing, J. Fu, et al. Cloning and analysis of expression profile of13WRKY genesin rice [J]. Chin. Sci. Bull.,2004,49:2159-2168
    68. H.L. Wu, Z.F. Ni, Y.Y. Yao, et al. Cloning and expression profiles of15genes encodingWRKY transcription factor in wheat (Triticum aestivem L.)[J]. Prog.Nat. Sci.,2008,18:697-705
    69. Jiang Y.Q., Deyholos M.K., Comprehensive transcriptional profiling of NaCl stressedArabidopsis roots reveals novel classes of responsive genes [J]. BMC Plant Biol.,2006,6:25-44
    70. Y.F. Chen, L.Q. Li, Q. Xu, et al. The WRKY6transcription factor modulates PHOSPHATE1expression in response to low Pi stress in Arabidopsis [J]. Plant Cell,2009,21:3554-3566
    71. B.N. Devaiah, A.S. Karthikeyan, K.G. Raghothama, WRKY75transcription factor is amodulator of phosphate acquisition and root development in Arabidopsis [J]. Plant Physiol.2007,143:1789-1801
    72. K. Hara, M. Yagi, T. Kusano, et al. Rapid systemic accumulation of transcripts encoding atobacco WRKY transcription factor upon wounding [J]. Mol. Gen.Genet.,2000,263:30-37
    73. L. Rizhsky, H. Liang, R. Mittler, The combined effect of drought stress and heat shock ongene expression in tobacco [J]. Plant Physiol.,2002,130:1143-1151
    74. T. Huang, J.G. Duman, Cloning and characterization of a thermal hysteresis (antifreeze)protein with DNA-binding activity from winter bittersweet nightshade, Solanum dulcamara[J]. Plant Mol. Biol.,2002,48:339-350
    75. S.J. Li, Q.T. Fu, W.D. Huang, et al. Functional analysis of an Arabidopsis transcription factorWRKY25in heat stress [J]. Plant Cell Rep.,2009,28:683-693
    76. S.J. Li, Q.T. Fu, L.G. Chen, et al. Arabidopsis thaliana WRKY25, WRKY26, and WRKY33coordinate induction of plant thermotolerance [J]. Planta,2011,233:1237-1252
    77. M.T. Sanchez-Ballesta, Y. Lluch, M.J. Gosalbes, L. Zacarias, et al. A survey of genesdifferentially expressed during long-term heatinduced chilling tolerance in citrus fruit [J].Planta,2003,218:65-70
    78. L.G. Chen, L.P. Zhang, D.Q. Yu, Wounding-induced WRKY8is involved in basal defense inArabidopsis [J]. Mol. Plant-Microbe Interact,2010,23:558-565
    79. C.S. Zou, W.B. Jiang, D.Q. Yu, Male gametophyte-specific WRKY34transcription factornegatively mediates cold stress tolerance of mature pollen in Arabidopsis [J]. J. Exp. Bot.,2010,14:3901-3914
    80. J. Kilian, D. Whitehead, J. Horak, et al. The AtGenExpress global stress expression data set:protocols, evaluation and exemplary data analysis of UV-B light, drought and cold stressresponses [J]. Plant J.,2007,50:347-363
    81. D. Wanke, K.W. Berendzen, J. Kilian, et al. Insights into Arabidopsis abiotic stress responsefrom the AtGenExpress expression profile dataset [M]. Plant Stress Biology: Genomics GoesSystems Biology, WILEY-VCH,2009
    82. Ray P.K., DansanaJ., Giri P., et al. Modulation of transcription factor and metabolic pathwaygenes in response to water-deficit stress in rice [J]. Funct. Integr. Genomics,2011,11:157-178
    83. Y.Q. Jiang, M.K. Deyholos, Functional characterization of Arabidopsis NaCl inducibleWRKY25and WRKY33transcription factors in abiotic stresses [J]. Plant Mol. Biol.,2009,69:91-105
    84. T. Eulgem, P.J. Rushton, S. Robatzek, et al. The WRKY superfamily of plant transcriptionfactors [J]. Trends Plant Sci.,2000,5:199-206
    85. W. Wei, Y.X. Zhang, L. Han, et al. A novel WRKY transcriptional factor from Thlaspicaerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco [J]. PlantCell Rep.,2008,27:795-803
    86. Hinderhofer K, Zentgraf U. Identification of a transcription factor specifically expressed at theonset of leaf senescence [J]. Planta,2001,213(3):469-473
    87. Miao Y, Laun T, Zimmermann P, et al. Targets of the WRKY53transcription factor and its roleduring leaf senescence in Arabidopsis [J]. Plant Mol Biol,2004,55(6):853-867
    88. Robatzek S, Somssich IE. A new member of the Arabidopsis WRKY transcription factorfamily, AtWRKY6, is associated with both senescence and defence-related processes [J]. PlantJ,200128(2):123-133
    89. Xu YH, Wang JW, Wang S, et al. Characterization of GaWRKY1, a cotton transcription factorthat regulates the sesquiterpene synthase gene (+)-delta-cadinene synthase-A [J]. Plant Physiol,2004,135(1):507-515
    90. Ulker B, Shahid Mukhtar M, et al. The WRKY70transcription factor of Arabidopsisinfluences both the plant senescence and defense signaling pathways [J]. Planta,2007,226(1):125-137
    91. Devaiah BN, Karthikeyan AS, Raghothama KG. WRKY75transcription factor is a modulatorof phosphate acquisition and root development in Arabidopsis [J]. Plant Physiol,2007,143(4):1789-1801
    92. Ruoyu Guo, Feifei Yu, Zheng Gao, et al. GhWRKY3, a novel cotton (Gossypium hirsutum L.)WRKY gene, is involved in diverse stress responses [J]. Mol Biol Rep.,2011,38:49-58
    93. Feifei Yu, Yifeng Huaxia, Wenjing Lu, et al. GhWRKY15, a member of the WRKYtranscription factor family identified from cotton (Gossypium hirsutum L.), is involved indisease resistance and plant development [J]. BMC Plant Biology,2012,12:144-161
    94. Borrone J W, Kuhn D N, Schnell R J. Isolation, characterization and development of WRKYgenes as useful genetic in Theobroma cacao [J], Theor Appl Genet,2004,109(3):495-507
    95. Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-timequantitative PCR and the2-ΔΔCT method [J]. Methods,2001,25:402-408
    96. GerikJ.S., HuismanO.C.. Study of field-grown cotton roots in fected with Verticillium dahliaeusing an immunoen-zymatic staining technique [J]. Phytopathology,1988,78:1174-1178
    97. BowersJ.H., NamethS.T., RiedelR.M., et al. Infection and colonization of potato roots byVerticillium dahliae as affected by Pratylenchus penetrans and P.crenatus [J]. Phytopathology,1996,86(6):614-621
    98. Eynck C., Koopmann B., Grunewaldt-Stoecker G., et al. Differential interactions ofVerticillium longisporum and V.dahliae with Brassica napus detected with molecular andhistological techniques [J]. European Journal of Plant Pathology,2007,118(3):259-274
    99. Elango D., Robb J., Newcombe G., et al. Growth pouch technique for the Observation ofcellular interactions between alfalfa seedling roots and Verticillium albo-atrum [J]. CanadianJournal Plant Pathology,1986,8:78-84
    100. Vallad G.E., Subbarao K.V.. Colonization of resistant and susceptible lettuce cultivars by agreen fluorescent protein-tagged isolate of Verticillium dahliae [J]. Phytopathology,2008,98(8):871-885
    101. Federico Pomar, Marta Novo, María A. Bernal, et al. Changes in stem lignins (monomercomposition and crosslinking) and peroxidase are related with the maintenance of leafphotosynthetic integrity during Verticillium wilt in Capsicum annuum [J]. New Phytologist,2004,163:111-123
    102. Zhu Y Y, Machleder E M, Chenchik A, et al. Reverse transcriptase template switching: aSMARTTMapproach for full-Length cDNA library construction [J]. Bio Techniques,2001,30(4):892-897
    103.甄瑞.海岛棉抗黄萎病基因分子标记研究.河北农业大学硕士论文,2006
    104. L. Zhu, X. Zhang, L. Tu, et al. Isolation and characterization of two novel dirigent-like geneshighly induced in cotton (Gossypium Barbadense and G. Hirsutum) after infection byVerticillium dahliae [J]. Journal of Plant Pathology,2007,89(1):41-45
    105. Yan Zhang, Xingfen Wang, Shuo Yang, et al. Cloning and characterization of a Verticilliumwilt resistance gene from Gossypium barbadense and functional analysis in Arabidopsisthaliana [J]. Plant Cell Rep.,2011,30(11):2085-2096
    106.玄兆伶.黄萎病菌胁迫下棉花抗病相关基因的差异表达研究.河北农业大学硕士论文,2006
    107. Yamane K, KinsellaT J.Casein kinase regulates both apoptosis and the cell cycle followingDNA damage induced by6-thioguanine [J]. Clin Cancer Res,2005,11:2355-2363
    108. casey P J, Protein lipidation in cell signaling [J]. Science,1995,268(5208):221-225
    109. Christensen LL, Jensen UB, Bross P, et al.The C-terminal N-glycosylation sites of the human1,3/4-fucosyltransferase III,-V, and-VI (hFucTIII,-V and-VI) are necessary for theexpression of full enzyme activity [J]. Glycobiology,2000,10:931-939
    110. Wolfgang L, Roger H, Claus G, et al. Phosphorylation of cGMP-dependent protein kinaseincreases the affinity for cyclic AMP [J]. Eur J Biochem,1986,154:113-117
    111. Dong XN. SA, JA, ethylene, and disease resistance in plants [J]. Curr Opin Plant Biol,1998,1(4):316-323
    112. Chen C, Chen Z. Isolation and characterization of two pathogen and salicylic acid-inducedgenes encoding WRKY DNAbinding proteins from tobacco [J]. Plant Mol Biol.,2000,42(2):387-396
    113. Park CY, Lee JH, Yoo JH, et al. WRKY group IId transcription factors interact withcalmodulin [J]. FEBS Lett,2005,579(6):1545-1550
    114. Kim KC, Fan B, Chen Z. Pathogen-Induced Arabidopsis WRKY7Is a TranscriptionalRepressor and Enhances Plant Susceptibility to Pseudomonas syringae [J]. Plant Physiol.,2006,142(3):1180-1192
    115. Journot-Catalino N, Somssich IE, Roby D, et al. The Transcription Factors WRKY11andWRKY17Act as Negative Regulators of Basal Resistance in Arabidopsis thaliana [J]. PlantCell,2006,18(11):3289-3302
    116. Xu X, Chen C, Fan B,et al. Physical and Functional Interactions between Pathogen-InducedArabidopsis WRKY18, WRKY40, and WRKY60Transcription Factors [J]. Plant Cell,2006,18(5):1310-1326
    117. Shen QH, Saijo Y, Mauch S, et al. Nuclear activity of MLA immune receptors linksisolate-specific and basal diseaseresistance responses [J]. Science,2007,315(5815):1098-1103
    118. Thomma BPHJ, Eggermont K, Penninckx IAMA, et al. Separate jasmonate-dependent andsalicylate-dependent defense-response pathways in Arabidopsis are essential for resistance todistinct microbial pathogens [J]. Proc. Natl. Acad. Sci.,1998,95:15107-15111
    119. Qiu DY, Xiao J, Ding X, et al. OsWRKY13mediates rice disease resistance by regulatingdefense-related genes in salicylate-and jasmonate-dependent signaling [J]. Mol. PlantMicrobe Interact.,2007,20(5):492-499
    120. Robert-Seilaniantz A, Navarro L, Bari R, et al. Pathological hormone imbalances [J]. CurrOpin Plant Biol.,2007,10(4):372-379
    121. Rushton PJ, Torres JT, Parniske M, et al. Interaction of elicitor-induced DNA-bindingproteins with elicitor response elements in the promoters of parsley PR1genes [J]. EmboJ,1996,15(20):5690-5700
    122. Yang P, Wang Z, Fan B, et al. A pathogen and salicylic acid-induced WRKY DNA-bindingactivity recognizes the elicitor response element of the tobacco class I chitinase gene promoter[J]. Plant J,1999,18:141-149
    123. Willmott RL, Rushton PJ, Hooley R, et al. DNase1footprints suggest the involvement of atleast three types of transcription factors in the regulation of alpha-Amy2/A by gibberellin [J].Plant Mol Biol.,1998,38(5):817-825
    124. Yu D, Chen C, Chen Z. Evidence for an important role of WRKY DNA binding proteins inthe regulation of NPR1gene expression [J]. Plant Cell,2001,13(7):1527-1540
    125. Rocher A, Dumas C, Cock JM. A W-box is required for full expression of the SA-responsivegene SFR2[J]. Gene,2005,344:181-192
    126. Turck F, Zhou A, Somssich IE. Stimulus-dependent, promoter specific binding oftranscription factor WRKY1to Its native promoter and the defense-related gene PcPR1-1inParsley [J]. Plant Cell,2004,16(10):2573-2585

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700