西北太平洋两种卵胎生鱼类(许氏平鲉和褐菖鲉)的分子系统地理学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
许氏平鲉和褐菖鲉为西北太平洋两种重要的卵胎生海洋经济鱼类。本研究综合运用形态学、耳石形态学、线粒体DNA控制区序列、AFLP标记和微卫星标记等多种方法,系统开展了许氏平鲉和褐菖鲉的遗传多样性和群体遗传结构及分子系统地理格局研究。主要研究结果如下:
     一、许氏平鲉分子系统地理学研究
     (1)应用单因子方差分析、判别分析和主成分分析等统计分析方法对采自烟台、连云港、日照、丹东、青岛、大连、威海、胶南和日本青森9个许氏平鲉群体244个个体的15个可量性状和11个可数性状进行比较研究。单因子方差分析结果显示日本青森群体与中国群体间存在较大差异,8个中国群体之间形态差异不显著;判别分析结果显示青森群体判别正确率为96.0%,9个群体综合判别正确率为80.7%;主成分分析结果显示前4个主成分累积贡献率为72.3%,前2个主成分主要反映鱼体头部和躯干部形态差异。
     (2)对中国近海8个许氏平鲉群体共228个个体的9个耳石形状指标(圆度、形态因子、环率、矩形趋近率、椭圆率、半径比、Feret比、幅形比、面密度)进行单因子方差分析、判别分析、主成分分析等统计分析,并与傅里叶分析结果进行比较。单因子方差分析结果显示,丹东群体和日照群体的9个指标存在显著差异,荣成群体和胶南、青岛、乳山三个群体分别存在9个指标的显著差异,胶南群体和乳山群体存在9个指标差异不显著(P>0.05);第一主成分和第二主成分解释了约72%的形态差异;9个指标在判别分析中的综合判别正确率为64.9%。傅里叶分析结果显示综合判别正确率为43.8%,较第一种方法降低21.1%,9个主成分指标解释了89.2%的形态差异。多元统计分析及傅里叶分析结果均表明中国近海许氏平鲉群体之间形态差异不显著。
     (3)对许氏平鲉线粒体控制区全序列结构进行了分析。我们检测到了两个TAS和cTAS及保守的CSB-F、CSB-E、CSB-D、CSB1、CSB2和CSB3区。结果表明,许氏平鲉线粒体控制区序列结构与大部分海洋鱼类类似,不同的是含有两个TAS和cTAS区。所有个体的CSB1、CSB2和CSB3序列分别一致,这与大多数硬骨鱼类结果并不一致。
     (4)许氏平鲉是能够利用漂流海藻群生活的代表性鱼类之一,随着海藻群漂流的仔稚鱼使许氏平鲉各群体之间能够进行基因交流。我们对中日沿海的13个许氏平鲉群体进行了控制区序列分析,发现各群体的遗传多样性中等偏高。NJ系统发育树未显示明显的谱系结构,AMOVA分析、FST和确切P检验结果表明许氏平鲉各群体之间的遗传差异较小,LAMARC结果也提示各群体之间存在较强的基因流。核苷酸不配对分布和中性检验表明许氏平鲉经历了更新世晚期的群体扩张事件。
     (5)对许氏平鲉9个群体共180个个体的AFLP分析结果显示,许氏平鲉遗传多样性较高;AMOVA分析和群体间FST值的结果显示许氏平鲉在其分布范围内不存在显著的遗传结构,9个群体间的遗传分化水平均较低;基于Nei遗传距离构建的UPGMA树中没有检测到与采样地点相对应的分支,不存在明显的谱系结构;STRUCTURE分析结果显示所有许氏平鲉群体共享一个基因库。
     (6)利用8对微卫星引物对中日沿海9个许氏平鲉群体的220个个体进行了遗传多样性和群体遗传结构研究。结果表明:许氏平鲉群体的观测杂合度和多态位点信息含量值较高,呈现较高的遗传多样性。AMOVA分析、FST和确切P检验结果与AFLP结果相同,也显示许氏平鲉各群体之间的遗传差异较小;基于Nei遗传距离构建的UPGMA树中没有检测到与采样地点相对应的分支,不存在明显的谱系结构;STRUCTURE结果显示所有许氏平鲉群体共享一个基因库。
     二、褐菖鲉分子系统地理学研究
     (1)应用统计分析方法对采自中国沿海(惠州和海口)和日本沿海(横须贺和伯方岛)褐菖鲉群体的14个可量性状和11个可数性状特征进行比较研究。单因子方差分析结果显示伯方岛群体和横须贺群体间的9个指标差异不显著,与惠州群体的12个指标存在显著性差异;判别分析结果显示惠州群体判别正确率为100%,4个群体综合判别正确率为90.35%;主成分分析结果显示前4个主成分累积贡献率为53.98%,第一主成分主要反映鱼体躯干部特征,第二主成分主要反映鱼体头部和尾部特征;聚类分析结果显示日本群体聚为一支,中国群体聚为另一支。结果表明褐菖鲉中、日群体间形态差异显著。
     (2)利用统计分析方法对中、日4个褐菖鲉群体耳石的9个形状指标和77个椭圆傅里叶参数进行分析。判别分析结果显示中、日褐菖鲉群体判别正确率在75%~100%之间,综合判别正确率为91.1%;聚类分析结果显示中国惠州和海口的褐菖鲉群体聚为一支,日本横须贺和伯方岛群体聚为另一支;主成分分析结果显示较少的耳石形态变量即可用于褐菖鲉群体分化研究。结果表明中、日褐菖鲉群体在耳石形态上差异显著。
     (3)对中日沿海的16个褐菖鲉群体进行了控制区序列分析,结果发现各群体的遗传多样性中等偏高。NJ系统发育关系未呈现明显的谱系结构;AMOVA分析、FST和确切P检验结果显示许氏平鲉各群体之间的遗传差异较小,LAMARC结果提示各群体间存在较强的基因流。核苷酸不配对分布和中性检验表明褐菖鲉经历了更新世晚期的群体扩张事件。
     (4)对褐菖鲉8个群体共144个个体进行的AFLP分析结果显示,许氏平鲉具有较高的遗传多样性;AMOVA分析和群体间FST值的结果显示许氏平鲉分布范围内不存在显著的遗传结构,8个群体之间的遗传分化较小;基于Nei遗传距离构建的UPGMA树中没有检测到与采样地点相对应的分支,不存在明显的谱系结构;STRUCTURE分析结果显示所有许氏平鲉群体共享一个基因库。
     (5)运用高通量测序技术,筛选得到48对褐菖鲉微卫星引物,其中9对具有较高的种内多态。对威海群体的24个褐菖鲉个体进行了微卫星分析,结果表明:9对微卫星引物的等位基因数目为4-12,观测杂合度在0.190-0.625之间;其中6对引物显著偏离哈迪温伯格平衡,经检测是由于无效等位基因引起的。因此,上述9对引物适合进一步开展褐菖鲉的群体遗传学研究。
     三、基于DNA条形码的平鲉属鱼类鉴定有效性研究
     DNA条形码在物种鉴定中发挥了越来越重要的作用。本研究利用DNA条形码对中国沿海8种平鲉属鱼类进行鉴定。结果表明:8种平鲉属鱼类种内遗传距离小于种间差异水平,符合10×法则;基于NJ法、MP法、ML法以及贝叶斯方法构建的系统发育树显示各鱼种以较高的支持率聚为一支。除条平鲉(S.trivittatus)外,基于COI基因序列构建的系统树与形态学研究结果相一致。
Sebastes schlegelii and Sebastiscus marmoratus are commercially importantmarine ovoviviparous fish in the Northwestern Pacific. In the present study,morphological, otolith morphological, mitochondrial DNA sequence, AFLP markersand microsatellite DNA markers were used to estimate their gene diversity, populationstructure and phylogeographic pattern. The main results are as follows:
     (A)Molecular phylogeography of Sebastes schlegelii
     (1)In order to study the morphological variations among nine populations of S.schlegelii (244individuals) collected from Yantai, Lianyungang, Rizhao, Dandong,Qingdao, Dalian, Weihai, Jiaonan and Aomori, eleven meristic characters and fifteenmeasureable characters were measured and the data were standardized by usinglog-transformed method and then analyzed by using one-way ANOVA, discriminantanalysis method and principal component analysis method. One-way ANOVA resultsshowed that there were no significant differences between eight Chinese populations,but significant differences were found between Aomori population and eight Chinesepopulations. Discriminant analysis results showed that the correct classification ratiowas96.0%in Aomori population, and the cumulative contribution ratio was80.7%. Inthe result of principal component analysis, four principal components explained72.3%of the total variance; the first two principal components reflected the morphologicaldifference of fish’s head and trunk. The results of multivariate statistical analysismethods showed that there were significant differences between Aomori populationand eight Chinese populations.
     (2)Multivariate statistical analysis that includes one way analysis of variance,discriminant analysis and principle analysis was conducted for9otolith shape indicesof228individuals of Chinese S. schlegelii. Fourier analysis was used to be comparedwith shape indices method. One way analysis of variance showed significantdifferences were found between Dandong population and Rizhao population in9otolith shape indices; Rongcheng population showed significant differences in9otolith shape indices from Jiaonan, Qingdao, and Rushan population, respectively.While insignificant differences were found between Rushan and Jiaonan in their9otolith shape indices (P>0.05); the first two principle components explained71.953%of the total variance; the discriminant analysis of the9shape indices showed that thecorrect classification was64.9%among the8populations. Fourier analysis showedthat the correct classification was43.8%, which was21.1%lower than that of shapeindices analysis; the first9principle components explained89.2%of the totalvariance. Three processes of multivariate statistical analysis and Fourier analysisshowed that there was insignificant difference between eight populations of Chinese S.schlegelii.
     (3)The present study deals with the structure of mitochondrial DNA controlregion of the black rockfish, S. schlegelii. Two TASs and two cTASs were detectedin the species as well as CSB-F, CSB-E, CSB-D, CSB1, CSB2and CSB3. The resultsindicated that the structures of these blocks are similar with most marine fishes, but itis special that there are two TASs and two cTASs in the control region of S. schlegelii.One conserved region was found from450bp to the end of the control region, which isalso a special feature of S. schlegelii. All sequences of CSB1, CSB2and CSB3blocks were the consensus among different individuals, which is quite different frommost vertebrates. In addition, the complete mtDNA control region sequences and thefirst449bp of the control region are used to analyze the phylogenetic relationships ofS. schlegelii. The phylogenetic trees show a lack of genetic structure amongindividuals. This study also indicated that the genetic diversity is similar between thewild and cultured individuals, which are important to the fisheries management.
     (4)S. schlegelii is one of the representative fish that aggregate around driftingseaweed during its early developmental period. Transport of drifting seaweed byocean currents probably gives larval and juvenile S. schlegelii fish an opportunity toexpand their distribution area and to exchange genetic material between widelyseparated populations. To examine the population genetic structure of S. schlegelii, a452-bp fragment of the hypervariable portion of the mtDNA control region wassequenced and used to interpret life history characteristics and larval dispersalstrategy as well as its historical demography. Two hundred and twenty one individualsfrom13sites along the coasts of China, Japan and Korea were analyzed. Both thelevels of haplotype diversity and nucleotide diversity were not very high. Theneighbor-joining tree and the network showed that no significant genealogicalstructures corresponding to sampling locations existed. AMOVA, pair-wise FSTandexact-P test revealed no significant genetic differentiation among populations. Themigration rate among populations was strong based on the result of LAMARC. Bothmismatch distribution analysis and neutrality tests showed S. schlegelii haveexperienced a recent population expansion in the late Pleistocene. It is suggestedlarval dispersal with drifting seaweed, the current environmental factors and latePleistocene glaciations play an important role in shaping the contemporaryphylo-geographic pattern of S. schlegelii.
     (5)AFLP marker was used to investigate the population genetic structure of S.schlegelii among populations from China and Japan. The results indicated S.schlegelii showed high Nei’s gene diversity. No significant genealogical branches orclusters corresponding to sampling localities were detected by UPGMA tree. Theresults of AMOVA analysis and pairwise FSTvalues showed no genetic divergenceamong different geographic populations and high gene flow was existed. The result ofSTRUCTURE showed all the populations of S. schlegelii shared one gene pool. Theresults of AFLP were in accordance with those of mtDNA.
     (6)Eight microsatellite DNAloci were used to investigate the genetic diversityand population structure of S. schlegelii. The results indicated polymorphism information content (PIC) and observed heterozygosity were high, indicating a highlevel in gene diversity of S. schlegelii. No significant genealogical branches orclusters corresponding to sampling localities were detected by UPGMA tree. Theresults of AMOVA analysis and pairwise FSTvalues showed no genetic divergenceamong different geographic populations and high gene flow was existed. The result ofSTRUCTURE showed all the populations of S. schlegelii shared one gene pool. Theresults of AFLP were in accordance with the results of mtDNA and AFLP.
     (B)Molecular phylogeography of Sebastiscus marmoratus
     (1)In order to study the morphological variations among seven populations ofS. marmoratus (114individuals) collected from China (Huizhou and Haikou) andJapan (Hakata Island and Yokosuka), eleven meristic characters and fourteenmorphological characteristics were measured and the data were analyzed by usingone-way ANOVA, discriminant analysis method, principal component analysismethod and cluster analysis method. One-way ANOVA results showed that there wereno significant differences between Hakata Island and Yokosuka in nine indices, butsignificant differences were found between Hakata Island and Huizhou in twelveindices. Discriminant analysis results showed that the correct classification ratio was100%in Huizhou, and the cumulative contribution ratio was90.35%. In the result ofprincipal component analysis, four principal components explained53.977%of thetotal variance, the first principal component reflected the feature of fish’s trunk, andthe second principal component reflected the feature of fish’s head and rump. Clusteranalysis results showed that there were significant differences among populations inChina and Japan, Chinese and Japanese populations were pooled in one groupseparately. The results of multivariate statistical analysis methods showed that therewere significant differences among populations in China and Japan.
     (2)In order to study the otolith morphological variations among fourpopulations of S. marmoratus (101individuals) collected from China (Huizhou andHaikou) and Japan (Hakata Island and Yokosuka), nine otolith shape index andseventy-seven elliptic Fourier parameters were measured. The data were analyzed by using discriminant analysis method, principal component analysis method and clusteranalysis method. The results of discriminant analysis showed that the correctclassification ratio ranged from75%to100%, and the average classification ratio was91.1%. The results of cluster analysis showed that there was significant differenceamong populations in China and Japan, and Chinese and Japanese populations werepooled in one group respectively. According to the result of principal componentanalysis, the divergence of populations of S. marmoratus could be measured by fewerotolith morphological variables. The results of multivariate statistical analysismethods showed that there was significant difference in otolith morphology amongpopulations in China and Japan.
     (3)To examine the population genetic structure of S. marmoratus, a458-bpfragment of the hypervariable portion of the mtDNA control region was sequencedand used to interpret life history characteristics and larval dispersal strategy as well asits historical demography. Two hundred and forty four individuals from16sites alongthe coasts of China and Japan were analyzed. Both the levels of haplotype diversityand nucleotide diversity were high. The neighbor-joining tree and the network showedthat no significant genealogical clades corresponding to sampling locations existed.AMOVA, pair-wise FSTand exact-P test revealed no significant genetic differentiationamong populations. Both mismatch distribution analysis and neutrality tests showed S.marmoratus have experienced a recent population expansion in the late Pleistocene.
     (4)AFLP was used to investigate the population genetic structure of S.marmoratus among populations from China and Japan. The results indicated S.schlegelii showed high Nei’s gene diversity. No significant genealogical branches orclusters corresponding to sampling localities were detected by UPGMA tree. Theresults of AMOVA analysis and pairwise FSTvalues showed no genetic divergenceamong different geographic populations and high gene flow was existed. The result ofSTRUCTURE showed all the populations of S. marmoratus shared one gene pool.The results of AFLP were in accordance with the results of mtDNA.
     (5)S. marmoratus is a typical sedentary fish and usually lives in the bottom ofthe coastal zone from Japan to the East China Sea. Next-generation sequencingplatform was used to obtain microsatellite loci sequences of S. marmoratus, andforty-eight perfect microsatellite repeats were suitable for primer design. Ninepolymorphic microsatellite markers were exploited and characterized for S.marmoratus. The allele number of all polymorphic microsatellite markers rangedfrom4to12. Expected and observed heterozygosity varied from0.302to0.909and0.190to0.625, respectively. Six of the nine markers deviated obviously from Hardy–Weinberg equilibrium (P<0.05). In further studies, the genetic variation andpopulation structure of this species would be investigated using these microsatelliteloci.(C)DNAbarcodes of eight species in genus Sebastes
     DNA barcode is effective for biological taxonomy and is able to identifyingspecies from any life-history stage. In the present study, eight species which belong tofour different subgenera of genus Sebastes found in China sea waters were identifiedby cytochrome c oxidase I (COI) barcode. The results indicated that the intra-speciesvariation in DNA barcode was less than inter-species variation. When thephylogenetic trees were reconstructed by neighbor-joining (NJ), maximum parsimony(MP), maximum likelihood (ML) and Bayesian methods, all the species clustered intheir groups distinguishable by high bootstrap values, which proved that COI barcodeis a powerful means to differentiate between species of Sebastes and supports theiridentification. When the molecular tree was compared to the morphological tree, onlyS. trivittatus in subgenus Sebastocles settled in the different positions. It is suggestedthat S. trivittatus is one of the shallowest occurring species in the Northwest Pacificdue to its life characters.
引文
Agüera A and Brophy D. Use of saggital otolith shape analysis to discriminate Northeast Atlanticand Western Mediterranean stocks of Atlantic saury, Scomberesox saurus saurus (Walbaum).Fisheries Research,2011,110:465-471.
    Alexandra S. Morphometric variation among sardine (Sardina pilchardus) populations from thenortheastern Atlantic and the western Mediterranean. Journal of Marine Science,2003,60:1352-1360.
    An HS, Park JY, Kim MJ, et al. Isolation and characterization of microsatellite markers for theheavily exploited rockfish Sebastes schlegeli, and cross-species amplification in four relatedSebastes spp. Conservation Genetics,2009,10:1969-1972.
    Arnason U and Johnsson E. The complete mitochondrial DNA sequence of the harbor seal, Phocavitulina. Journal of Molecular Evolution,1992,34:493-505.
    Attardi G. Animal mitochondrial DNA: An extreme exam example of genetic economy.International Review of Cytology,1985,93:93-148.
    Avise JC, Arnold J, Ball RM, et al. Intraspecific phylogeography: the mitochondrial DNA bridgebetween population genetics and systematics. Annual Review of Ecology and Systematics,1987,18:489-522.
    Avise JC, Helfman GS, Saunders NC, et al. Mitochondrial DNA differentiation in North Atlanticeels: Population genetic consequences of an unusual life history pattern. Proceedings of theNational Academy of Sciences,1986,83:4350-4354.
    Avise JC, Neigel JE, Arnold J. Demographic influences on mitochondrial DNA lineagesurvivorship in animal populations. Journal of Molecular Evolution,1984,20:99-105.
    Avise JC. Phylogeography: retrospect and prospect. Journal of biogeography,2009,36:3-15.
    Avise JC. Phylogeography: The History and Formation of Species. Cambridge, MA: HarvardUniversity Press,2000.
    Avise JC. The history and preview of phylogeography: a personal reflection. Molecular Ecology,1998,7:371-379.
    Baker AJ and Marshall HD. Mitochondrial control region sequences as tools for understandingevolution.In: Mindell, D.P.(Ed.), Avian Molecular Evolution and Systematics. AcademicPress, SanDiego, CA,2004,51-79.
    Bandelt HJ, Forster P, Rohl A. Median-joining networks for inferring intraspecific phylogenies.Molecular Biology and Evolution,1999,16:37-48.
    Barreto FS, Tomas CR, McCartney MA. AFLP fingerprinting shows that a single Prymnesiumparvum harmful algal bloom consists of multiple clones. Journal of Heredity,2011,102:747-752.
    Barrett RDH and Hebert PDH. Identifying spiders through DNA barcodes. Canadian Journal ofZoology,2005,83:481-491.
    Barsukov VV and Chen LC. Review of the subgenus Sebastiscus (Sebastes, Scorpaenidae) with adescription of a new species. Journal of Ichthyology,1979,91:24-60.
    Barsukov VV. A brief review of the subfamily Sebastinae. Journal of Ichthyology,1981,21:1-26.
    Becker BJ, Levin LA, Fodrie FJ, et al. Complex larval connectivity patterns among marineinvertebrate populations. Proceedings of the National Academy of Sciences,2007,104:3267-3272.
    Berry O, England P, Marriott RJ, et al. Understanding age-specific dispersal in fishes throughhydrodynamic modelling, genetic simulations and microsatellite DNA analysis. MolecularEcology,2012,21:2145-2159.
    Boehlert GW, Kusakari M, Yamada J. Oxygen consumption of gestating female Sebastes schlegeli:estimating the reproductive costs of livebearing. Environmental Biology of Fishes,1991,30:81-89.
    Botsford LW, White JW, Coffroth MA, et al. Connectivity and resilience of coral reefmetapopulations in marine protected areas: matching empirical efforts to predictive needs.Coral Reefs,2009,28:327-337.
    Bowen BW, Bass AL, Rocha LA, et al. Phylogeography of the trumpetfishes (Aulostomus): ringspecies complex on a global scale. Evolution,2001,55:1029-1039.
    Briggs JC. Marine zoogeography. McGraw-Hill, New York,1974.
    Broughton RE and Dowling TE. Length variation in mitochondrial DNA of the minnowCyprinella spiloptera. Genetics.1994,138:179-190.
    Brown WM, George M, Wilson AC. Rapid evolution of animal mitochondrial DNA. Proceedingsof the National Academy of Sciences,1979,76:1967-1974.
    Buonaccorsi VP, Kimbrell CA, Lynn EA, et al. Population structure of copper rockfish (Sebastescaurinus) reflects postglacial colonization and contemporary patterns of larval dispersal.Canadian Journal of Fisheries and Aquatic Sciences,2002,59:1374-1384.
    Buonaccorsi VP, Westerman M, Stannard J, et al. Molecular genetic structure suggests limitedlarval dispersal in grass rockfish, Sebastes rastrellige. Marine Biology,2004,145:779-788.
    Burke N, Brophy D, King PA. Otolith shape analysis: its application for discriminating betweenstocks of Irish Sea and Celtic Sea herring (Clupea harengus) in the Irish Sea. ICES Journal ofMarine Science,2008,65:1670-1675.
    Burke ND and Brophy PA. Shape analysis of otolith annuli in Atlantic herring (Clupea harengus):a new method for tracking fish populations. Fisheries Research,2008,91:133-143.
    Campana SE and Casselman JM. Stock discrimination using otolith shape analysis. CanadianJournal of Fisheries and Aquatic Sciences,1993,50:1062-1083.
    Campana SE, Thorrold SR, Jones DG, et al. Comparison of accuracy, precision, and sensitivity inelemental assays of fish otoliths using the electron microprobe, proton-induced X-rayemission, and laser ablation inductively coupled plasma mass spectrometry. Canadian Journalof Fisheries and Aquatic Sciences,1997,54:2068-2079.
    Campana SE. Chemistry and composition of fish otoliths: pathways, mechanisms and applications.Marine Ecology Progress Series,1999,188:263-297.
    Cardinale M, Doering-Arjes P, Kastowsky M, et al. Effects of sex, stock, and environment on theshape of known-age Atlantic cod (Gadus morhua) otoliths. Canadian Journal of Fisheries andAquatic Sciences,2004,61:158-167.
    Castoe TA, Poole AW, Gu W, et al. Rapid identification of thousands of copperhead snake(Agkistrodon contortrix) microsatellite loci from modest amounts of454shot-gun genomesequence. Molecular Ecology Resources,2010,10:341-347.
    Chen LC. A study of the Sebastes inermis species complex, with the delimitation of the subgenusMebarus (Pisces, Scorpaenidae). Journal of the Taiwan Museum,1985,38:23-37.
    Christie MR, Johnson DW, Stallings CD, et al. Self-recruitment and sweepstakes reproductionamid extensive gene flow in a coral-reef fish. Molecular Ecology,2010,19:1042-1057.
    Colbeck GJ and Turgeon J. Historical introgression and the role of selective vs. neutral processesin structuring nuclear genetic variation (AFLP) in a circumpolar marine fish, the capelin(Mallotus villosus). Molecular Ecology,2011,20:1976-1987.
    Conte F and Takano K. Ontogeny of the sodium pump in embryos of rockfish of the genusSebastes. Environmental Biology of Fishes,1991,30:127-133.
    Cornuet JM and Luikart G. Description and power analysis of two tests for detecting recentpopulation bottlenecks from allele frequency data. Genetics,1996,144:2001-2014.
    Cowen RK, Paris CB, Srinivasan A. Scaling of connectivity in marine populations. Science,2006,311:522-527.
    Crosetti D, Nelso WS, Avise JC. Pronounced genetic structure of mitochondrial DNA amongpopulations of the circumglobally distributed grey mullet (Muril cephalus). Journal of FishBiology,1993,44:47-58.
    DeVries DA, Grimes CB, Prager MH. Using otolith shape analysis to distinguish eastern Gulf ofMexico and Atlantic Ocean stocks of king mackerel. Fisheries Research,2002,57:51-62.
    Doda JN, Wright CT, Clayton DA. Elongation of displacement-loop strands in human and mousemitochondrial DNA is arrested near specific template sequences. Proceedings of the NationalAcademy of Sciences,1981,78:6116-6120.
    Dupanloup I, Schneider S, Excoffier L. A simulated annealing approach to define the geneticstructure of populations. Molecular Ecology,2002,11:2571-2581.
    Dynesius M and Jansson R. Evolutionary consequences of changes in species’ geographicaldistributions driven by Milankovitch climate oscillations. Proceedings of the NationalAcademy of Sciences of the United States of America,2000,97:9115-9120.
    Dynesius M and Roland J. Evolutionary consequences of changes in species’ geographicaldistributions driven by Milankovitch climate oscillations. Proceedings of the NationalAcademy of Sciences,2000,97:9115-9120.
    Elsdon TS and Gillanders BM. Reconstructing migratory patterns of fish based on environmentalinfluences on otolith chemistry. Reviews in Fish Biology and Fisheries,2003,13:219-235.
    Endo H, Hayashi Y, Kitani Y, et al. Optical enzyme sensor for determining L-lysine content usingL-lysine oxidase from the rockfish Sebastes schlegeli. Analytical and Bioanalytical Chemistry,2008,391:1255-1261.
    Excoffier L, Laval G, Schneider S. Arlequin (version3.0): An integrated software package forpopulation genetics data analysis. Evolutionary Bioinformatics,2005,1:47-50.
    Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotypedata: Linked loci and correlated allele frequencies. Genetics,2003,164:1567-1587.
    Ferrito V, Mannino MC, Pappalardo AM, et al. Morphological variation among populations ofAphanius fasciatus Nardo,1827(Teleostei, Cyprinodontidae) from the Mediterranean.Journal of Fish Biology,2007,70:1-20.
    Fey DP. Differences in temperature conditions and somatic growth rate of larval and early juvenilespring-spawned herring from the Vistula Lagoon, Baltic Sea manifested in the otolith to fishsize relationship. Journal of Fish Biology,2001,58:1257-1273.
    Frédérich B, Liu SV, Dai C F. Morphological and genetic divergences in a coral reef damselfish,Pomacentrus coelestis. Evolutionary Biology,2012,39:359-370.
    Fu YX. Statistical tests of neutrality of mutations against population growth, hitchhiking andbackground selection. Genetics,1997,147:915-925.
    Fuqita H and Kohda M. Timing and sites parturition of the viviparous scorpionfish, Sebastiscusmarmoratus. Marine Biology,1998,125:467-471.
    Garber AF, Tringali MD, Franks JS. Population genetic and phylogeographic structure of wahoo,Acanthocybium solandri, from the western central Atlantic and central Pacific Oceans.Marine Biology,2005,147:205-214.
    García-Berthou E. On the misuse of residuals in ecology: testing regression residuals vs. theanalysis of covariance. Journal of Animal Ecology,2001,70:708-711.
    Gharrett AJ, Matala AP, Peterson EL, et al. Two genetically distinct forms of rougheye rockfishare different species. Transactions of the American Fisheries Society,2005,134:242-260.
    Gibson AR, Baker AJ, Moeed P. Morphometric variation in introduced populations of the commonmyna (Acridotheres tristis): An application of the jackknife to principal component analysis.Systematic Zoology,1984,33:408-42l.
    Gillespie J H. Population Genetics: A Concise Guide. Baltimore&London, The Johns HopkinsUniversity Press,1997.
    Glaubitz JC. CONVERT: A user-friendly program to reformat diploid genotypic data forcommonly used population genetic software packages. Molecular Ecology Notes,2004,4:309-310.
    Gorgonio RC, Faustino CR, Alejandro VR, et al. Morphometric variation of wild trout populationsfrom northwestern Mexico (Pisces: Salmonidae). Reviews in Fish Biology and Fisheries,2003,13:91-110.
    Grant WS and Bowen BW. Shallow population histories in deep evolutionary lineages of marinefishes: insights from sardines and anchovies and lessons for conservation. Journal ofHeredity,1998,89:415-426.
    Guo XH, Liu SJ, Liu Y. Comparative analysis of the mitochondrial DNA control region incyprinids with different ploidy level. Aquaculture,2003,224:25-38.
    Hajibabaeia M, Alexsmith M, Janzen DH, et al. A minimalist barcode can identify a specimenwhose DNA is degraded. Molecular Ecology Notes,2006,6:959-964.
    Hallacher LE. The comparative morphology of extrinsic gas bladder masculature in thescorpionfish genus Sebastes (Pisces, Scorpaenidae). Proceedings of the California Academyof Sciences,1974,40:59-86.
    Han ZQ, Gao TX, Yanagimoto T, et al. Genetic population structure of Nibea albiflora in YellowSea and East China Sea. Fisheries Science,2008,74:544-552.
    Han ZQ, Yanaginmoto T, Zhang YP, et al. Phylogeography study of Ammodytes personatus inNorthwestern Pacific: pleistocene isolation, temperature and current conducted secondarycontact. PloS ONE,2012,7: e37425.
    Harrison RG. Animal mitochondrial DNA as a genetic marker in population and evolutionarybiology. Trends in Ecology&Evolution,1989,4:6-11.
    He CB, Cao J, Liu WD, et al. Structure analysis of mtDNA control region of spotted halibut(Verasper variegatus) and its related species. Hereditas,2007,29:829-836.
    Hebert PDN, Cywinska A, Ball SL, et al. Biological identifications through DNA barcodes.Philosophical Transactions of the Royal Society B: Biological Sciences,2003a,270:313-321.
    Hebert PDN, Penton EH, Burns JM, et al. Ten species in one, DNA barcode reveals cryptic speciesin the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the NationalAcademy of Sciences,2004,101:14812-14817.
    Hebert PDN, Ratnasingham S, deWaard JR. Barcode animal life, cytochrome c oxidase subunit Idivergences among closely related species. Philosophical Transactions of the Royal Society B:Biological Sciences (Supp1),2003b,270: S96-S99.
    Hein J, Schierup MH, Wiuf C. Gene genealogies, variation and evolution–a primer in coalescenttheory. Oxford: Oxford University Press,2005.
    Helmuch B, Veit RR, Holberton R. Long-distance dispersal of a subantarctic brooding bivalve(Gaimardia trapesina) by kelp-rafting. Marine Biology,1994,120:421-426.
    Hewitt GM. The genetic legacy of the Quaternary ice ages. Nature,2000,405:907-913.
    Highsmith RC. Floating and algal rafting as potential dispersal mechanisms in broodinginvertebrates. Marine Ecology Progress Series,1985,25:169-179.
    Higuchi M and Kato K. Sequence variability in the mitochondrial DNA control region of fiveSebastes species. Fisheries Science,2002,68:643-650.
    Hoelzel AR, Lopez JV, Dover GA, et al. Rapid evolution of a heteroplasmic repetitive sequence inthe mitochondrial DNA control region of carnivores. Journal of Molecular Evolution,1994,39:191-199.
    Huelsenbeck JP and Ronquist F. MRBAYES: Bayesian inference of phylogeny. Bioinformatics,2001,17:754-755.
    Hurlbut T and Clay D. Morphometric and meristic differences between shallow-and deep-waterpopulations of white hake (Urophycis tenuis) in the southern Gulf of St. Lawrence. CanadianJournal of Fisheries and Aquatic Science,1998,55:2274-2282.
    Hyde JR and Vetter RD. The origin, evolution, and diversification of rockfishes of the genusSebastes (Cuvier). Molecular Phylogenetics and Evolution,2007,44:790-811.
    Ikehara K. Studies on the fish eggs and larvae accompanied with drifting seaweeds in the SadoStrait and its vicinity. Bulletin of the Japan Sea National Fisheries Research Institute,1977,28:17-28.
    Imbrie J, Boyle EA, Clemens SC, et al. On the structure and origin of major glaciation cycles,1.Linear responses to Milankovitch forcing. Paleoceanography,1992,7:701-738.
    Iwata HY and Ukai. A computer program package for quantitative evaluation of biological shapesbased on elliptic Fourier descriptors. Journal of Heredity,2002,93:384-385.
    Johansen T, Danielsdottir AK, Meland K, et al. Studies of the genetic relationship betweendeep-sea and oceanic Sebastes mentella in the Irminger Sea. Fisheries Research,2000,49:179-192.
    Johansen T, Danielsdottir AK, N vdal G. Genetic variation of Sebastes viviparus Kroyer in theNorth Atlantic. Journal of Applied Ichthyology,2002,18:177-180.
    Johnson AG, Utter FM, Hodgins HO. Estimate of genetic polymorphism and heterozygosity inthree species of rockfish (genus Sebastes). Comparative Biochemistry and Physiology-PartB: Biochemistry,1973,44:397-406.
    Jones G, Almany G, Russ G, et al. Larval retention and connectivity among populations of coralsand reef fishes: history, advances and challenges. Coral Reefs,2009,28:307-325.
    Jordan DS, Gilbert JZ, Hubbs CL. Record of fishes obtained by David Starr Jordan in Japan,1922.Memoirs of the Carnegie Museum,1922,10:93-346.
    Jung JH, Jeon JK, Han CH. Effects of2,2’,4,4’,5,5’-hexachlorobiphenyl (PCB153) on plasma sexsteroids and vitellogenin in rockfish (Sebastes schlegeli). Comparative Biochemistry andPhysiology:Part C,2005,140:295-299.
    Jung JH, Kim SJ, Lee TK, et al. Biomarker responses in caged rockfish (Sebastes schlegeli) fromMasan Bay and Haegeumgang, South Korea. Marine Pollution Bulletin,2008,57:599-606.
    Kai Y, Nakayama K, Nakabo T. Genetic difierences among three color morphotypes of the blackrockfish, Sebastes inermis, inferred from mtDNA and AFLP analysis. Molecular Ecology,2002a,11:2591-2598.
    Kai Y, Nakayama K, Nakabo T. Molecular phylogenetic perspective on speciation in the genusSebastes (Scorpaenidae) from the Northwest Pacific and the position of Sebastes within thesubfamily Sebastinae. Ichthyological Research,2003,50:239-244.
    Kai Y, Yagishita N, Ikeda H, et al. Genetic differences between two color morphotypes of redfish,Sebastes scythropus (Osteichthyes,Scorpaenidae). Species Diversity,2002b,7:371-380.
    Kang DH and Hwang DJ. Ex situ target strength of rockfish (Sebastes schlegeli) and red seabream (Pagrus major) in the Northwest Pacific. ICES Journal of Marine Science,2003,60:538-543.
    Kang SH and Shin GK. Efficacy of protein A-HRP in an immunological study of black rockfish(Sebastes schlegeli Higendorf) humoral immune responses. Fish&Shellfish Immunology,2006,20:295-304.
    Kim II-C and Lee JS. The complete mitochondrial genome of the rockfish Sebastes schlegeli(Scorpaeniformes, Scorpaenidae). Molecules and Cells,2004,17:322-328.
    Kim SG, Park DK, Jan SW, et al. Effects of Dietary benzo[a]pyrene on growth and hematologicalparameters in juvenile rockfish, Sebastes schlegeli (Hilgendorf). Bulletin of EnvironmentalContamination and Toxicology,2008,81:470-474.
    Kim SG, Eom KH, Kim SS, et al. Kinetics of Cd accumulation and elimination in tissues ofjuvenile rockfish (Sebastes schlegeli) exposed to dietary Cd. Marine Environmental Research,2006,62:327-340.
    Kim YO, Park EM, Nam BH, et al. Identification and molecular characterization of two hepcidingenes from black rockfish (Sebastes schlegelii). Molecular and Cellular Biochemistry,2008,315:131-136.
    Kingsford MJ and Choat JH. The fauna associated with drift algae captured with a plankton-meshpurse seine net. Limnology and Oceanography,1985,30:618-630.
    Kingsford MJ. Drift algae and small fish in coastal waters of northeastern New Zealand. MarineEcology Progress Series,1992,80:41-55.
    Kita J, Tsuchida S, Setoguma T. Temperature preference and tolerance, and oxygen consumptionof the marbled rockfish, Sebastiscus marmoratus. Marine Biology,1996,123:467-471.
    Kitani Y and Mori T. Gene expression and distribution of antibacterial L-amino acid oxidase in therockfish Sebastes schlegeli. Fish&Shellfish Immunology,2007,23:1178-1186.
    Kitani Y, Kikuchi N, Zhang G, et al. Antibacterial action of L-amino acid oxidase from the skinmucus of rockfish Sebastes schlegelii. Comparative Biochemistry and Physiology: Part B,2008,149:394-400.
    Kokita T and Omori M. Early life history traits of the gold-eye rockfish, Sebastes thompsoni, inrelation to successful utilization of drifting seaweed. Marine Biology,1998,132:579-589.
    Kuhl F and Giardina C. Elliptic Fourier features of a closed contour. Computer Graphics andImage Processing,1982,18:236-258.
    Kuhner MK. LAMARC2.0: maximum likelihood and Bayesian estimation of populationparameters. Bioinformatics,2006,22:768-770.
    Kusakari M. Mariculture of kurosoi, Sebastes schlegeli. Environmental Biology of Fishes,1991,30:245-251.
    L’Abee-Lund JH. Otolith shape discriminates between juvenile Atlantic salmon, Salmo salar L.,and brown trout, Salmo trutta L. Journal of Fish Biology,1988,33:899-903.
    Lambeck K, Esat TM, Potter EK. Links between climate and sea levels for the past three millionyears. Nature,2002,419:199-206.
    Lee SM, Hwang UG, Cho SH. Effects of feeding frequency and dietary moisture content ongrowth, body composition and gastric evacuation of juvenile Korean rockfish. Aquaculture,2000,187:399-409.
    Lee SM, Jeon IG, Lee JY. Effects of digestible protein and lipid levels in practical diets on growth,protein utilization and body composition of juvenile rockfish (Sebastes schlegeli).Aquaculture,2002,211:227-239.
    Lee SM. Apparent digestibility coefficients of various feed ingredients for juvenile and growerrockfish (Sebastes schlegeli). Aquaculture,2002,207:79-95.
    Lee TW and Kim GC. Microstructural growth in otoliths of black rockfish, Sebastes schlegeli,from prenatal larval to early juvenile stages. Ichthyological Research,2000,47:335-34l.
    Lee WJ, Conroy J, Howell WH. Structure and evolution of teleost mitochondrial control regions.Journal of Molecular Evolution,1995,41:54-66.
    Li NS, Zhao SL, Wasiliev B. Geology of Marginal Sea in the Northwest Pacific. HeilongjiangEducation Press, Harbin,2000.
    Li WT, Zhang XM, Gao TX. Preliminary study on the water drag of schlegel's black rockfishSebastes schlegeli. Journal of Ocean University of China,2004,3:70-74.
    Li Z, Gray AK, Love MS, et al. Phylogeny of members of the rockfish (Sebastes) subgenusPteropodus and their relatives. Canadian Journal of Zoology,2006,84:527-536.
    Liu HZ. The structure and evolution of the mtDNA control region in fish: taking example foracheilognathinae. Progress in Natural Science,2002,12:266-270.
    Liu JX and Avise JC. High degree of multiple paternity in the viviparous Shiner Perch,Cymatogaster aggregata, a fish with long-term female sperm storage. Marine Biology,2011,158:893-901.
    Liu JX, Gao TX, Wu SF, et al. Pleistocene isolation in the Northwestern Pacific marginal seas andlimited dispersal in a marine fish, Chelon haematocheilus (Temminck and Schlegel,1845).Molecular Ecology,2007,16:275-288.
    Liu JX, Gao TX, Yokogawa K, et al. Differential population structuring and demographic historyof two closely related fish species, Japanese sea bass (Lateolabrax japonicus) and spotted seabass (Lateolabrax maculatus) in Northwestern Pacific. Molecular Phylogenetics andEvolution,2006b,39:799–811.
    Liu JX, Gao TX, Zhuang ZM, et al. Late Pleistocene divergence and subsequent populationexpansion of two closely related fish species, Japanese anchovy (Engraulis japonicus) andAustralian anchovy (Engraulis australis). Molecular Phylogenetics and Evolution,2006a,40:712–723.
    Love MS, Yaklovich M, Thorsteinson L. The Rockfishes of the Northeast Pacific. UC Press,Berkeley,2002.
    Lunt DH, Whipple LE, Hyman BC. Mitochondrial DNA variable number tandem repeats(VNTRs): utility and problemsvin molecular ecology. Molecular Ecology,1998,7:1441-1455.
    Matschiner M, Hanel R, Salzburger W. Gene flow by larval dispersal in the Antarctic notothenioidfish Gobionotothen gibberifrons. Molecular Ecology,2009,18:2574-2587.
    Matsubara K. Studies on the scorpaenoid fishes of Japan. Anatomy, phylogeny and taxonomy, I, II.Trans Sigenkagaku Kenkyusyo,1943, No.1,2, Tokyo,486.
    Matthew TM, Vincent M, Sylvester M, et al. Population morphological variation of the Nile perch(Lates niloticus, L.1758), of East African Lakes and their associated waters. African Journalof Environmental Science and Technology,2011,5:941-949.
    Mayr E, Linsley EG, Usinger RL. Methods and Principles of Systematic Zoology. New York:Toronto and London: McGraw Hill Book Company,1953:23-39;123-154.
    McGauley K and Mulligan TJ. Polymerase chain reaction restriction fragment lengthpolymorphism analysis of mitochondrial rRNA genes from yellowtail rockfish. Journal ofFish Biology,1995,47:744-747.
    Mc-Hugh JL. Geographic variation in the Pacific herring. Copeia,1954,1:139-151.
    Meyer A. Evolution of mitochondrial DNA in fishes. In: Biochemistry and Molecular Biology ofFishes (Hochachka P.W.&Mommsen T.P., eds). Amsterdam: Elsevier,1993:1-38.
    Meyer CP and Paulay G. DNA Barcode, error rates based on comprehensive sampling. PlosBiology,2005,3: e422.
    Mitchell CT and Hunter JR. Fishes associated with drifting kelp, Macrocystis pyriferam, off thecoast of southern California and northern Baja California. California Fish Game,1970,56:288-297.
    Miya M and Nishida M. Speciation in the open sea. Nature,1997,389:803-804.
    Nagasawa T and Domon K. The early life history of kurosoi, Sebastes schlegeli (Scorpaenidae), inthe Sea of Japan. Ichthyological Research,1997,44:237-248.
    Nagasawa T and Kobayashi T. The early life history of the rockfish, Sebastes thompsoni(Scorpaenidae), in the Sea of Japan. Japanese Journal of Ichthyology,1995,41:385-396.
    Nakabo T. Fishes of Japan with pictorial keys to the species (second edition). Kanagawaken,Japan: Tokai University Press,2010.
    Nakazawa T, Sakai Y, Hsieh C, et al.2010. Is the relationship between body size and trophic nicheposition time-invariant in a predatory fish? First stable isotope evidence. PLoS One,5:e9120.
    Narum SW, Buonaccorsi VP, Kimbrell CA, et al. Genetic divergence between gopher rockfish(Sebastes carnatus) and black and yellow rockfish (Sebastes chrysomelas). Copeia,2004,4:926-931.
    Nedreaas K, Johansen T, N vdal G. Genetic studies of redfish (Sebastes spp.) from Icelandic andGreenland waters. ICES Journal of Marine Science,1994,51:461-467.
    Nei M, Maruyama T, Wu CI. Models of evolution of reproductive isolation. Genetics,1983,103:557-579.
    Neves FM and Monteiro LR. Body shape and size divergence among populations of Poeciliavivipara in coastal lagoons of south-eastern Brazil. Journal of Fish Biology,2003,63:928-941.
    Olivier L. Populations1.2.28. http://www.cnrs-gif.fr/pge/bioinfo/populations.
    Omori M, Sugawara Y, Honda H. Morphogenesis in hatchery-reared larvae of the black rockfish,Sebastes schlegeli, and its relationship to the development of swimming and feedingfunctions. Ichthyological Research,1996,43:267-282.
    Orr JW and Blackburn JE. The dusky rockfishes (Teleostei, Scorpaeniformes) of the North PacificOcean, resurrection of Sebastes variabilis (Pallas,1814) and a redescription of Sebastesciliatus (Tilesius,1813). Fishery Bulletin,2004,102:328-348.
    Palumbi SR. Genetic divergence, reproductive isolation, and marine speciation. Annual Review ofEcology and Systematics,1994,25:547-572.
    Palumbi SR. Marine reserves and ocean neighborhoods: The spatial scale of marine populationsand their management. Annual Review of Energy and the Environment,2004,29:31-68.
    Pesole G, Gissi C, DeChirico A, et al. Nucleotide substitution rate of mammalian mitochondrialgenomes. Journal of Molecular Evolution,1999,48:427-434.
    Piry S, Luikart G, Cornuet JM. BOTTLENECK: a computer program for detecting recentreductions in the effective population size using allele frequency data. Journal of Heredity,1999,90:502-503.
    Posada D and Crandall KA. Modeltest: Testing the model of DNA substitution. Bioinformatics,1998,14:817-818.
    Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocusgenotype data. Genetics,2000,155:945-959.
    Rabin DJ and Barnhart RA. Population characteristics of Pacific herring, Clupea harengus pallasii,in Humboldt Bay, California Fish and Game,1986,1:4-16.
    Ratnasingham S and Hebert PDN. Barcoding BOLD: The barcode of life data system. MolecularEcology Notes,2007,7:355-364.
    Ren GJ, Hu JJ, Bao ZM, et al. Isolation and characterization of eleven polymorphic microsatellitemarkers of sand lance (Ammodytes personatus). Conservation Genetics,2009,10:1837-1840.
    Repaci V, Stow AJ, Briscoe DA. Fine-scale genetic structure, co-founding and multiple mating inthe Australian allodapine bee (Ramphocinclus brachyurus). Journal of Zoology,2007,270:687–691
    Rice WR. Analyzing tables of statistical tests. Evolution,1989,43:223-225.
    Rocha LA, Bass AL, Robertson DR, et al. Adult habitat preferences, larval dispersal, and thecomparative phylogeography of three Atlantic surgeonfishes (Teleostei: Acanthuridae).Molecular Ecology,2002,11:243-252.
    Rocha-Olivares A and Vetter RD. Effects of oceanographic circulation on the gene flow, geneticstructure, and phylogeography of the rosethorn rockfish (Sebastes helvomaculatus). CanadianJournal of Fisheries and Aquatic Sciences,1999d,56:803-813.
    Rocha-Olivares A, Kimbrell CA, Eitner BJ, et al. Evolution of the mitochondrial cytochrome bgene sequence in the species-rich genus Sebastes (Teleostei, Scorpaenidae) and its utility intesting the monophyly of the subgenus Sebastomus. Molecular Phylogenetics and Evolution,1999c,11:426-440.
    Rocha-Olivares A, Rosenblatt RH, Vetter RD. Cryptic species of rockfishes (Sebastes;Scorpaenidae) in the southern hemisphere inferred from mitochondrial lineages. Journal ofHeredity,1999a,90:404-411.
    Rocha-Olivares A, Rosenblatt RH, Vetter RD. Molecular evolution, systematics, andzoogeography of the rockfish subgenus Sebastomus (Sebastes, Scorpaenidae) based onmitochondrial cytochrome b and control region sequences. Molecular Phylogenetics andEvolution,1999b,11:441-458.
    Rocha-Olivares A. Molecular evolution, systematics, zoogeography and levels of intraspecificgenetic differentiation in the species of the antitropical subgenus Sebastomus, Sebastes(Scorpaeniformes, Teleostei) using mitochondrial DNA sequence data. Ph.D. dissertation,Scripps Institution of Oceanography, University of California, San Diego, Calif,1998.
    Rogers AR. Genetic evidence for a Pleistocene population expansion. Evolution,1995,49:608-615.
    Ronquist F and Huelsenbeck JP. MRBAYES3: Bayesian phylogenetic inference under mixedmodel. Bioinformatics,2003,19:1572-1574.
    Roques S, Sevigny JM, Bernatchez L. Genetic structure of deepwater redfish, Sebastes mentella,populations across the North Atlantic. Marine Biology,2002,140:297-307.
    Rounsefell GA. Contribution to the biology of the Pacific herring, Clupea pallasii, and thecondition of the fishery in Alaska. Bulletin of United States Fish,1930,45:227-320.
    Rousset F. GENEPOP’007: a complete re-implementation of the GENEPOP software forWindows and Linux. Molecular Ecology Resources,2008,8:103-106.
    Saccone C, Attimonelli M, Sbisa E. Structural elements highly preserved during the evolution ofthe D-loop-containing region in vertebrate mitochondrial DNA. Journal of MolecularEvolution,1987,26:203-211.
    Safran P and Omori M. Some ecological observation on fishes associated with drifting seaweed ofTohoku coast, Japan. Marine Biology,1990,105:395-402.
    Santana Q, Coetzee M, Steenkamp E, et al. Microsatellite discovery by deep sequencing ofenriched genomic libraries. Biotechniques,2009,46:217-223.
    Sbisa E, Tanzariello F, Reyes F, et al. Mammalian mitochondrial D-loop region structure analysis:identification of new conserved sequences and the functional and evolutional implications.Gene,1997,205:125-140.
    Schneider S, Roessli D, Excoffier L. ARLEQUIN, version2.0, A software for population geneticdata analysis. University of Geneva, Geneva, Switzerland,2002.
    Secor DH and Rooker JR.Is otolith strontium a useful scalar of life cycles in estuarine fishes?Fisheries Research,2000,46:359-371.
    Seeb LW. Biochemical systematics of the scorpaenid genus Sebastes. PhD. Diss. University ofWashington, Seattle, WA,1986.
    Seo JY and Lee SM. Effects of dietary macronutrient level and feeding frequency on growth andbody composition of juvenile rockfish (Sebastes schlegeli). Aquaculture,2008,16:551-560.
    Shanks AL. Pelagic larval duration and dispersal distance revisited. Biological Bulletin,2009,216:373-385.
    Shen KN, Jamandre1BW, Hsu CC, et al. Plio-Pleistocene sea level and temperature fluctuationsin the northwestern Pacific promoted speciation in the globally-distributed flathead mulletMugil cephalus. BMC Evolutionary Biology,2011,11:83.
    Sheng XZ, Zhan WB, Xu SJ, et al. Histopathological observation of lymphocystis disease andlymphocystis disease virus (LCDV) detection in cultured diseased Sebastes schlegeli. Journalof Ocean University of China,2007,6:378-382.
    Siegel DA, Mitarai S, Costello CJ, et al. The stochastic nature of larval connectivity amongnearshore marine populations. Proceedings of the National Academy of Sciences,2008,105:8974-8979.
    Slatkin M, Hudson RR. Pairwise comparisons of mitochondrial DNA sequences in stable andexponentially growing populations. Genetics,1991,129:555-562.
    Song N, Zhang XM, Sun XF, et al. Population genetic structure and larval dispersal potential ofspottedtail goby Synechogobius ommaturus in the north-west Pacific. Journal of Fish Biology,2010,77:388-402.
    Southern SO, Southern PJ, Dizon AE. Molecular characterization of a cloned dolphinmitochondrial genome. Journal of Molecular Evolution,1988,28:32-40.
    Sponaugle S, Cowen RK, Shanks A, et al. Predicting self-recruitment in marine populations:Biophysical correlates and mechanisms. Bulletin of Marine Science,2002,70:341-375.
    Starner H, Pahlsson C, Linden M. Tandem repeat polymorphism and heteroplasmy in themitochondrial DNA control region of threespine stickleback (Gasterosteus aculeatus).Behaviour,2004,141:1357-1369.
    Stransky C, Murta AG, Schlickeisen J, et al. Otolith shape analysis as a tool for stock separation ofhorse mackerel (Trachurus trachurus) in the Northeast Atlantic and Mediterranean. FisheriesResearch,2008,89:159-166.
    Stransky C. Geographic variation of golden redfish (Sebastes marinus) and deep-sea redfish (S.mentella) in the North Atlantic based on otolith shape analysis. ICES Journal of MarineScience,2005,62:1691-1698.
    Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism.Genetics,1989,123:585-595.
    Tamura K, Dudley J, Nei M, et al. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA)software version4.0. Molecular Biology and Evolution,2007,24:1596-1599.
    Taniguchi K and Yamada H. Annual variation and productivity of the Sargassum horneripopulation in Matsushima Bay on the Pacific coast of Japan. Bullutein of Tohoku RegularFish Research Laboratary,1988,50:59-65.(In Japanese with English abstract)
    Tautz D, Arctander P, Minelli A, et al. DNA points the way ahead in taxonomy. Nature,2002,418:479.
    Turan C. A note on the examination of morphometric differentiation among fish populations: thetruss system. Turkish Journal of Zoology,1999,23:259-263.
    Uchida K and Shojima Y. Studies on the larvae and juveniles of fishes accompanying floatingalgae.I. Research in the vicinity of Tsuyazaki, during Mar.1957-Mar.1958. Nippon SuisanGakkaishi,1958,24:411-415.(In Japanese with English abstract)
    Vekemans X. AFLP-SURV version1.0. Distributed by the author. Laboratoire de Génétique etEcologie Végétale, Université Libre de Bruxelles, Belgium,2002.
    Vos P, Hogers R, Bleeker M, et al. AFLP: a new technique for DNA fingerprinting. NucleicAcids Research,1995,23:4407.
    Voss RS, Marcus LF, Escalante P. Morphological evolution in muroid rodents I. Conservativepatterns of craniometric covariance and their onto-genetic basis in the Neotropical genusZygodontomys. Evolution,1990,44:156-158.
    Walberg MW and Clayton DA. Sequence and properties of the human KB cell and mouse L cellD-loop regions of mitochondrial DNA. Nucleic Acids Research,1981,9:5411-5421.
    Walter RP, Haffner GD, Heath DD, et al. Dispersal and population genetic structure ofTelmatherina antoniae, an endemic freshwater Sailfin silverside from Sulawesi, Indonesia.Journal of Evolutionary Biology,2009,22:314-323.
    Wang YJ, Ye ZJ, Liu Q, et al. Stock discrimination of spottedtail goby (Synechogobius ommaturus)in the Yellow Sea by analysis of otolith shape. Chinese Journal of Oceanology andLimnology,2011,29:192-198.
    Ward RD, Holmes BH, White WT, et al. DNA barcoding of shared fish species from the NorthAtlantic and Australasia: minimal divergence for most taxa, but Zeus faber and Lepidopuscaudatus each probably constitute two species. Aquatic biology,2008,3:71-78.
    Ward RD, Zemlak TS, Innes B H, et al. DNA barcoding Australia’s fish species. PhilosophicalTransactions of the Royal Society B: Biological Sciences,2005,360:1847-1857.
    Wimberger P, Burr J, Gray A, et al. Isolation and characterization of twelve microsatellite loci forrockfish (Sebastes). Marine Biotechnology,1999,1:311-315.
    Wimberger PH. Plasticity of fish body shape. The effects of diet, development, family and age intwo species of Geophagus (Pisces: Gichlidae). Biological Journal of the Linnean Society,1992,45:197-218.
    Wourms JP, Grove BD, Lombardi J. Viviparity. In: Hoar W, Randall DJ (eds) Fish physiology, volXI. Academic Press, San Diego,1988:1-134.
    Wourms JP. Reproduction and development of Sebastes in the context of the evolution of piscineviviparity. Environmental Biology of Fishes,1991,30:111-126.
    Wu CW. Biological studies on Sebastiscus marmomtus off Zhoushan. Journal of Zhejiang OceanUniversity (Natural Science),1999:18:185-191.
    Yamada J and Kusakari M. Staging and the time course of embryonic development in kurosoi,Sebastes schlegeli. Environmental Biology of Fishes,1991,30:103-110.
    Yamane K, Shirai K, Nagakura Y, et al. Assessing the usefulness of otolith elemental compositionsfor evaluating the population structure of the Pacific herring Clupea pallasii in northernJapan. Fisheries Science,2012,78:285-307.
    Yeh FC, Yang R, Boyle TJ, et al. POPGENE1.32, Microsoft Windows-based freeware forpopulation genetic analysis. Molecular Biology and Biotechnology Centre, University ofAlberta, Edmonton, Canada.2000.
    Yoshida K, Nakagawa M, Wada S. Multiplex PCR system applied for analysing microsatellite lociof Schlegel’s black rockfish, Sebastes schlegeli. Molecular Ecology Notes,2005,5:416-418.
    Yoshida T.1963. Studies on the distribution and drift of the floating seaweeds. Bullutein ofTohoku Regular Fish Research Laboratary,23:141-186(in Japanese with English abstract)
    Zardoya R and Meyer A. The complete nucleotide sequence of the mitochondrial genome of thelungfish (Protopterus dolli) supportes its phylogenetic position as a close relative of landvertebrates. Genetics,1996,142:1249-1263.
    Zhang H, Zhang Y, Gao TX, et al. Genetic identification of two species of Pleuronichthys throughDNA barcode. Chinese Journal of Oceanology and Limnology,2011,29:967-972.
    Zhang JB, Liu HF, Song Y, et al. Development and characterization of polymorphic microsatelliteloci for a threatened reef fish Plectropomus leopardus. Conservation Genetics Resources,2010,2:101-103.
    Zhang SM, Wu QJ, Zhang YP. Tandem repeats of Chinese sturgeon (Acipenser sinensis) andrelated species and its significance in evolution. Chinese Journal of Biochemistry andMolecular Biology,2000,16:458-461.
    Zhang Y, Zhang E, He SP. Studies on the structure of the control region of the Bagridae in Chinaand its phylogenetic significance. Acta Hydrobiologica Sinica,2003,27:463-467.
    Zhang Y, Zhang H, Gao TX. Structure of mitochondrial DNA control region and molecularphylogenetic relationship among three flounders of genus Pleuronectes. BiochemicalSystematics and Ecology,2011,39:627-634.
    Zhao JL, Wang WW, LI SF. Structure of the mitochondrial DNA control region of the sinipercinefishes and their phylogenetic relationship. Acta Genetica Sinica,2006,33:793-799.
    Zhu SH, Zheng WG, Zou JX. Mitochondrial DNA control region structure and molecularphylogenetic relationship of Carangidae. Zoological Research,2007,28:606-614.
    陈大刚,叶振江,段钰,等。许氏平鲉繁殖群体的生物学及其苗种培育的初步研究。海洋学报,1994,16:94-101.
    陈大刚。黄渤海渔业生态学。北京:海洋出版社,1991。
    成庆泰和郑葆珊。中国鱼类系统检索。北京:科学出版社,1987,460-465.
    成庆泰和周才武。山东鱼类志。山东:山东科学技术出版社,1997,407-408.
    程起群和李思发。刀鲚和湖鲚种群的形态判别.海洋科学,2004,28:39-43.
    初冠囡。许氏平鲉(Sebastes schlegelii)微卫星标记筛选及遗传连锁图谱构建。中国海洋大学博士论文,2012.
    窦硕增,横内一樹,于鑫,等。基于EPMA的耳石Sr: Ca比分析及其在鱼类生活履历反演中的应用实例研究。海洋与湖沼,2011,42:512-520.
    窦硕增,于鑫,曹亮。鱼类矢耳石形态分析及其在群体识别中的应用实例研究。海洋与湖沼,2012,43:702-712.
    窦硕增。鱼类的耳石信息分析及生活史重建——理论、方法与应用。海洋科学集刊,2007,48:93-113.
    杜佳垠。大连黑石礁湾黑鲪低龄鱼生长的研究。海洋通报,1983,2:55-58.
    冯东岳,刘云,唐学玺。许氏平鲉的网箱养殖试验。齐鲁渔业,2004,21:11-15.
    冯东岳。许氏平鲉繁殖生物学及人工养殖技术的研究。中国海洋大学硕士论文,2003。
    冯东岳译。黑鲪的苗种生产。国外水产,1995,3:19-23.
    高天翔,任桂静,刘进贤,等。海洋鱼类分子系统地理学研究进展。中国海洋大学学报,2009,39:897-902.
    高天翔,孙希福,宋娜。斑尾复鰕虎鱼群体的形态学比较。中国海洋大学学报,2009,39:35-42.
    高天翔和杨天燕。中、日青鳞小沙丁鱼形态学比较分析。中国海洋大学学报,2008,38:201-206.
    侯刚,冯波,颜云榕,等。北部湾金线鱼、深水金线鱼与日本金线鱼矢耳石形态识别的初步研究。中国海洋大学学报,2012,42:27-35.
    侯晓飞,宋协法,葛长字,等。不规则盐度脉冲对许氏平鲉氨氮磷排泄的影响。渔业现代化,2005,35:19-23.
    黄真理和常剑波。鱼类体长与体重关系中的分形特征。水生生物学报,1999,23:330-336.
    金鑫波。中国动物志硬骨鱼纲鲉形目。北京:科学出版社,2006.
    兰永伦和罗秉征。大黄鱼耳石、体长与年龄的关系。海洋与湖沼,1996,27:323-329.
    李军,杨纪明,孙作庆。黑鲪生态生长效率周年变化的研究。海洋与湖沼,1995,26:586-590.
    李军。许氏平鲉(Sebastes schlegeli)的年龄和生长及耳石图像识别系统的设计。中国海洋大学硕士论文,2005.
    廖锐和区又军。鱼类耳石研究和应用进展。南方水产,2008,4:69-75.
    林克忠。黑鲪筏式笼养技术实验。齐鲁渔业,1993,3.
    刘禅馨。黑鲪人工育苗。水产科学,1988,7:22-24.
    刘禅馨和秦克静。辽宁动物志(鱼类)。沈阳:辽宁科学技术出版社,1987.
    刘丽娟,任利华,姜向阳,等。黑鲪(Sebastes schlegeli)遗传多样性的等位酶研究。海洋与湖沼,2009,4:479-483.
    刘名,王艳君,高天翔,等。中日太平洋鲱形态学比较研究。中国海洋大学学报,2007,37(增刊):131-136.
    刘名。太平洋鲱和大头鳕的群体遗传学研究。中国海洋大学博士论文,2010.
    楼东,高天翔,张秀梅。花鲈群体形态学研究。青岛海洋大学学报,2002,32:85-89.
    罗秉征,卢继武,黄颂芳。中国带鱼耳石生长的地理变异与地理种群的初步探讨。海洋与湖沼论文集,北京:科学出版社,1981:181-194.
    马爱军,王新安,雷霁霖,等。大菱鲆(Scophthalmus maximus)四个不同地理群体数量形态特征比较。海洋与湖沼,2008,39:24-28.
    潘晓哲和高天翔。基于耳石形态的鱚属鱼类鉴别。动物分类学报,2010,35:799-805.
    钱迎倩,马克平。生物多样性研究原理与方法。北京:中国科学技术出版社,1994:123-140.
    曲建升,李延梅,王雪梅,等。生物多样性研究发展态势与挑战。科学观察,2009,4:1-8.
    权洁霞,戴继勋,尚迅。海洋生物遗传多样性研究现状。青岛海洋大学学报,1999,29:283-288.
    宋娜。西北太平洋两种海洋鱼类的分子系统地理学研究及分子标记在褐牙鲆增殖放流中的应用。中国海洋大学博士学位论文,2011.
    孙希福。基于形态学和分子生物学资料探讨中国沿海10种鰕虎鱼类的系统发育关系。中国海洋大学硕士学位论文,2009.
    孙耀,张波,郭学武,等。黑鲪的标准代谢率及其与温度和体重的关系。海洋水产研究,1999,20:76-81.
    万景瑞和陈瑞盛。黑鲪的生殖习性及早期形态。海洋水产研究,1988,9:213-220.
    王巍令。斑尾复鰕虎鱼耳石成份研究。青岛:中国海洋大学硕士论文,2010.
    王文琪,张毅,刘梦侠,等。许氏平鲉4个野生群体遗传多样性微卫星分析。海洋科学,2012,36:10-16.
    王英俊,叶振江,杨永桓,等。耳石形态在黄海蓝点马鲛群体鉴别方面的应用。中国海洋大学学报,2007,37(增刊):155-158.
    王英俊,叶振江,刘群,等。细条天竺鱼与黑腮天竺鱼耳石形态识别的初步研究。海洋与湖沼,2010,41:282-285.
    王英俊,叶振江,张弛,等。中国海域习见石斑鱼属鱼类矢耳石形态特征。中国海洋大学学报,2011,41:55-60.
    王英俊。傅里叶分析在鱼类耳石形态学中的应用研究。中国海洋大学博士学位论文,2010.
    王志铮,吴常文,侯伟芬,等。褐菖鲉仔稚鱼生长特性及其关键变态期的研究。海洋科学,2002,26:1-4.
    吴常文。浙江舟山近海褐菖鲉Sebastiscus marmoratus生物学研究。浙江海洋学院学报,1999,18:185-191.
    许明海。褐菖鲉渔业生物学初步研究。渔业科学,1999,4:159-162.
    杨军山,陈毅峰。副沙鳅属的多变量形态分析。动物分类学报,2004,29:10-16.
    叶振江,孟晓梦,高天翔,等。两种花鲈(Lateolabrax sp.)耳石形态的地理变异。海洋与湖沼,2007,38:356-360.
    叶振江,张弛,王英俊,等。中国天竺鲷属鱼类的矢耳石形态特征。海洋学报,2010,32:87-92.
    叶振江。中国海洋鱼类耳石形态分析及应用研究。青岛:中国海洋大学,2009.
    喻子牛,孔晓瑜,冯东岳,等。许氏平鲉及欧氏六线鱼核型研究。青岛海洋大学学报,1992,22:118-124.
    张春森。黄渤海鱼类调查报告。北京:科学出版社,1955.
    张其永,蔡泽平。台湾海峡和北部湾二长棘鲷种群鉴别研究。海洋与湖沼,1983,14:511-522.
    张秀梅,王熙杰,涂忠,等。山东省渔业资源增殖放流现状与展望。中国渔业经济,2009,2:51-58.
    张治国和王卫民。鱼类耳石研究综述。湛江海洋大学学报,2001,21:77-83.
    郑文莲。中国鲹科等鱼类耳石形态的比较研究。鱼类学论文集(第2辑),北京:科学出版社,1981:39-45.
    曾聪,阎里清,高泽霞,等。梁子湖、鄱阳湖和淤泥湖团头鲂的形态学比较。华中农业大学学报,2012,31:88-94.
    曾祥波。鲢、鳙和草鱼仔幼鱼耳石形态及种类鉴别中的应用。武汉:华中农业大学,2001.
    朱龙和隋凤美。许氏平鲉的生物学特征及其人工养殖。现代渔业信息,1999,14:21-25.
    朱元鼎,罗云林,伍汉霖。中国石首鱼类分类系统的研究和新属新种的叙述.中国鱼类专著集,上海科学技术出版社,1963,12-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700