矿质、有机氮营养对小白菜生长和品质的影响及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以氨基酸、铵态氮、硝态氮等作为氮源,采用常规水培、局部无菌和完全无菌培养的试验方法,研究了矿质氮和有机氮营养对小白菜生长和品质的影响及其机理。结果如下:
     1.氨基酸喷施对小白菜地上部生长、硝酸盐含量及品质的影响
     在夏秋季喷施不同氨基酸都能显著提高小白菜地上部产量,尤以谷氨酰胺为佳,夏季增产幅度更大;同时都显著降低地上部硝酸盐含量,且以谷氨酸效果较佳而季间稳定;都显著增加叶片叶绿素含量,也以夏季效果更好;在夏季谷氨酰胺显著提高地上部磷浓度,在秋季谷氨酰胺显著提高地上部氮浓度,但其他氨基酸效果不太明显;夏季喷施谷氨酰胺、甘氨酸处理可以显著增加地上部钙和铁的浓度,但各氨基酸处理使地上部锌的浓度显著下降;秋季甘氨酸使地上部铁浓度显著增加,甘氨酸和谷氨酸处理使地上部锌浓度显著增加,但谷氨酰胺、甘氨酸处理使地上部钙浓度显著下降,谷氨酰胺处理使地上部锌浓度显著下降。
     2.完全无菌砂培条件下矿质、有机氮营养对小白菜生长、品质及生理特性的影响
     与无氮处理相比,除了铵态氮显著降低了根鲜重,各种氮形态都显著增加了地上部鲜重和根鲜重,各处理对地上部干重和根干重的影响与对地上部鲜重和根鲜重相似,其中谷氨酰胺处理的效果不如硝态氮,但好于铵态氮。不同氮形态对根系形态的各个指标有不同的影响。
     去除种子中的硝态氮之后的整株植物硝态氮的累积,除硝态氮处理中的硝态氮累积量很高,无氮、谷氨酰胺态氮和铵态氮处理的硝态氮累积量都很低,且这三个处理间的差异并不显著。这说明小白菜吸收氨基酸态氮和铵态氮后,在体内不会转化为硝态氮。与无氮处理相比,各个处理都显著提高了地上部和根部全氮和可溶性蛋白含量,铵态氮或谷氨酰胺态氮的效果比硝态氮好。与无氮处理相比,铵态氮和谷氨酰胺态氮都显著提高了地上部游离氨基酸含量,而硝态氮对地上部游离氨基酸含量无显著影响;铵态氮显著增加了根部游离氨基酸含量,谷氨酰胺态氮和硝态氮显著降低了根部游离氨基酸含量。与无氮相比,各种氮处理都显著
This study was carried out to determine the effect of inorganic nitrogen and organic nitrogen on growth, quality and physiological mechanisms of pakchoi {Brassica chinensis L.) under normal solution culture, wholly and partially sterile culture. The results were as follows:1. Effect of spraying amino acids on growth, nitrate content and quality in the shoot of pakchoi in both summer and autumnSpraying three amino acids (Glu, Gln, Gly) could significantly enhance yield of shoot and Gln was the best. Better effects on increasing yield of shoot were observed when amino acids were sprayed in summer than in autumn. The nitrate content of shoot decreased obviously when spraying amino acids, especially Glu in two seasons. Chlorophyll contents were improved by spraying three amino acids and the effects were better in summer than autumn, too. Of three amino acids, Gln could increase P concentration of shoot in summer and K concentration in autumn significantly. Glu and Gly significantly increased Ca and Fe concentration of shoot, but Glu, Gln and Gly significantly decreased Zn concentration in summer. Gly increased Fe concentration of shoot and Gly or Glu increased Zn concentration significantly, but Gln or Gly decreased Ca concentration and Gln decreased Zn concentration significantly in autumn.2. Effect of inorganic nitrogen and organic nitrogen on growth, quality and physiological characters of pakchoi under wholly sterile sand cultureExcept that NH_4~+-N significantly reduced root fresh weight, all nitrogen sources significantly increased shoot and root fresh weight compared to no nitrogen treatment (CK). The trend of shoot and root dry weight was similar to shoot and root fresh weight. Of three nitrogen sources, effect of Gln-N was better than NH_4~+-N and worse than NO3-N. The different nitrogen sources had different effect on root morphology.NO_3~--N treatment significantly increased the nitrate-nitrogen accumulation in
    whole plant (minus seed') compared to CK, NH4+-N or Gln-N. There were no significant differences between CK, NH4+-N, and Gln-N. This indicated that Gln-N and NH/-N absorbed externally was not converted to internal nitrate-nitrogen. Compared to CK, all treatments significantly enhance total nitrogen and soluble protein content in shoot and root. Of three nitrogen sources, effect of NEU+-N or Gln-N was better than NO3"-N treatment. Compared to CK, NH4+-N or Gln-N significantly increased free amino acid content in shoot, while NOs'-N had no significant effect;NH4+-N significantly increased free amino acid content in root, while Gln-N or NCV-N treatment significantly decreased it. Compared to CK, all treatments significantly increased chlorophyll a, chlorophyll b, carotenoid and chlorophyll a+b content in leaf. Of three nitrogen sources, effect of Gln-N was best. Compared to CK, three nitrogen sources all significantly decreased soluble sugar and starch content in shoot, but three nitrogen sources had no significant effect on them in root except that NH4+-N significantly decreased soluble sugar content in root.Compared to CK, three nitrogen sources all significantly decreased GS activity in shoot and root, and increased GOT activity in shoot and root and GPT activity in root. However, NO3~-N significantly decreased shoot GPT activity, while NH4+-N and Gln-N had no significant effect on it. Compared to inorganic nitrogen (NH4+-N or N03"-N), amino acid-N significantly increased GOT and GPT activity in root, indicating that amino acid was transaminated in root at first, and then transformed into other amino acids, finally synthesized protein.3. Effect of different amino acid-N concentrations on growth, quality and physiological characters of pakchoi under partially sterile solution cultureShoot and root fresh weight increased when Gln-N concentration in the nutrient solution was 5mmol/L or less, and significantly decreased afterwards. Effects of Gln-N concentrations on shoot and root dry weight were similar to fresh weight. Different effects of different Gln-N concentrations on root morphology were observed.Total nitrogen and free amino acid content in shoot and root, shoot soluble protein content, shoot soluble sugar content and chlorophyll a, chlorophyll b,
    carotenoid and chlorophyll a+b content in leaf rose when Gln-N^ concentration in the nutrient solution increased. Although addition of Gln-N to the nutrient solution increased root soluble protein content and decreased shoot starch content compared to no nitrogen treatment, no significant difference in them was observed between different Gln-N concentrations. Gln-N concentrations in the nutrient solution unaffected soluble sugar content and starch content in root.No significant differences in shoot GOT activity were observed when Gln-N concentration in the nutrient solution was 5mmol/L or less, and significantly increased afterwards. However, the highest root GOT activity was observed when Gln-N concentration was 5mmol/L. Although addition of Gln-N to the nutrient solution significantly increased shoot GPT activity compared to no nitrogen treatment, no significant difference was observed between different Gln-N concentrations. Root GPT activity increased when Gln-N concentration in the nutrient solution increased, but no significant effect was observed between 5 and lOmmol/L Gln-N. Root GOT activity was averagely four times of shoot by the addition of three Gln-N concentrations and root GPT activity was averagely eight times, but root GOT and GPT activity was similar to shoot in no nitrogen treatment.4. Choices of optimal experimental condition of amino acids partially replacing NO3~-N in normal solution cultureThere was the biggest shoot fresh weight and dry weight with 12mmol/L NO3-N in the nutrient solution, while a further increase in NO3VN concentration reduced the shoot fresh weight and dry weight. The shoot nitrate content increased with increasing the N03"-N concentration in the nutrient solution except for 3mmol/L.Compared to 100%NO3"-N treatment (CK), the shoot fresh weight of plant was significantly increased when the 20% NO3"-N in the nutrient solution was replaced by Arg, while it was unaffected by Asn and Gin. However, fresh weight was decreased by most amino acids. Except for Cys, Gly, His and Arg, other amino acid treatments all depressed apparently nitrate content in the plant shoot relative to CK.Both Gin and Glu reduced shoot fresh weight and dry weight with decreasing NO3"-N/amino acid-N ratios. At 80:20 NO3'-N:Gln-N ratio, Gin had no significant121
    growth reduction effect on shoot fresh weight. Decreasing NCV-N/amino acid-N ratios reduced nitrate content in shoot, regardless of Glu or Gin.Addition of about 12mmol/L NO3"-N to the nutrient solution and the replacement of 20% NO3-N in nutrient solutions with Gln-N will significantly reduce nitrate content in shoots without significant reduction of crop yields. In addition, Glu-N used as a nitrogen source to replace the 20% NCV-N in nutrient solutions due to the fact that Glu had an important role in nitrogen metabolism.5. Effect of amino acids partially replacing NCV-N in nutrient solution on growth, nitrate content and quality of pakchoi under partially sterile solution cultureShoot dry weight significantly increased, but shoot fresh weight, root fresh and dry weight were unaffected when Gin replaced 20% NCV-N in the nutrient solution compared to 100% NCV-N (CK). However, shoot fresh weight dropped, root fresh weight significantly rose, while shoot and root dry weight were unaffected by Glu.Both Gin and Glu significantly reduced the nitrate content in shoot and root compared to CK. Both Gin and Glu significantly enhanced total nitrogen and soluble protein in shoot and root, root free amino acid content and chlorophyll SPAD values in leaf compared to CK. Only Gin significantly enhanced shoot free amino acid content, while Glu had no significant effect. Both Glu and Gin significantly enhanced soluble sugar and starch contents in shoot and root. Amino acids of shoot and root mainly were Asp, Glu, Glu, His and Ala in all treatments. Glu and Glu significantly enhanced some amino acid contents and did not decrease amino acid content except that Glu reduced Phe content compared to CK.6. The study of mechanism of the decrease in nitrate content in pakchoi by amino acids partially replacing the NCV-N in the nutrient solutionWhen nitrate concentration was 2mmol/L or lOmmol/L in the sterile uptake solution, addition of 2.5mmol/L or 25mmol/L amino acids (Gin or Glu) all significantly inhibited the nitrate uptake rate of root and reduced the NR activity in shoot and root of pakchoi compared to the uptake solution without amino acids (Gin or Glu).There was no significant difference in nitrate content in shoot and root between
    80% NCV-N and 100% NCV-N under partially sterile solution culture, indicating that the decrease in nitrate content in pakchoi by amino acids replacing 20% NCV-N was not due to the decrease in NCV-N concentration in the nutrient solution, but the role of amino acid.When Gin and Glu replaced 20% NCV-N in the nutrient solution, NR activity in shoot and root significantly decreased under partially sterile solution culture compared to 100% NCV-N, indicating that the decrease in nitrate content in pakchoi by amino acids replacing 20% NCV-N was not due to the increase in nitrate reduction in vivo.7. Effect of amino acids partially replacing NCV-N in nutrient solution on iron bioavailability in shoot of pakchoi in normal solution cultureTotal iron content in shoot significantly increased when 20% NCV-N in the nutrient solution was replaced by Arg, His or Gin, and significantly decreased by Asp or Glu, while NH4+-N or Asn treatment had no significant effect compared to 100% NCV-N (CK). Glu, Arg, His and Gin treatments all significantly increased the soluble iron content in shoot, while NH/-N, Asp, or Asn had no significant effect compared to CK. Arg, Gin, His or Asn enhanced the Caco-2 cell ferritin content in shoot, while Asp, NH4+-N or Glu decreased it compared to CK. However, only Arg significantly increased ferritin content in shoot, Glu significantly decreased it, while other treatments had no significant effect compared to CK. In all treatments, iron in pakchoi had bioavailability to some extent, indicating that pakchoi may provide a part of iron needed by human beings.
引文
艾绍英,黄小红,柯玉诗,等.氮肥形态及施用方式对菠菜生长和硝酸盐含量的影响.中国农学通报,2001,17(5):11-13.
    艾绍英,唐拴虎,李生秀,等.氮素供应水平对蔬菜硝酸盐累积与分布的影响.华南农业大学学报,2000,21(2):14-17.
    曹翠玲,李生秀,张占平.氮素形态对小麦生长中后期保护酶等生理特性的影响.土壤通报,2003,34(4):295-298.
    曹翠玲,李生秀.氮素形态对玉米幼苗碳水化合物及养分累积的影响.华中农业大学学报,2003,22(5):457-461.
    曹宏武,刘艳利,田凤萍,等.腐植酸类肥料改造盐碱地及防治水稻缺素症的试验.腐植酸,1999,(3):25-26.
    曹贞红,李常青.茶园喷施惠满丰有机腐殖酸活性液肥效果试验初报.茶叶通讯,1999,(3):42-44.
    陈贵林,高绣瑞.氨基酸和尿素替代硝态氮对水陪不结球白菜和生菜硝酸盐含量的影响.中国农业科学,2002,35(2):187-191.
    陈洁,王章,肖刚.啤酒酵母中酵母抽题物的制备.无锡轻工大学学报,2001,20(4):356-362.
    陈明昌,程滨,张强,等.土施L-蛋氨酸、L-苯基丙氨酸、L-色氨酸对玉米生长和养分吸收的影响.应用生态学报,2005,16(6):1033-1037.
    陈清,郑兴耘.双氰胺对肥料氮在土壤中的转化及硝酸盐在芹菜体内累积的影响.核农学通报,1996,17(6):269-272.
    陈日远,关佩聪,刘厚诚,等.核苷酸及其组合物对冬瓜产量形成及其生理效应的研究.华南农业大学学报,2000,21(30):9-12.
    陈巍,罗金葵,姜慧梅,等.不同形态氮素比例对不同小白菜品种生物量和硝酸盐含量的影响.土壤学报,2004,41(3):420-424.
    陈振德,冯东升.几种叶菜类蔬菜中硝酸盐和亚硝酸盐含量变化及其化学调控.植物学通报,1994,11(3):25-26,33.
    陈振德,黄俊杰.土施L-色氨酸对甘蓝产量和养分吸收的影响.土壤学报,1997,34(2):200-205.
    陈宗新,陈风仙.“高美施”有机腐殖酸液肥在茶园的应用试验.中国茶叶,1994,16(20):12-13.
    程扶玖,杨道麒,吴庆生.腐殖酸对小麦抗旱性的生理效应.应用生态学报,1995,6(4):363-367.
    戴延波,曹卫星,孙传范,等.增铵营养对小麦光合作用及硝酸还原酶和谷氨酰胺合成酶的影响.应用生态学报,2003,14(9):1529-1532.
    党选民,曹振木.氨基酸复合液肥在西瓜栽培中的应用试验.热带农业科学,1998,(5):17-19.
    董晓英,李式军.采前营养液处理对水培小白菜硝酸盐累积的影响.植物营养与肥料学报,2003,9(4):447-451.
    杜猛军,张建仪,赵福康.不同硝态氮与铵态氮比例对生菜的产量和品质的影响.杭州农业科技,1992,(4):1-3.
    段英华,张亚丽,沈其荣,等.增硝营养对不同基因型水稻苗期氮素吸收同化的影响.植物营养与肥料学报,2005,11(2):160-165.
    封锦芳,李敬光,吴永宁,等.北京市蔬菜硝酸盐和亚硝酸盐污染状况评价.中国食品卫生杂志,2004,16(5):400-403.
    封克,汪晓丽,陈平,等.水稻苗期不同时段NO_3~-吸收特点及其受NH_4~+的影响.中国农业科学,2003,36(3):307-312.
    高怀春,陈美蓉.氮肥最后施用期对蔬菜硝酸盐含量的影响.湖北农业科学,2003,(3):53-54.
    高祖明,张耀栋,严晓凤,等.几种叶菜的硝酸盐和亚硝酸盐累积及其与有关酶活性的关系.植物生理学通讯,1990,(3):21-24.
    高祖明,张耀栋,张道勇,等.氮磷钾对叶菜硝酸盐累积和硝酸还原酶、过氧化物酶活性的影响.园艺学报,1989,16(4):293-298.
    关义新,林葆,凌碧莹.光、氮及其互作对玉米幼苗叶片光合和碳、氮代谢的影响.作物学报,2000,26(6):806-812.
    郭亚芬,张忠学,栾非时,等.硫对蔬菜产量与品质的效应.东北农业大学学报,1999,30(1):23-26.
    韩文质.腐植酸类肥料对土壤的改良作用及施用方法.甘肃农业科技,1997,(6):32-33.
    何国军,许翔鸿,高祖明.腐殖酸对丹参生长的促进作用及其机理的研究.中国野生植物资源,2001,20(1):42-44.
    何萍,杨金,周卫.腐殖酸复混肥对番茄产量、品质及生理活性的影响.土壤通报,1997,28(6):277-279.
    何文寿,李生秀,李辉桃.六种作物不同生育期吸收铵、硝态氮的特性.作物学报,1999,25(2):221-226.
    何文寿,李生秀,李辉桃.水稻对铵态氮和硝态氮吸收特性的研究.中国水稻科学,1998,12(4):249-252.
    洪法水.硝酸钾、钼酸铵、还原型磷酸吡啶核苷酸对花生种子活力及幼苗生长的影响.中国油料,1996,18(2):27-30.
    洪智勇,毛宁,张岩芳,等.氨法提取啤酒酵母RNA的工艺研究.中国商办工业,1999(10):40-44.
    侯桂兰,李宝,李峰,等.马铃薯施用腐殖酸活性肥惠满丰的效果试验.中国马铃薯,2000,14(2):98-99.
    胡定金,Vlassak K.不同光强下硝酸根停供对菠菜硝酸盐含量的影响.土壤肥料,1993,(4): 27-30.
    华天懋.高美施UA-102腐殖酸液肥对菠菜的增产效应.陕西农业科学,1996,(1):20-22.
    黄勤妮,印莉萍,柴晓清,等.不同氮源对小麦幼苗谷氨酰胺合成酶的影响.植物学报,1995,37(11):856-862.
    黄玉秀,林伦民.电化学法制取动物毛中系列氨基酸新工艺.精细化工,1996,13(3):58-61.
    霍光华,郭成志,郭晶东.氨基酸微素络合物对水稻的生物效应初探.氨基酸和生物资源,1998,20(3):40-43.
    姜小文,张秋明,王灿辉,等.喷施核苷酸有机营养剂改进柑桔果实品质的效果.中国南方果树,2001,30(3):12-13.
    蒋福龙.氮素形态对植物生长的影响.植物营养生理进展,1985,53-63.
    蒋滢.氨基酸的应用.北京:世界图书出版公司,1996.
    金平,刘山莉.腐殖酸与水稻抗冷性的研究初探.东北农业大学学报,1997,28(1):90-93.
    金燕,金鑫荣,施超欧.利用离子交换树脂法从毛发水解氨基酸母液中提取碱性氨基酸.化学世界,1996,37(4):199-202.
    金子渔,沈守江,孙玉昆,等.核酸降解物在水稻生产上的应用及其作用机理的研究Ⅱ.水稻苗期应用的生理作用.生物化学与生物物理学报,1975,7(2):139-146.
    靳志丽,李雪利,刘过顺,等.腐殖酸对烤烟生理代谢的影响.河南农业大学学报,2000,34(1):43-46.
    李宝珍,王正银.植物性硝化抑制剂对莴笋NO_3~--N和品质的影响.西南农业大学学报,2002,24(3):211-213.
    李彩凤,马凤呜,赵越,等.氮素形态对甜菜氮糖代谢关键酶活性及其产物的影响.作物学报,2003,29(1):128-132.
    李潮海,徐春喜,程丕华.氨基酸螯合多元微肥在棉花上地增产效果研究.中国棉花,1996,23(9):12-13.
    李存东,董海荣,李金力.不同形态氮比例对棉花苗期光合作用及碳水化合物代谢的影响.棉花学报,2003,15(2):87-90.
    李俊良,陈新平,李晓林,等.大白菜氮肥施用的产量效应、品质效应和环境效应.土壤学报,2003,40(2):261-266.
    李丽,武丽萍,成绍鑫.腐植酸磷肥的开发及其作用机理研究进展.磷肥与复肥,1999,(3):58-61.
    李世龙,张继舟,曹宏杰,等.腐植酸灌溉肥对温室黄瓜质量及土壤理化性状影响的研究.腐植酸,2005,(3):29-32.
    李世清,李生秀,杨正亮.不同生态系统土壤氨基酸氮的组成及其含量.生态学报,2002,22(3):379-386.
    李维琴,赵来顺,陈振峰,等.黄腐酸对防治黄瓜霜霉病增效作用的研究.腐植酸,1991,(3): 27-32.
    李酉开.土壤农业化常规分析方法.北京:科学出版社,1983.
    刘更另.中国有机肥料.北京:农业出版社,1991.
    刘启冬,李会合,王正银.平衡施肥对3种叶菜硝酸盐含量的影响.长江蔬菜,2003,(4):40-41.
    刘庆城,许玉兰,张玉洁.利用毛发水解废液制作氨基酸肥料的研究.农业环境保护,1994,13(3):115-120.
    刘伟.氨基酸态氮对蔬菜的营养效应及有机营养液对蔬菜产量和品质影响研究.南京农业大学博士论文,2002.
    卢凤刚,陈贵林,吕桂云,等.不同供氮水平对韭菜产量和品质的影响.园艺学报,2005,32(1):131-133.
    卢善玲,周根娣.上海蔬菜硝酸盐残留状况及其控制途径.上海农业学报,1990,9(4):59-66.
    陆力光,杨正申.黄腐酸对旱地烤烟代谢生理、产量、品质和效益的影响.腐植酸,1993,(4):21-32.
    陆文龙,赵宏孺,王德芳,等.矿质营养对白菜硝酸盐含量的影响.农业环境保护,1999,18(3):118-120.
    陆欣,王申桂.应用腐植酸改善石灰性土壤磷素供应状况的研究.土壤通报,1996,27(6):265-267.
    罗金葵,陈巍,张攀伟,等.增铵对小白菜生长和叶绿素含量的影响.土壤学报,2005,42(4):614-618.
    马瑾,杨国义,利育盛,等.东莞市蔬菜硝酸盐污染现状研究.生态环境,2004,13(3):330-331.
    梅慧生,杨建军.腐植酸钠调节气孔开启度与植物激素作用的比较观察.植物生理学报,1983,9(2):143-149.
    莫良玉,吴良欢,陶勤南.无菌条件下小麦氨基酸态氮及铵态氮营养效应研究.应用生态学报,2003,14(2):184-186.
    莫良玉,吴良欢,陶勤南.植物有机营养研究中供试种子组合灭菌方法比较.浙江大学学报(农业与生命科学版),2000,26(6):643-646.
    莫良玉.高等植物氨基酸态氮营养效应研究.浙江大学博士论文,2001.
    宁正祥,胡立侃.核苷酸对柑桔1,5-二磷酸核酮糖羧化酶活性的影响.中国柑桔,1987,(2):2-3.
    宁正祥,李玲,胡立侃.核苷酸在柑桔生产上的应用及其作用机理研究.中国柑桔,1986,(1):2-6.
    彭正萍,门明新,薛世川,等.腐植酸复合肥对土壤养分转化和土壤酶活性的影响.河北农业大学学报,2005,28(4):1-4.
    彭正萍,薛世川,孙志梅,等.腐植酸复合肥对油菜品质及胜利指标的影响.河北农业大学学报,2001,24(1):24-27.
    任祖淦,邱孝煊,蔡元呈.化学氮肥对蔬菜硝酸盐污染影响的研究.中国环境科学,1997,17(4):326-329.
    森敏.日本肥料学杂志,1979,50:40-48.
    邵吉安,孙云祥,石兆魁,等.核苷酸复配剂在农业上的应用.土壤,1992,24(4):210-212.
    沈明珠,李俊国,东惠茹.中国菠菜硝酸盐累积和含量水平的研究.园艺学报,1986,13(4):258-262.
    沈明珠,翟宝杰,东惠茹,等.蔬菜硝酸盐累计的研究Ⅰ不同蔬菜硝酸盐和亚硝酸盐含量评价.园艺学报,1982,9(4):41-48.
    寿森炎,杨信廷,朱祝军,等.氮素形态和光照强度对番茄生长及抗氧化酶活性的影响.浙江大学学报(农业与生命科学版),2000,26(5):500-504.
    宋大伟,林险峰,马玉环,等.利用啤酒废酵母提取核糖核酸的研究.松聊学刊(自然科学版),1997,1(1):30-32.
    苏胜齐,王正银,李会合,等.几种化学物质配施对小白菜硝酸盐合营养品质的影响.2004,10(4):407-412.
    陶勤南.肥料试验与统计分析.北京:中国农业出版社,1997.
    陶正平,边鸣镝,李梦玲.提高氮素水平对水培小白菜生长及硝酸盐含量的影响.吉林农业大学学报,2001,23(2):46-49.
    田霄鸿,李生秀.几种蔬菜对硝态氮、铵态氮的相对吸收能力.植物营养与肥料学报,2000,6(2):194-201.
    田霄鸿,王朝晖,李生秀.不同氮素形态及配比对蔬菜生长和品质的影响.西北农业大学学报,1999,27(2):6-10.
    汪李平,向长萍,王运华.白菜不同基因型硝酸盐含量差异的研究.园艺学报,2004,31(1):43-46.
    汪耀富,孙德梅,叶红潮.灌水和腐殖酸用量对烤烟养分含量及烟叶产量品质的影响.安徽农业科学,2005,33(1):96-97.
    王朝辉,李生秀,田霄鸿.不同氮肥用量对蔬菜硝酸盐累积的影响.植物营养与肥料学报,1998,4(1):22-28.
    王翠红,黄启为,周卫军,等.叶菜类蔬菜硝酸盐含量及其与土壤肥力因素的关系.生态环境,2005,14(2):218-219.
    王珂,范洁红.腐殖质促进小麦生长的生理机制研究.腐植酸,1998,(30):32-34,36.
    王明霞,王三根,吴文彬,等.硝态氮对不同基因型小白菜光合速率及品质的影响.西南农业大学学报(自然科学版),2005,27(3):385-388.
    王淑娥,冷家峰,刘仙娜.济南市蔬菜中硝酸盐及重金属污染.环境与健康杂志,2004,21 (5):312-313.
    王双明.几种化学物质对小白菜硝酸盐累积及某些营养品质德影响.绵阳农专学报,1992,9(1):35-39.
    王晓丽,李隆,江荣风,等.玉米/空心菜间作降低土壤及蔬菜中硝酸盐含量的研究.环境科学学报,2003,23(4):463-467.
    王玉岭,柴忠富.腐植酸复混肥的生产及肥效.磷肥与复肥,1996,(3):66-67,24.
    王月琴,刘文锋,廖臻瑞.不同温区水稻养分吸收量及化肥利用率研究.耕作与栽培,1999,(4):51-52.
    王正银,李会合,李宝珍,等.氮肥、土壤肥力和采收期对小白菜体内硝酸盐含量的影响.中国农业科学,2003,36(9):1057-1064.
    王正银,徐卫红,涂从,等.化学物质组合量比对叶菜硝酸盐的抑制作用.西南农业大学学报,1999,21(2):170-173.
    吴国强,余斌,韩峰.利用水解提取胱氨酸后的废液研制氨基酸复合肥料.氨基酸和生物资源,1995,17(2):10-15.
    吴良欢,陈峰,方萍,等.水稻叶片氮素营养对光合作用的影响.中国农业科学,1995,28(增刊):104-107.
    吴良欢,蒋式洪,陶勤南.植物转氨酶(GOT和GPT)活度比色测定方法及其应用.土壤通报,1998,29(3):136-138.
    吴良欢,陶勤南.水稻氨基酸态氮营养效应及其机理研究.土壤学报,2000,37(4):464-472.
    吴良欢,陶勤南.植物有机营养无菌培养试验方法的研究与应用.土壤学报,1999,36(4):551-557.
    武彦荣,高秀瑞,陈贵林,等.外源氨基酸对不结球白菜和生菜品质的影响.西南农业大学学报(自然科学版),2005,27(1):60-63.
    徐加林,别之龙,张盛林.不同氮素形态配比对生菜生长、品质和保护酶活性的影响.华中农业大学学报,2005,24(3):290-294.
    徐毅,徐建南,罗兆荣.蔬菜施用腐植酸复混肥的高产优质效应及其生理基础.中国蔬菜,1989,(4):7-10.
    许超,吴良欢,张立民,等.含硝化抑制剂DMPP氮肥对小白菜硝酸盐累积和营养品质的影响.植物营养与肥料学报,2005,11(1):137-139.
    许玉兰,刘庆城.用N~(15)示踪方法研究氨基酸的肥效作用.氨基酸和生物资源,1998,20(2):20-23.
    杨晓红,王菊香,李贤良.氨基酸液肥在几种叶菜上的应用效果.长江蔬菜,1998(9):26-27.
    杨肖娥,孙羲.不同水稻品种NH_4~+和NO_3~-吸收的动力学.土壤通报,1991,22(5):222-224.
    尹宝君,高保昌.氨基酸混合物对烤烟产质影响的研究初报.中国烟草科学,1999,(4):34-36.
    于建国,叶水英,赵玉娟,等.生化腐植酸对苹果轮纹病树生理生化指标的影响.林业科学研究,1998,11(6):623-628.
    俞建瑛,翁清清,黄得崇,等.氨基酸营养液对水稻增产效果的试验.华东理工大学学报:自然版,1999,25(5):531-533.
    岳廷盛,魏刚.氧化降解法提高泥炭中低含量腐植酸.铀矿冶,1994,13(3):209-212.
    曾希柏,青长乐,谢德体,等.光照条件对土壤-植物系统氮素状况影响的研究.应用生态学报,1998,9(2):139-144.
    张富仓,康绍忠,李志军.氮素形态对白菜硝酸盐累积和养分吸收的影响.园艺学报,2003,30(1):93-94.
    张宏伟,龙明杰,曾繁森.腐植酸接枝共聚物对赤红壤改良的研究.水土保持研究,2001,8(2):115-118.
    张莉,李文,肖正华,等.毛发水解液中混合氨基酸的分离富集方法研究.第三军医大学学报,1999,21(11):849-851.
    张树清,魏小平.蔬菜作物对硝铵态氮吸收能力比较研究.兰州大学学报(自然科学版),2002,38(4):77-84.
    张锡洲,王昌全,陈远学,等.施肥对芹菜硝酸盐含量的影响.四川农业大学学报,2003,21(1):82-84.
    张宪政.作物生理研究法.北京:农业出版社,1992.
    张英鹏,林咸永,章永松.供氮水平对菠菜营养品质和体内抗氧化酶活性的影响.应用生态学报,2005,16(3):519-523.
    赵家跃,杨晶,曲小荣.核酸生物肥对白菜产量和品质的影响.农民致富之友,2005,(4):22-22.
    赵世杰,刘华山,董新纯.植物生理学实验指导.北京:中国农业科技出版社,1998.
    郑朝峰.氮素形态对小麦叶片谷氨酸合成酶的影响.植物生理学通讯,1986(4):45-48.
    钟晓红,石雪晖,肖浪涛.色氨酸提高草莓果实品质和产量试验.中国果树,2001,(2):4-7.
    周崇峻,邹德已,王春之,等.腐植酸液肥在无土栽培中应用对番茄产量和品质的影响初报.辽宁农业科学,2000(6):45-47.
    朱锦懋,陈由强,郑毅,等.啤酒废酵母核酸降解物在龙眼生产上应用的研究.应用与环境生物学报,2001,7(3):232-235.
    朱祝军,蒋有条.不同形态氮素对不结球白菜生长和硝酸盐累积的影响.植物生理学通讯,1994,30(3):198-201.
    朱祝军,俞景权,Gerendas J,等.氮素形态和光照强度对烟草生长和H_2O_2清除酶活性的影响.植物营养与肥料学报,1998,4(4):379-385.
    邹国元,李晓林,杨志福.不同温度下施用钾肥对玉米生长及磷钾养分吸收的影响.华北农学报,1998,13(4):51-55.
    邹琦.植物生理学实验指导.北京:中国农业出版社,2000.
    Adani F, Genevini P, Zaccheo P, et al. The effect of commercial humic acid on tomato plant growth and mineral nutrition. Journal of Plant Nutrition, 1998, 21 (3): 561-575.
    Alan R. The effect of nitrogen nutrition on growth, chemical composition and response of cucumbers (Cucumis sativus L.) to nitrogen forms in solution culture. Journal of Horticultural Science, 1989, 64 (4): 467-474.
    Alfoldi Z, Pinter L, Feil B. Accumulation and partitioning of biomass and soluble carbohydrates in maize seedlings as affected by source of nitrogen, nitrogen concentration and cultivar. Journal of Plant Nutrition, 1992, 15 (11): 2567-2583.
    Arshad M, Frankenberger W T Jr. Response of Zea mays and Lycopersocon esculentum to the ethylene precursors, L-methionine and L-ethionine applied to soil. Plant and Soil, 1990, 122 (2): 219-227.
    Arshad M, Hussain A, Javer M, et al. Effect of soil applied L-methionine on growth, nodulation and chemical composition of Albizia lebbeck L. Plant and Soil, 1993, 148 (1): 129-135.
    Arshad M, Hussain A, Shakoor A. Effect of soil applied L-tryptophan on growth and chemical composition of cotton. Journal of Plant Nutrition, 1995, 18 (2): 317-329.
    Aslam M, Travis R L, Huffaker P C. Stimulation of nitrate efflux by ammonium in barley (Hordeum vulgareL.) seedlings. Plant Physiology, 1994, 106 (4): 1293-1301.
    Aslam M, Travis R L, Rains D W, et al. Differential effect of ammonium on the induction of nitrate and nitrite reductase activities in roots of barley (Hordeum vulgare) seedlings. Physiologia Plantarum, 1997, 101 (3): 612-619.
    Aslam M, Travis R L, Rains D W, et al. Effect of ammonium on the regulation of nitrate and nitrate transport systems in roots of intact barley (Hordeum vulgare L.) seedling. Planta, 1996, 200 (1): 58-63.
    Aslam M, Travis R L, Rains D W. Differential effect of amino acid on nitrate uptake and reduction systems in barley roots. Plant Science, 2001, 160 (2): 219-228.
    Aslam M, Travis R L, Rains D W. Inhibition of net nitrate by ammonium in Pima and Acala cotton roots. Crop Science, 2001, 41 (4): 1130-1136.
    Bahrman N, Gouy A, Devienne-Barret F, et al. Differential change in root protein patterns of two wheat varieties under high and low nitrogen nutrition levels. Plant Science, 2005, 168 (1): 81-87.
    Bloom A J, Jackson L E, Smart D R. Root growth as a function of ammonium and nitrate in the root zone. Plant, Cell and Environment, 1993, 16 (2): 199-206.
    Bloom-Zandstra M. Nitrate accumulation in vegetables and its relationship to quality. Annals of Applied Biology, 1989, 115 (3): 553-561.
    Boruch M, Makowski J, Wachouicz M. Ion exchange processes in separation of nitrogen compounds from potato juice. Technol. Chem., 1990, 561 (44): 37-48.
    Bourgeais-Chaillou P, Perrez-Alfocea F, Guerrier G. Comparative effects of N-sources on growth and physiological responses of soybean exposed to NaCl-stress. Journal of Experimental Botany, 1992,43 (254): 1225-1233.
    Bungard R A, Wingler A, Morton J D, et al. Ammonium can stimulate nitrate and nitrite reductase in the absence of nitrate in Clematis vitalba. Plant, Cell and Environment, 1999, 22 (7): 859-866.
    Buysse J, Broeck H V D, Merckx R. The effect of different levels of N limitation on sugars, amino acids, growth and biomadd partitioning in Broadbean (Viciafaba L.). Annals of Botany, 1996, 78 (1): 39-44.
    Cantliffe D J. Nitrate accumulation in spinach grown at different temperature. Journal of the American Society for Horticultural Science, 1972, 97 (5): 674-676.
    Chapin III F S, Moilanen L, Kielland K. Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature, 1993, 361 (6408): 150-153.
    Chapin III F S. New cog in the nitrogen cycle. Nature, 1995, 377, 199-200.
    Chen B M, Wang Z H, Li S X, et al. Wang. Effects of nitrate supply on plant growth, nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables. Plant Science, 2004,167 (3): 635-643.
    Chen W, Luo J K, Shen Q R. Effect of NH_4~+-N/NO_3~--N ratios on growth and some physiological parameters of Chinese cabbage cultivars. Pedosphere, 2005,15 (3): 310-318.
    Choo Y S, Lee C B, Albert R. Effects of nitrogen nutrition on the pattern of ions and organic solutes in fives sedges (Carex spp.). Flora, 2002, 197 (1): 56-66.
    Claussen W, Lenz F. Effect of ammonium or nitrate nutrition on net photosynthesis, growth, and activity of the enzymes nitrate reductase and glutamine synthetase in blueberry, raspberry and strawberry. Plant and Soil, 1999, 208 (1): 95-102.
    Correia M J, Fonseca F, Azedo-Silva J, et al. Effects of water deficit on the activity of nitrate reductase and content of sugars, nitrate and free amino acids in the leaves and roots of sunflower and white lupin plants growing under two nutrient supply regimes. Physiologia Plantarum, 2005, 124 (1): 61-70.
    Cramer M D, Lewis O A M. The ingluence og NO_3~- and NH_4~+ nutrition in the carbon and nitrogen partitioning characteristics of wheat (Triticum aestivum L.) and maize (Zea mays L.) plants. Plant and Soil, 1993,154 (2): 289-300.
    Cruz J L, Mosquim P R, Pelacani C R, et al. Effects of nitrate nutrition on nitrogen metabolism in cassava. Biologia Plantarum, 2004,48 (1): 67-72.
    Deng M, Moureaux T, Cherel I, et al. Effects of nitrogen metabolites on the regulation and circadian expression of tobacco nitrate reductase. Plant Physiology Biochemistry, 1991, 29 (3): 239-247.
    Dich J, Jrvinen R, Knekt P, et al. Dietary intakes of nitrate, nitrite and NDMA in the Finnish Mobile Clinic Health Examination Survey. Food Additives and Contaminants, 1996, 13 (5): 541-552.
    Feller C, Fink M. Nitrate content, soluble solids content, and yield of table beet as affected by cultivar, sowing date and nitrogen supply. HortScience, 2004, 39 (6): 1255-1259.
    Frankenberger W T Jr, Arshad M. Yield response of watermelon and muskmelon to L-tryptophan applied to soil. HortScience, 1991, 26 (1): 35-37.
    Frankenberger W T Jr, Chang A C, Arshad M. Response of Raphanus sativus to the auxin precusor, L-tryptophan applied to soil. Plant and Soil, 1990,129 (2): 235-241.
    Frechilla S, Lasa B, Ibarretxe L, et al. Pea responses to saline stress is affected by the source of nitrogen nutrition (ammonium or nitrate). Plant Growth Regulation, 2001, 35 (2): 171-179.
    Ghosh B P, et al. Soil Science, 1950, 70: 187-202.
    Glahn R P, Chen Z, Welch R M. Comparison of iron bioavailability from 15 rice genotypes: studies using an in vitro digestion/Caco-2 cell culture model. Journal of Agricultural and Food Chemistry, 2002,50 (12): 3586-3591.
    Gunes A, Inal A, Aktas M. Reducing nitrate content of NET grown winter onion plants by partial replacement of NO_3 with amino acid in nutrient solution. Scientia Horticulturae, 1996, 65 (2-3): 203-208.
    Gunes A, Post WNK, Kirkby E A, et al. Influence of partial replacement of nitrate by amino acid nitrogen or urea in the nutrient medium on nitrate accumulation in NFT grown winter lettuce. Journal of Plant Nutrition, 1994, 17(11): 1929-1938.
    Henry H A L, Jefferies R L. Interactions in the uptake of amino acids, ammonium and nitrate ions in the Arctic salt-marsh grass, Puccinellia phryganodes. Plant, Cell and Environment, 2003, 26(3): 419-428.
    Inal A, Gunes A, Aktas M. Effects of chloride and partial substitution of reduced forms of nitrogen for nitrate in nutrient solution on the nitrate, total nitrogen and chloride contents of onion. Journal of Plant Nutrition, 1995, 18 (10): 2219-2227.
    Inal A, Tarakcioglu C. Effects of nitrogen forms on growth, nitrate accumulation, membrane permeability and nitrogen use efficiency of hydroponically grown bunch onion under boron deficiency and toxicity. Journal of Plant Nutrition, 2001, 24 (10): 1521-1534.
    Ivashikina N V, Sokolov O A. Regulation of nitrate uptake and distribution in maize seedlings by nitrate, nitrite, ammonium and glutamate. Plant Science, 1997, 123 (1-2): 29-37.
    Jones D L, Darrah P R. Amino-acid influx at the soil-root interface of Zea Mays L. and its implications in the rhizosphere. Plant and Soil, 1994, 163 (1): 1-12.
    Jones D L, Healey J R, Willett V B. Dissolved organic nitrogen uptake by plants-an important N uptake pathway? Soil Biology and Biochemistry, 2005, 37 (3): 413-423.
    Jones D L, Kielland K. Soil amino acid turnover dominates the nitrogen flux in permaforost-dominated taiga forest soils. Soil Biology and Biochemistiy, 2002, 34 (2): 209-219.
    Jones D L. Amino acid biodegradation and its potential effects on organic nitrogen capture by plants. Soil Biology and Biochemistry, 1999,31 (4): 613 -622.
    Kim T, Mills H A, Wetzstein H Y. Studies on effects of nitrogen form on growth, development and nutrient uptake in pecan. Journal of Plant Nutrition, 2002,25 (3): 497-508.
    Kotsiras A, Olympios C M, Drosopoulos J, et al. Effects of nitrogen form and concentration on the distribution of ions within cucumber fruits. Scientia Horticulturae, 2002,95 (3): 175-183.
    Kronzucker H J, Glass A D M, Siddiqi M Y. Inhibition of nitrate uptake by ammonium in barely. Analysis of component fluxes. Plant Physiology, 1999, 120 (1): 283-291.
    Kronzucker H J, Siddiqi M Y, Glass A D M. Conifer root discrimination against soil nitrate and the ecology of forest succession. Nature, 1997,385 (6611): 59-61.
    Lemos G D, Delu F N, Oliveira L D. Activity of nitrogen assimilating enzymes in young rubber trees grown with different ratios of nitrate and ammonium. Revista Brasileira de Fisiologia Vegetal, 1999,11 (2): 113-118.
    L'hirondel J, L'hirondel J L. Nitrate and man: toxic, harmless or beneficial? Wallingford: CABI Publishing, 2002.
    Li X Z, Larson D E, Glibetic M, et al. Effect of glutamine on the induction of nitrate reductase. Physiologia Plantarum, 1995, 93 (4): 740-744.
    Liu W, Li S J, Chen D K. Use of amino acid nitrogen for growth by pakchoi. Acta Horticulturae, 2003,(627): 131-134.
    Magalhaes J R, Huber D M. Response of ammonium assimilation enzymes to nitrogen from treatments in different plant species. Journal of Plant Nutrition, 1991, 14 (2): 175-185.
    Mahmood T, Kaiser W M. Growth and solute composition of the salt-tolerant kallar grass [Leptochloa fusca (L.) Kunth] as affected by nitrogen source. Plant and soil, 2003, 252 (2): 359-366.
    Masawaki T, Kishimoto H, Tone S. Analysis of volume and solute fluxes in separation of amino acids using a negatively charged membrane under pressure gradient. J. Chem. Eng., 1992, 25 (6): 708-715.
    Muller B, Touraine B. Inhibition of NO3" uptake by various phloem-translocated amino acids in soybean seedlings. Journal of Experimental Botany, 1992, 43 (250): 617-623.
    Nasholm T, Ekblad A, Nordin R, et al. Boreal forest plants take up organic nitrogen. Nature, 1998, 392 (6679): 914-916.
    Nasholm T, Huss-Danell K, Hogberg P. Uptake of organic nitrogen in the field by four agriculturally important plant species. Ecology, 2000, 81 (4):1155-1161.
    Nazoa P, Vidmar J J, Tranbarger T J, et al. Regulation of the nitrate transporter gene AtNRT2.1 in Arabidopsis thaliana: responses to nitrate, amino acids and developmental stage. Plant Molecular Biology, 2003, 52 (3): 689-703.
    Nordin A, Hogberg P, Nasholm T. Soil nitrogen form and plant nitrogen uptake along a boreal forest productivity gradient. Oecologia, 2001, 129 (1): 125-132.
    Osorio N W, Shuai X, Miyasaka S, et al. Nitrogen level and form affect taro growth and nutrition. HortScience, 2003, 38 (1): 36-40.
    Padgett P E, Leonard R T. Free amino acid levels and the regulation of nitrate uptake in maize cell suspension cultures. Journal of Experimental Botany, 1996, 47 (300): 871-883.
    Persson J, Hogberg P, Ekblad A, et al. Nitrogen acquisition from inorganic and organic sources by boreal forest plants in the field. Oecologia, 2003, 137 (2): 252-257.
    Rao T P, Ito O, Matsunga R. Differences in uptake kinetics of ammonium and nitrate in legumes and cereals. Plant and Soil, 1993,154 (1): 67-72.
    Redhaiman K N A. Nitrate accumulation and metabolism in lettuce cultivars as influenced by ammonium:nitrate ratio in recirculating nutrient solution. Indian Journal of Agricultural Research, 2001, 35 (4): 219-225.
    Sagi M, Dovrat A, Kipnis T, et al. Nitrate teductase, phosphoenolpyruvate carboxylase, and glutamine sunthetase in annual ryegrass as affected by affected by salinity and nitrogen. Journal of Plant Nutrition, 1998, 21 (4): 707-723.
    Samuelson M E, Ohlen E, Lind M, et al. Nitrate regulation of nitrate uptake and nitrate reductase expression in barley grown at different nitrate: ammonium ratios at constant relative nitrogen addition rate. Physiologia Plantarum, 1995, 94 (2): 254-260.
    Santamaria P, Elia A, Serio F, et al. Comparison between nitrate and ammonium nutrition in fennel, celery, and Swiss chard. Journal of Plant Nutrition, 1999, 22 (7): 1091-1106.
    Santamaria P, Elia A. Producing nitrate-free endive heads: effect of nitrogen form on growth, yield, and ion composition of endive. Journal of the American Social Horticultural Science, 1997, 122(1): 140-145.
    Saravitz C H, Chaillou S, Musset J, et al. Influence of nitrate on uptake of ammonium by nitrogen-depleted soybean: is the effect located in roots or shoots? Journal of Experimental Botany, 1994,45 (280): 1575-1584.
    Sarwar M, Frankenberger W T Jr. Influence of L-tryptophan and auxins applied to the rhizosphere on the vegetative growth of Zea mays L. Plant and Soil, 1994, 160 (1): 97-104.
    Scaife A, Schloemer S. The diurnal pattern of nitrate uptake and reduction by spinach (Spinacia oleracea). Annals of Botany, 1994, 73 (3): 337-343.
    Serio F, Elia A, Signore A, et al. Influence of nitrogen form on yield and nitrate content of subirrigated early potato. Journal of the Science of Food and Agriculture, 2004, 84 (11): 1428-1432.
    Sivasankar S, Rothstein S, Oaks A. Regulation of the accumulation and reduction of nitrate by nitrogen and carbon metabolites in maize seedlings. Plant Physiology, 1997, 114 (2): 583-589.
    Sova V, Szilasi J. Application of industrial autofocusing in the purification of lysine. Study Biophys, 1987,119 (1-3): 207-209.
    Stancheva I, Dinev N. Response of wheat and maize to different nitrogen sources: II. Nitrate reductase and glutamine synthetase enzyme activities, and plastid pigment content. Journal of Plant Nutrition, 1995,18 (6): 1281-1290.
    Stratton M L, Good G L, Barker A V. The effects of nitrogen source and concentration on the growth and mineral composition of privet. Journal of Plant Nutrition, 2001, 24 (11): 1745-1772.
    Tal A B, Aloni B, Karni L, et al. Nitrogen nutrition of greenhouse pepper. II . Effects of nitrogen concentration and NO_3:NH_4 ratio on growth, transpiration, and nutrient uptake. HortScience, 2001,36(7): 1252-1259.
    Thornton B. Inhibition of nitrate influx by glutamine in Lolium perenne depends upon the contribution of the HATS to the total influx. Journal of Experimental Botany, 2004, 55 (397): 761-769.
    Troelstra S R, Wagenaar R, Smant W. Nitrogen utilization by plant species from acid heathland soils II. Growth and shoot/root partitioning of NO3" assimilation at constant low pH and varying NO_3~-/NH_4~+ ratio. Journal of Experimental Botany, 1995,46 (290): 1113-1121.
    Vaast P, Zasoski R J, Bledsoe C S. Effects of solution pH, temperature, nitrate/ammonium ratios, and inhibitors on ammonium and nitrate uptake by Arabica coffee in short-term solution culture. Journal of Plant Nutrition, 1998, 21 (7): 1551-1564.
    Van der Boon J, Steenhuizen J W, Steingrover E G, et al. Growth and nitrate concentration of lettuce as affected by total nitrogen and chloride concentration, NO3/NH4 ratio and temperature of reciculating nutrient solution. Journal of Horticultural Science, 1990, 65 (3): 309-321.
    Vidmar J J, Zhou D, Siddiqi M Y, et al. Regulation of high-affinity nitrate transporter genes and high-affinity nitrate influx by nitrogen pools in roots of barley. Plant Physiology, 2000, 123 (1):307-318.
    Villa M S, Gonzalez G A, Torres J L T, et al. Effect of the NH_4/NO_3 ratio in GS and PEPCase activities and in day matter production in wheat. Journal of Plant Nutrition, 1992, 15 (11): 2545-2557.
    Vincentz M, Moureaux T, Leydecker M T, et al. Regulation of nitrate and nitrite reductase expression in Nicotiana plumbaginifolia leaves by nitrogen and carbon metabolites. Plant Journal, 1993, 3(2): 315-324.
    Wang Z H, Li S X. Effect of nitrogen and phosphorus fertilization on plant growth and nitrate accumulation in vegetables. Journal of Plant Nutrition, 2004, 27 (3): 539-556.
    Weigelt A, King R, Bol R, et al. Inter-specific variability in organic nitrogen uptake of three temperate grassland species. Journal of Plant Nutrition and Soil Science, 2003, 166 (5): 606-611.
    Welch R M. The impact of mineral nutrients in food crops on global human health. Plant and Soil, 2002, 247(1): 83-90.
    Wu L H, Mo LY, Fan Z L, et al. Absorption of glycine by three agricultural species under sterile sand culture conditions. Pedosphere, 2005, 15 (3): 286-292.
    Zahir Z A, Arshad M, Azam M, et al. Effect of an auxin precursor tryptophan and Azotobacter inoculation on yield and chemical composition of potato under fertilized conditions. Journal of Plant Nutrition, 1997, 20 (6): 745-752.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700