混合动力工程车辆自动变速换挡策略及控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程车辆是进行基础建设作业的重要装备,在国民经济建设中发挥着重要作用。工程车辆采用混合动力技术可以有效改善发动机燃油经济性,改善排放,提高系统能量利用率,降低油耗。自动变速技术可以实现工程车辆自动换挡控制,能够有效减轻驾驶员操作强度,提高作业质量和作业效率,改善换挡品质。近年来,为进一步节能减排,同时提高车辆的动力性和驾驶舒适性,多种车辆相继采用混合动力技术结合自动变速技术,作为交叉领域的混合动力自动变速技术逐渐成为研究的热点。二者的结合能够实现动力传动系统的高效工作,改善车辆经济性和动力性,因此研究混合动力工程车辆自动变速技术具有重要的意义。工程车辆一边行驶一边作业,由于作业环境复杂,其作业载荷波动频繁剧烈,由于负载工况、工作模式、控制系统等方面的不同,汽车领域的相关共性技术不能直接应用于工程车辆。目前对混合动力工程车辆自动变速技术的研究还处于探索阶段。
     本文结合教育部高等学校博士学科点专项科研基金资助课题重度混合动力车辆自动变速技术研究(20120061110023),以并联式混合动力工程车辆为研究对象,以改善燃油经济性、提高能量利用率、改善动力输出、减轻驾驶员操作强度、提高作业质量和效率、改善换挡品质为目标,结合其工况特点、系统结构、参数优化匹配及能量管理控制策略等,深入研究混合动力工程车辆的自动变速换挡控制策略及控制方法。本文的研究工作主要包括以下几个方面:
     1)根据混合动力工程车辆的系统结构,研究了系统参数优化匹配方法。建立了混合动力系统主要元件的数学模型以及车辆动力学模型,采用理论公式和经验公式相结合来描述其性能。提出采用从整体到局部最优的方法对系统主要元件进行参数匹配,使各元件与负载工况相匹配,提高系统能量利用率,降低装机功率及成本。在此基础上,提出采用改进粒子群优化算法优化参数匹配,提高参数匹配效果。以5吨装载机为例,实现了参数匹配方法和优化算法,参数匹配效果良好。
     2)研究了混合动力工程车辆的能量管理控制策略。首先提出了混合动力工程车辆工况识别方法,根据系统需求转矩对混合动力系统进行模式划分。提出了基于模糊逻辑的转矩分配控制策略,调控发动机工作在最优效率转矩曲线附近,同时保证储能元件的充放电平衡。提出驾驶员意图系数的概念,并基于模糊逻辑识别驾驶员意图,根据驾驶员意图系数实现发动机转速控制。提出采用瞬时优化算法提高节能效果,以综合效率最优为目标建立了优化模型。台架试验表明,转矩控制策略能够控制发动机工作在最优效率转矩曲线附近,通过识别驾驶员意图控制发动机目标转速,改善了燃油经济性,对比传统工程车辆节能4.94%。瞬时优化算法能够进一步改善燃油经济性,降低油耗,对比传统工程车辆节能10.08%。
     3)研究了混合动力工程车辆的自动变速换挡规律和控制方法。以“发动机转速、车速和动力分流系数”为换挡控制参数,提出了以车辆加速度最优为目标的动力性换挡规律,以行走系统工作效率最优为目标的经济性换挡规律,和通过驾驶员意图系数将二者相结合的综合换挡规律。研究了混合动力工程车辆智能换挡控制理论,提出基于BP神经网络的智能换挡控制策略和方法,采用L-M算法克服BP神经网络收敛慢、存在局部最小值的缺点。台架试验表明,动力性、经济性、综合和神经网络换挡规律能够合理准确实现各自换挡目标,液力变矩器平均效率分别可达70.8%、73.6%、73.6%和73.2%,有效提高了系统效率和能量利用率,具有较好的经济性和动力性。
     4)搭建了国内第一个混合动力工程车辆自动变速试验台。为进行混合动力工程车辆自动变速台架试验,设计开发了基于CAN总线网络的混合动力工程车辆能量管理控制系统和混合动力工程车辆自动变速控制系统。通过台架试验验证了所提出的能量管理控制策略和自动变速理论的正确性和适用性。
     理论和试验研究表明,在混合动力工程车辆上采用自动变速技术,能够有效提高传动系统效率和能量利用率,减小换挡冲击,改善换挡品质,同时具有较好的动力性能和经济性,控制效果良好。
Construction vehicles are important equipment, which play an important role in nationaleconomic construction. Studies have shown that the hybrid power technology caneffectively improve engine fuel economy and system energy efficiency, improve emissionand reduce fuel consumption. Automatic transmission technology can realize automaticshift control in construction vehicles, which effectively reduces the pilot operation intensityand improves the operation quality and efficiency. In recent years, for further energy-savingand emission reduction, improving vehicle dynamic performance and driving comfort at thesame time, a variety of vehicles have adopted hybrid technology combined with automatictransmission technology. Automatic transmission technology with hybrid technology hasbecame a hotspot. The construction vehicles do works while driving, due to the complexityof operating environment, the operating load fluctuates frequently and violently.Due to thedifferences in load condition, work mode, control system, related technologies inautomobile industry cannot be directly applied to construction vehicle. The study ofautomatic transmission technology for hybrid construction vehicle (HCV) is still in theexploratory stage at present.
     This research was supported by the Specialized Research Fund for the Doctoral Programof Higher Education of China (SRFDP)"Research on Severe Hybrid Vehicle AutomaticTransmission Technology"(Grant No.20120061110023). The parallel HCV was as researchobject, to improve fuel economy and energy efficiency, improve power performance, reducework intensity, improve operation quality and efficiency, improve shift quality, combinedwith the working characteristics, system structure, parameters optimization matching andenergy management control strategy, the automatic shift strategy and control method werein-depth studied. The main research works of this paper include the following aspects:
     1) System parameters matching method was researched according to the structure of HCV.Math models of main components of hybrid system and vehicle dynamic model wereanalyzed and established, the combination of theoretical and empirical formulas was used todescribe their characteristic. From overall optimum to local optimum, the main components’parameters were matched to match load conditions, improve energy efficiency, and reduceinstalled cost and power. Improved particle swarm optimization was used in optimizingparameters matching to improve parameters matching effect. Taking5tons loader as object,parameters matching method achieved good results.
     2) Energy management control strategy for HCV was studied. Identification method ofHCV’s working conditions was proposed according to the system needed torque. Torquedistribution control strategy based on fuzzy logic was proposed, which could control theengine work around optimal efficiency torque curve, and ensure balanced charging anddischarging of energy storage elements. Based on fuzzy logic, a driver's intention coefficientwas defined to identify the driver's intention, and the engine target speed was controlledbased on the coefficient. Instantaneous optimization was proposed to improveenergy-saving, an optimization model was established for the target of overall optimalefficiency. Experimental results show that the torque distribution control could ensure theengine work in the vicinity of the optimal efficiency torque curve. The hybrid systemreduced4.94%fuel consumption compared to traditional construction vehicle.Instantaneous optimization could further improve fuel economy, which reduced10.08%fuelconsumption.
     3) Automatic shift schedules and control methods applicable for HCV were researched."Engine speed, vehicle speed and power distribution coefficient" were used as the shiftcontrol parameters. Dynamic shift schedule with the optimal vehicle acceleration as target,economical shift schedule with travel system optimal efficiency as target, and compositiveshift schedule combining the two schedules through the driver’s intention coefficient wereproposed. Intelligent shift control theory for HCV was researched, and intelligent shiftcontrol strategy and method based on BP neural networks were proposed.Levenberg-Marquardt algorithm was used to overcome the disadvantages of BP neuralnetworks: slow convergence and local minimum. Experimental results show under thedynamic, economical, compositive and intelligent shift schedule, it shifted accurately andproperly, achieved shift target under different schedules. The average efficiency of hydraulictorque converter were up to70.8%,73.6%,73.6%and73.2%respectively, which improvedsystem efficiency and energy utilization and with good economic and dynamicperformance.
     4) The first HCV automatic shift test bench of China was established. For bench test,energy management control system based on CAN bus network and automatic shift controlsystem were designed and developed. The proposed energy management control strategyand automatic shift theory were verified through bench test.
     Theoretical and experimental researches show that HCV with automatic shift technologyturn out to be more efficient, with more utilization of energy and less shift shock, whichimproves shift quality and is more economic and dynamic. Automatic shift technology for HCV has preferable applicability and practical value.
引文
[1]尚海波.“十一五”及2011铲土运输机械市场分析报告及展望[J].建设机械技术与管理,2012(1):70-76.
    [2]许玉明,李爱峰,李光.2012年中国装载机市场分析及前景展望[J].机械管理开发,2013(3):184-187.
    [3] Hui Sun,Junqing Jing. Research on the system configuration and energy control strategyfor parallel hydraulic hybrid loader [J]. Automation in Construction,2010,19(2):213-220.
    [4]李天宇,赵丁选,康怀亮,等.并联式混合动力装载机的参数匹配[J].吉林大学学报(工学版),2013,44(04):916-921.
    [5]毛志君,黄勇.低碳经济下的工程机械的排放标准对比分析[J].建设机械技术与管理,2011(9):131-133.
    [6]邹乃威,章二平,韩平,等.混合动力装载机节能途径分析及结构方案探讨[J].工程机械,2012,43(12):43-51.
    [7]赵丁选,李天宇,康怀亮,等.混合动力工程车辆自动变速技术[J].吉林大学学报(工学版),2014,44(02):358-363.
    [8]康怀亮.工程车辆三参数动力节能换挡规律研究[D].长春:吉林大学机械科学与工程学院,2012.
    [9]王康,黄宗益.装载机变速器的换挡操纵[J].工程机械,2000(2):18-21.
    [10]王学峰.工程机械液力机械传动变速系统智能控制研究[D].长春:吉林大学机械科学与工程学院,2002.
    [11]赵昱东.国外轮式装载机的新进展[J].建筑机械化,2000(4):5-7.
    [12]陈宁.工程车辆节能换挡规律智能控制方法研究[D].长春:吉林大学机械科学与工程学院,2005.
    [13]董翔宇,陈慧岩,李春芾.重型商用混合动力车自动变速技术综述[J].机械传动,2010,34(12):75-79.
    [14]谢迪.混合动力液压挖掘机动力系统研究[D].杭州:浙江大学机械科学与工程学院,2008.
    [15] Levent U G kdere, Khalid Benlyazid, Roger A Dougal, Enrico Santi, Charles W Brice.A virtual prototype for a hybrid electric vehicle[J]. Mechatronics,2002,12(4):575-593.
    [16] Bernd M Baumann, Gregory Washington, Bradley C Glenn, Giorgio Rizzoni.Mechatronic design and control of hybrid electric vehicles[J]. IEEE/ASMETransactions on Mechatronics,2003,5(1):58-72.
    [17] Tianliang Lin, Qingfeng Wang, Baozan Hu. Development of hybrid powered hydraulicconstruction machinery [J]. Automation in Construction,2010,19(1):11-19.
    [18] Sergio Grammatico, Andrea Balluchi, Ettore Cosoli. A series-parallel hybrid electricpowertrain for industrial vehicles[C].2010IEEE Vehicle Power and PropulsionConference, Lille, France,2010.
    [19]李燕.新能源汽车发展趋势研究与探讨[J].南宁职业技术学院学报,2012,(003):93-96.
    [20]王庆丰,张彦廷,肖清.混合动力工程机械节能效果评价及液压系统节能的仿真研究[J].机械工程学报,2005(12):135-140.
    [21] Peter A.J. Achten. A serial hydraulic hybrid drive train for off-road vehicles[J].PROCEEDINGS OF THE NATIONAL CONFERENCE ON FLUID POWER,2008,(51):515.
    [22]混合动力轮式装载机在沃尔沃问世[R].建筑机械化,2008(05):16.
    [23] Dipl-Ing S Hanke, Dipl-Ing K Hartmann, Dipl-Ing T-F Minssen, Dipl-Wirtsch-Ing LThielke, Dipl-Ing J Untch. Trends bei Bau-und Erdbewegungsmaschinen[R]. Nachlesezur bauma2013.
    [24]赵丁选,巩明德,张志文,等.信息化对工程机械传动技术的影响[J].液压与气动,2013(009):1-8.
    [25]徐晓美,唐倩倩,王哲.混合动力装载机的研究现状及发展趋势[J].工程机械,2012,(002):53-57.
    [26]邹乃威,章二平,于秀敏,等.同轴并联混合动力装载机控制策略的研究[J].中国工程机械学报,2012,(002):132-138.
    [27]孟庆勇,孙辉.混合动力工程机械闪耀baumaChina2010展[J].建设机械技术与管理,2011,(01):85-86.
    [28]宋金生.目前的几种汽车自动变速器及发展前景[J].云南交通科技,2000,16(3):3-4.
    [29] Fereydoon Jamzadeh, Tung-Ming Hsieh, Keith Struthers. Dynamic simulationmodeling for heavy duty automatic transmission control development[J]. SAETechnical Paper,1992.
    [30] Shinji Wada, Toshiaki Tateno, Shigeki Fukushima. Development of automatictransmission with electronic controlled mechanical clutch for heavy-duty vehicles[C].International Pacific Conference on Automotive Engineering,4th,1987, Melbourne,Australia.
    [31] Park Munu, Park, Nohgill. Development of new continuously variable transmission forelectric bicycles[C]. SAE International,400Commonwealth Drive, Warrendale, PA15096-0001, United States.
    [32] Syed T Razzacki, Jonathan E Hottenstein. Synchronizer design and development forDual Clutch Transmission (DCT).2007,01(0114).
    [33]焦生杰等.工程机械机电液一体化[M].北京:人民交通出版社,2000.
    [34]邵宪琴,楼东.国外装载机的技术进步和发展趋势[J].建筑机械,1995(8):32-35.
    [35]李莺莺,邵善锋,李学忠,等.基于智能控制的装载机自动换挡策略[J].机械工程学报,2009,45(8):216-220.
    [36] Hiroshi Yamaguchi, Yasushi Narita, Hiroshi Takahashi, Yuji Katou. Automatictransmission shift schedule control using fuzzy logic[J]. Training,1993,2002:02-22.
    [37]朱振宇.工程车辆自动变速智能控制系统试验研究[D].长春:吉林大学机械科学与工程学院,2004.
    [38]崔功杰.工程车辆三参数最佳换挡规律及控制方法研究[D].长春:吉林大学机械科学与工程学院,2009.
    [39]张志义.工程车辆三参数模糊自动换挡规律研究[D].长春:吉林大学机械科学与工程学院,2006.
    [40]葛安林.车辆自动变速理论与设计[M].北京:机械工业出版社,1993.
    [41]彼得罗夫,路兆风译.汽车传动系自动操纵的理论基础[M].北京:人民交通出版社,1963.
    [42]葛安林,李焕松,武文治,等.动态三参数最佳换档规律的研究[J].汽车工程,1992,14(4):239-247.
    [43] Lu Xi, Xu Xiangyang, Liu Yanfang. Simulation of Gear-shift Algorithm for AutomaticTransmission Based on MATLAB[C]. World Congress on Software Engineering,2009:476-480.
    [44]翟涌,杜晓明,陈慧岩,刘海鸥. ZL50装载机自动变速操纵系统控制策略的研究[J].北京理工大学学报,2004,(2):113-116.
    [45]常绿.基于实时工况的装载机智能换挡规律[J].农业工程学报.2009,25(03):69-73.
    [46] Gong Jie, Zhao Dingxuan. Study on shift schedule and simulation of automatictransmission[J]. Chinese Journal of Mechanical Engineering,2001,14(3):250-253.
    [47]龚捷,赵丁选,陈鹰,等.工程车辆自动变速器的节能换挡规律研究[J].机械工程学报,2004,40(3):84-87.
    [48] Gong Jie, Zhao Ding-Xuan, Chen Ying. Study on shift schedule saving energy ofautomatic transmission of ground vehicles[J]. Journal of Zhejiang University SCIENCE,2004,(7):878-883.
    [49]王继新,龚大鹏,张英爽.利用三参数自动换挡策略的轮式装载机传动系建模与遗传算法优化[J].吉林大学学报(工学版),2011,41(S1):27-33.
    [50]龚捷,赵丁选,陈鹰,等.工程车辆自动变速器的节能换挡规律研究[J].机械工程学报,2004,40(3):84-87.
    [51]卢新田.履带式推土机自动变速控制技术的研究[D].长春:吉林大学机械科学与工程学院,1999.
    [52]张勇.车辆自动变速系统自适应模糊控制研究[D].长春:吉林大学机械科学与工程学院,2000.
    [53]赵克利.提高工程车辆智能变速性能的综合控制研究[D].长春:吉林大学机械科学与工程学院,2004.
    [54]申水文,葛安林.基于二参数换档规律的模糊换档技术[J].汽车技术,1998,1:9-12.
    [55]田力威,许纯新,赵丁选.轮式装载机模糊换档策略[J].中国公路学报,1999,1:112-117.
    [56] H.-G.Weil, G.Probst, F.Graf. Fuzzy expert system for automatic transmission controlapplications[C]. The1st IEEE Conf. Fuzzy Systems, San Diego, CA, USA,1992:716-721.
    [57] Koki Hayashi, Yoshinao Shimizu, et al. Neuro fuzzy transmission control forautomobile with variable loads[J]. IEEE Transactions on Control Systems Technology,1995,3(1):49-53.
    [58] Bastian, S.Tano, T.Oyama, et al. Fuzzy logic automatic transmission expert system[C].Proceedings of1995IEEE International Conference on Fuzzy Systems, Yokohama,Japan,1995:5-6.
    [59] J Yi, X-L Wang, Y-J Hu, C-G Li. Modeling and simulation of a fuzzy controller ofautomatic transmission of a tracked vehicle in complicated driving conditions[J].Journal of Automobile Engineering,2007,221(D):1259-1272.
    [60] WU Guangqiang, ZHANG Deming. Shifting Rule Modification Strategy of AutomaticTransmission Based on Driver-vehicle-road Environment[J]. Chinese journal ofmechanical engineering,2010,23(3):1-7.
    [61] Zhao Dingxuan, Cui Gongjie, etc. Automatic Shift with4-parameter of ConstructionVehicle based on Neural Network Model[C].2008IEEE International Conference onRobotics, Automation, Mechanics.2008.9:688-692.
    [62] Zhang Hongyan, Zhao Dingxuan,Tan Xinxing. Four-parameter automatic transmissiontechnology for construction vehicle based on Elman recursive neural network[J].Chinese Journal of Mechanical Engineering,2008.21(1):20-24
    [63]王卓,赵丁选.工程车辆自动变速器换挡的神经网络控制系统[J].西安交通大学学报,2002,36(3):274-277.
    [64] Antti Lajunen, Jussi Suomela. Evaluation of Energy Storage System Requirements forHybrid Mining Loader [J]. IEEE Transactions on Vehicular Technology,2012,61(8):3387-3393.
    [65] Antti Lajunen. Evaluation of the benefits of using dual-source energy storage in hybridelectric vehicles [C]. Vehicle Power and Propulsion Conference (VPPC),2010IEEE,2010:1-6.
    [66]张正飞.装载机并联式混合动力系统控制策略研究[D].长春:吉林大学机械科学与工程学院,2013.
    [67] Nai Wei Zou, Qun Liang Dai, Yuan Hua Jia, Wei Zhang, You Cun Ren. Modeling andSimulation Research of Coaxial Parallel Hybrid loader [C]. Applied Mechanics andMaterials,2010,29:1634-1639.
    [68] MNasir Uddin, MA Abido, MAzizur Rahman. Development and implementation of ahybrid intelligent controller for interior permanent-magnet synchronous motor drives[J]. IEEE Transactions on Industry Applications,2004,40(1):68-76.
    [69]林添良.混合动力液压挖掘机势能回收系统的基础研究[D].杭州:浙江大学机械科学与工程学院,2011.
    [70]王冬云.混合动力挖掘机动力总成及参数匹配方法研究[D].杭州:浙江大学机械科学与工程学院,2009.
    [71]肖清.液压挖掘机混合动力系统的控制策略与参数匹配研究[D].浙江:浙江大学机械与能源工程学院,2008.
    [72]林潇,管成,潘双夏,等.并联式混合动力液压挖掘机参数匹配方法[J].农业机械学报,2009,40(6):28-32.
    [73]吴庆玲.装载机液力机械变速器性能及传动系匹配研究[D].长春:吉林大学机械科学与工程学院,2009.
    [74]肖清,王庆丰.液压挖掘机混合动力系统的参数匹配方法[J].中国公路学报,2008,21(1):121-126.
    [75]高梦熊.地下装载机[M].北京:冶金工业出版社,2011.
    [76]彭莫,刁增祥.汽车动力系统计算匹配及评价[M].北京:北京理工大学出版社,2009.
    [77] J Kennedy, R Eberhart. Particle swarm optimization[A]. IEEE Neural NetworksCouncil.1995IEEE International Conference on Neural Networks[C]. Perth: theUniversity of Western Australia,1995.1942-1948.
    [78]李丽,牛奔.粒子群优化算法[M].北京:冶金工业出版社,2009.
    [79]陈水利,蔡国榕,郭文忠,等. PSO算法加速因子的非线性策略研究[J].长江大学学报(自科版),2007,4(4):1-4,16.
    [80]黄翀鹏,熊伟丽,徐保国. PSO算法中惯性权值的非线性递减策略研究[A].2007中国控制与决策学术年会论文集[C].2007.
    [81]吴剑,张承慧,崔纳新.基于粒子群优化的并联式混合动力汽车模糊能量管理策略研究[J].控制与决策,2008,23(1):46-50.
    [82]赵丁选,张志文,李天宇,等.并联式混合动力装载机模糊逻辑控制策略[J].吉林大学学报(工学版),2014,44(04).
    [83]李晓甫.桥间分配四驱混合动力电动汽车能耗优化控制策略研究[D].广州:华南理工大学机械与汽车工程学院,2012.
    [84] R. Kumar, M. Ivantysynova, K. Williams. Study of energetic characteristics in powersplit drives for on highway trucks and wheel loaders [J]. Development,2007,2006:10-31.
    [85]强国斌,李忠学,陈杰.混合电动车用超级电容能量源建模[J].能源技术,2005,26(2):58-61.
    [86]朱经昌,魏宸官,郑慕侨.车辆液力传动[M].北京:国防工业出版社,1982.
    [87]陈东升,项昌乐,刘辉.液力变矩器的动态特性和动力学模型研究[J].中国机械工程,2002,13(11):913-916.
    [88]黄宗益,徐希民.铲土运输机械设计[M].北京:机械工业出版社,1989.
    [89]杨宏亮,陈全世.混联式混合动力汽车控制策略研究综述[J].公路交通科技,2002,19(1):103-107.
    [90]于秀敏,曹珊,李君,等.混合动力汽车控制策略的研究现状及其发展趋势[J].机械工程学报,2006,42(11):10-16.
    [91]浦金欢,严隽琪,殷承良.并联式混合动力汽车控制策略的仿真研究[J].系统仿真学报,2005,17(7):1543-1547.
    [92] Kimura A, Abe T, Sasaki S. Drive force control of a parallel-series hybrid system [J].JSAE Review,1999,20(3):337-341.
    [93]杜波.单电机重度混合动力汽车模式切换与AMT换挡平顺性控制策略研究[D].重庆:重庆大学机械工程学院,2012.
    [94]张泰,葛安林,郭立书,等.基于车辆负荷度的换挡规律研究[J].农业机械学报,2004,35(3):9-12.
    [95]刘洪波,雷雨龙,傅尧,等.基于转矩的车辆负载识别方法[J].吉林大学学报(工学版),2012,42(5):1107-1112.
    [96] Hong S Bae, Jihan R, Christian GJ. Road grade and vehicle parameter estimation forlongitudinal control using GPS[A].IEEE Conference on Intelligent TransportationSystems Conference Proceedings [C].2001.
    [97] D McNeill. Fuzzy logic. The revolutionary computer technology that is changing ourworld [M]. Simon&Schuster,1994.
    [98] B Baumann, G Rizzoni, G Washington. Intelligent control of hybrid vehicles usingneural networks and fuzzy logic [J]. Training,1998,2013:05-12.
    [99] Schouten NJ, Salman MA, Kheir NA. Energy management strategies for parallelhybrid vehicles using fuzzy logic [J]. Control Engineering Practice,2002,11(2):171-177.
    [100] Schouten NJ, Salman MA, Kheir NA. Fuzzy logic control for parallel hybridvehicles[J]. Control Systems Technology, IEEE Transactions on,2002,10(3):460-468.
    [101] Kheir NA, Salman MA,Schouten NJ. Emissions and fuel economy trade-off forhybrid vehicles using fuzzy logic [J]. Mathematics and Computers in Simulation,2004,66(2):155-172.
    [102] H Zhong, F Wang, GQ Ao, JX Qiang, L Yang, B Zhuo, XJ Mao.An optimal torquedistribution strategy for an integrated starter-generator parallel hybrid electric vehiclebased on fuzzy logic control [J]. Proceedings of the Institution of Mechanical Engineers,Part D: Journal of Automobile Engineering,2008,222(1):79-92.
    [103] Fazeli AM, Ali Nabi, Salmasi FR, Amiri M.Development of energy managementsystem for A parallel hybrid electric vehicle using fuzzy logic [C]. ASME8th BiennialConference on Engineering Systems Design and Analysis, American Society ofMechanical Engineers,2006:151-156.
    [104]胡宇辉,席军强,陈慧岩.基于CAN总线的换挡过程控制技术[J].机械工程学报,2006,42:209-213.
    [105]程军,崔继波,苟凯英.车辆控制系统CAN总线通信的实施方法[J].汽车工程,2001,23(5):300-305.
    [106]孙文涛,孙瀚文,龚进峰.总线技术在自动变速器换挡控制中应用的试验研究[J].汽车工程,2011,33(4):325-329.
    [107]董悦航.基于AMT的混合动力汽车电动变速驱动单元(E.T.Driver)控制策略研究[D].上海:上海交通大学机械与动力工程学院,2008.
    [108] Lethaus F, Baumann MRK, K ster F, et al.recognition to predict driver intent[A].Adaptive and Natural Computing Algorithms[C]. Berlin: Springer Berlin Heidelberg.2011:140-149.
    [109] Soon-il Jeon, Yeong-il Park, Jang-moo Lee, et al. Multimode driving control of aparallel hybrid electric vehicle using driving pattern recognition[J]. Journal of dynamicsystems, measurement, and control,2002,124(1):141-149.
    [110]彭志远.单电机ISG型AMT重度混合动力汽车能量管理策略研究[D].重庆:重庆大学机械工程学院,2012.
    [111]陈长同.并联混合动力客车AMT换档策略的研究[D].长春:吉林大学汽车工程学院,2011.
    [112]舒红.并联型混合动力汽车能量管理策略研究[D].重庆:重庆大学机械传动国家重点实验室,2008.
    [113]宋光辉.并联式混合动力客车瞬时优化控制策略研究[J].客车技术与研究,2009,5:14-17.
    [114]黄援军,殷承良,张建武.并联式混合动力城市客车最优转矩分配策略[J].上海交通大学学报,2009,43(10):1536-1540.
    [115] Kim C, Goong E N, Lee S, et al. Fuel economy optimization for parallel hybridvehicle with CVT [J]. SAE transactions,1999,108(2):2161-2167.
    [116] Baraszu R C,Cilanek S R. Torque fill-in for an automated shift manual transmission ina parallel hybrid electric vehicle[A]. Proceeding of the American ControlConference[C]. IEEE.2002:1431-1436.
    [117] Lee Hyeoun-Dong,Sul Seung-Ki,Cho Han-Sang, et al. Advanced Gear shifting andClutching Strategy for a Parallel-hybrid Vehicle[J].Industry Applications Magazine,IEEE,2000,6(6):26-32.
    [118]叶明,秦大同,刘振军.轻度混合动力AMT系统换挡品质控制[J].机械工程学报,2009,45(5):108-114.
    [119]叶心,秦大同,胡明辉,等.彭志远ISG型中度混合动力AMT汽车换挡综合控制[J].汽车工程,2011,33(9):798-804.
    [120] Han-Sang Jo, Yeong-Il Park, Jang-Moo Lee, et al. A development of an advanced shiftcontrol algorithm for a hybrid vehicles with automated manual transmission [J].International Journal of Heavy Vehicle Systems,2000,7(4):281-298.
    [121] Y Kim, S Sim, M Song, et al. Analysis of shift quality and acceleration lag forautomatic transmission based hybrid electric vehicle[J]. JSAE paper,2007,20078939.
    [122] H Lee, H Kim. Improvement in fuel economy for a parallel hybrid electric vehicle bycontinuously variable transmission ratio control[J]. Proceedings of the Institution ofMechanical Engineers, Part D: Journal of Automobile Engineering,2005,219(1):43-51.
    [123] A Haj-Fraj, F Pfeiffer. Optimal control of gear shift operations in automatictransmissions[J]. Journal of the Franklin Institute,2001,338(2):371-390.
    [124] Wang Wenbo. Dynamic powertrain system modeling and simulation with applicationsfor diagnostics design and control [D]. Wisconsin:University of Wisconsin-Madison,2000.
    [125]赵丁选,崔功杰,李东兵.工程车辆传动系统的换挡品质[J].江苏大学报(自然科学版),2008,29(5):386-389.
    [126] J Wheals, C Crewe, M Ramsbottom, et al. Automated Manual Transmissions-AEuropean Survey and Proposed Quality Shift Metrics [J]. PRACTICE,2002,2013:03-10.
    [127]张炳力,季明微,张友皇.自动变速器车辆换挡品质研究[J].中国公路学报,2012,25(3):141-146.
    [128]葛安林,沈波. AMT换挡品质的研究[J].汽车技术,2003,(2):43-45.
    [129]赵丁选,崔功杰,陈宁,等.基于BP神经网络的工程车辆四参数自动变速控制[J].吉林大学学报(工学版),2008,38(5):1091-1094.
    [130]陈宁,赵丁选,龚捷,等.工程车辆自动变速挡位决策的遗传径向基神经网络方法[J].吉林大学学报(工学版),2005,35(3):258-262.
    [131]张红彦,赵丁选,陈宁,等.基于遗传算法的工程车辆自动变速神经网络控制[J].中国公路学报,2006,19(1):117-121.
    [132]陈伟根,潘翀,云玉新,等.基于改进小波神经网络算法的电力变压器故障诊断方法[J].仪器仪表学报,2008,29(7):1489-1493.
    [133]代小红,王光利. L-M优化BP算法在短期负荷预测中的应用[J].计算机科学,2011,38(7):265-267.
    [134]张芸芸.基于紧致型小波神经网络的六脉波变频器故障诊断研究[D].焦作:河南理工大学电气工程与自动化学院,2011.
    [135]颜重光.两线制压力变送器[J].电子技术,1993,(11):491-494.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700