硅基薄膜高速沉积过程中的等离子体特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着太阳电池技术的发展,迫切要求进一步提高硅基薄膜材料与器件的性能,降低其制造成本。研究与生产硅基薄膜太阳电池普遍采用以等离子体增强化学气相沉积(PECVD)为核心工艺的技术路线,掌握等离子体特性是深入理解薄膜生长机理的关键之一,也是研究与制备高性能硅基薄膜材料及电池的基础。为此,本论文采用多种等离子体诊断技术,对高速沉积硅基薄膜过程中的甚高频等离子体的微观电学参数、宏观放电特性以及气体组分等进行系列测量;结合理论分析,探究工艺参数对等离子体特性的调控作用及其机理,以利于理解宏观工艺参数如何调控材料性能,深化高性能硅基薄膜材料及电池的研究。本论文的具体研究内容与创新点如下:
     1、电子碰撞是气体分解所需能量来源,所产生的各种离子种类、密度与沉积薄膜的质量密切相关。为此,本论文首先测量分析了电子温度、电子密度、离子密度以及等离子体电势等参数,研究了不同工艺条件下的等离子体中电子与离子的能量与密度的变化规律。发现:硅烷浓度的变化,导致了等离子体中离子种类的变化,使得电子温度与电子密度在一定的硅烷浓度下达到极值;而对等离子体电势的影响不大。功率增加或反应气压增大时,等离子体电势随之更负。气体总流量对等离子体参数的均匀性分布影响较大。在低流量条件下,整个电极上的电子温度更容易达到均匀分布;在高流量条件下,电子密度更容易达到均匀分布。在电极中心处,流量的变化对电子密度与电子温度的影响不明显;在电极边缘处,流量增大时,电子密度降低。
     离子的能量由等离子体电势确定,本论文首次利用电探针测量了反应气体等离子体电势的实时振荡波形,有助于了解离子的微观动力学机制。发现在氢气等离子体中,等离子体电势的振荡幅度不大,约为几十个毫伏。当气体中混入硅烷后,等离子体电势的振荡幅度明显增大,振荡的周期与幅度受到硅烷浓度的调制;在一定的硅烷浓度下,振荡周期达到最小值。同时,不同的硅烷浓度下,由于气体分解后的离子种类与密度的分布发生变化,而不同质量的离子对等离子体内电场与探针表面电场的响应有差异,导致振荡波形显著改变,即谐波含量发生改变。若能够建立合适的离子收集模型以及离子在电场中的运动模型,对上述等离子体电势的实时振荡波形进行拟合,则可定量的获得反应过程中的离子种类与数量,这有可能成为一种新的离子定量测量方法。
     2、对高气压下辉光等离子体的宏观放电特性进行了研究,对放电参数、等离子体电抗、系统的寄生电抗以及功率利用效率等进行了测量分析。建立了用于分析表征系统寄生电抗的四参数等效电路模型,并给出了求解模型参数的线性拟合方法。结合对PECVD系统的电气连接与腔室物理结构的详细分析,指出寄生电抗对VHF-PECVD系统性能具有显著影响,其来源包括腔室内的气盒、电极等引入的寄生电容、寄生电感,以及馈入电缆等引入寄生电容;而后者是不可忽略的。对系统各部分功率损耗进行的测量表明:真正用于等离子体辉光的功率只占到电源输出功率的10%以下;原因是较大的寄生电容导致了寄生电抗与匹配器功率损耗过多。为此,设计了新的气盒结构,有效降低了寄生电容,大幅提高了等离子体功率耦合效率,最高效率超过60%。
     通过测量与分析放电电压与放电电流的关系,发现等离子体能量耦合效率与具体放电模式相关。在高电极电压下,放电从α模式转变到γ模式,耦合效率得以提高。放电模式的改变还带来了硅烷分解率的区别。在γ模式下,硅烷分解更充分。在薄膜沉积中,可通过调整工艺参数,改变放电模式,使尽可能多的功率用于辉光放电,提高薄膜沉积速率上限。而放电模式的转变可通过监测等离子体的电抗特性加以判断。这种方法直观且易于施行,对提高反应气源的利用率以及系统的能量效率,改善薄膜沉积工艺,具有一定的指导意义。
     3、对辉光放电等离子体瞬态过程中的放电参数与气体分布进行了测量。辉光等离子体的电抗幅值与相位受反应气压与硅烷浓度的影响较大,辉光过程中由于工艺条件的漂移或者气体浓度的变化,将不可避免地导致等离子体电抗特性的不断变化。实时监测发现:在起辉的瞬间,等离子体区的硅烷发生局部耗尽。在辉光的初期,无反应空间内的硅烷向等离子体反应区反向扩散,导致此过程硅烷浓度不稳定。在此过程中放电电压、电流等等离子体放电参数也对应的发生较明显的瞬态变化。根据不同的气压、硅烷浓度、辉光功率等条件,该过程可能持续几秒到几分钟。达到稳定所需的时间随功率增加、气压降低以及气体流量提高而缩短;这说明:辉光开始阶段的不稳定过程是由放电参数与气体分布状态的相互影响导致的。因此,可通过实时测量宏观放电参数,间接监测等离子体内部的微观状态,提高工艺过程的可控性以及重复性。
     在此观察实测的基础上提出:采用后通硅烷法,以解决辉光初期的硅烷浓度不稳定问题。采用后通硅烷法时,硅烷通入相对于辉光开始的时间差,对辉光过程中的硅烷浓度以及放电参数的变化趋势有明显影响。基于此,监测硅烷浓度以及放电参数皆可较方便可靠的优化时间差参数。通过优化,使辉光初期的硅烷浓度有序变化,从而控制微晶硅薄膜的生长初期状态,进而改善了微晶硅薄膜的纵向结构以及电池的性能。
With the rapid development of solar cell technology, it is an urgent requirementto improve the performance of silicon-based thin film materials and solar cells withreduced cost. The technology of plasma enhanced chemical vapor deposition(PECVD) is commonly used in silicon thin film solar cell research and productionline.Therefore masteringthe characteristics of plasma in-depth is the key tounderstandthemechanism of thin film growth, whichis the fundamental to prepare high-performancesilicon-based thin film materials and solar cells. Soseveralplasma diagnostictechniques in this thesis were used tomeasure and analyze boththe micro-and themacro-discharge characteristics and gas composition of plasma excited by very highfrequency signal, which is used for high-rate deposition of silicon thin film process,to explore the process parameters effects on the regulation of plasma characteristicsand its mechanism.This work helps understandthe relationship between the processconditionsand the material properties, and would be beneficial to the growth of highperformance silicon thin film material and solar cell.Specific research and innovationof this thesis is as follows:
     1, the properties of deposited films are closely related to the ions and neutralradicals decomposed from gas molecule under impact with electrons. Therefore, theelectron temperature, electron density, ion density and the plasma potentialweremeasured and analyzed under vary process conditions, in order to study theenergy and density distribution of electrons and ions in plasma.We found that theplasma ion species changes with silane concentration variation, leading to significantchanges of electron temperature, electron density and plasma potential. While theelectron temperature and electron density reach a peak atthe certain silaneconcentration, the plasma potential changes a little with silane concentrationvariation.Plasma potential is increased with more discharged power or higher reactionpressure. And total gas flow rate affects a lot on the plasma parameter distribution.Atthe center of reaction region,flow rate effect on the electron density and electrontemperature is not obvious; at the edge of the electrode, the flow rate increases, the electron density reduces.At lower flow rate conditions, the electron temperature iseasier to achieve uniform distribution.
     Ion energy is decided by plasma potential, soreal-time oscillation waveform ofthe silane plasma potential is measured in this thesis using electrical probes for thefirst time, and we found in hydrogen plasma, the plasma potential oscillationamplitude is about dozens of millivolts. When mixed with silane gas, the plasmapotential oscillation amplitude is significantly increased, and period and amplitude ofthe oscillations is controlledby the silane concentration. The oscillation period of theminimum is got at certain silane concentration. Different silane concentrationchangeions distribution inkinds and density, resulting in the change of oscillation waveformin harmonic contentsignificantly, since ions with different mass actdifferently to theelectric field of plasma and electric field near the probe tip surface. Provided withsuitable ions collection model, and by fitting the oscillation waveform, ionic speciesand density maybe calculated quantitively, which may be one new method to measureions.
     2, macroscopic properties in high pressure glow discharge plasma werestudied.The discharge parameters, plasma impedance, system of a parasiticimpedance and power utilization efficiency were measured and analyzed.Weestablished four-parameter equivalent circuit model to characterizethe parasiticimpedance, and the method to solve model parameter was given.Based on theanalysis to the electrical connection and the physical structure of chamber, we pointedout that parasitic impedance has a significant impactionon the performance ofVHF-PECVD system, and the parasitic impedance consists of theparasiticcapacitance from chamber gas box, the parasitic inductance from electrodes, andtheparasitic capacitance from thepower feeding cable, while the lattercannot beignored. Power consuming measurement shows that the real power coupled to glowdischarge account for only less than10%, while most of the rest power output fromthe VHF power supply was wasted by matching network and parasitic impedance.One new gas distribution box with effectively reduced parasitic capacitance wasdesigned;which substantially increased the plasma power coupling efficiency and thehighest value of over70%.
     By measuring and analyzing the relationship between discharge voltage anddischarge current, we found that the plasma energy coupling efficiency is related tospecific discharge modes. High electrode voltageleads to the improvement ofcouplingefficiency by the transition ofdischargemode fromαto γ. The variation of dischargemodes also brought the different of silane decomposition rate, and more silane wasdecomposed byγdischarge. Duringthe film deposition, by adjusting the processconditions, changes in discharge mode, leading to more power coupled into glowingplasma, which improvesupper limit of thin film deposition rate. And the dischargemode transitioncan be found by monitoring plasma impedance, which is intuitive andeasy to beimplemented, with some instructive significance to improve the utilizationratio of reaction gas and the energy efficiency of the system, therefore to improve thefilm deposition process.
     3, the transient parameters and gas distribution of the glow dischargeplasmawere measured.We found that the impedance was influenced mainly byreaction pressure and silane concentration, and the drift of the process conditions orthe change of gas concentrations in the glow process will inevitably lead to thechanging characteristics of the plasma. Through real-time measurement, we foundthat the silane in the plasma regionlocally depletedinstantaneouslyafter the discharge.In the initial stage ofglow, silane out of the plasma region started to diffuse reverselyto take part in reaction, resulting in the instability of the silane concentration duringthis process. In this process, accompanied with the instability of the glow dischargeparameters, meanwhiledischarge voltage and current has also underwent a moresevere transient change. Depending on the different pressure, silane concentration,discharge power and other parameters, the process may last from a few seconds to afew minutes. The time required to reach the stable status shortenedwith the increasesof the power, the decreases of pressure as well as the increase of gas flow rate; Thisshowed that the instability of initial glowis a result of the mutual influence of thedischarge parameters and gas distribution, which means through real-timemeasurement of macroscopic discharge parameters, one can indirectly monitorplasma internal microscopic state, by which to improve the repeatability of theprocess.
     Delayed silane feeding method is proposed on the basis of the above observationand analysis, in order to solve the problem ofsilane concentration instability attheinitialglow. The time difference of delayed silane feeding method, which isbetween the silane input tick and discharge starting point, had a significant effect onthe silane concentration and the trend of the discharge parameters of the whole glowprocess. Based on this, it should be convenient and reliable to optimize the timedifference by monitoring either the silane concentration orthe discharge parameters.After optimization, by varying the initial silane concentration in order, the growth ofinitial state of microcrystalline silicon film has been controlled, and then thestructuralhomogenous of the microcrystalline silicon thin films as well as theoverallperformance has been improved.
引文
[1] BP. BP Statistical Review of World Energy June2011,2011
    [2] Stephan Singer. THE ENERGY REPORT-100%RENEWABLE ENERGY BY2050,2011
    [3] J. Meier,et al. Towards high-efficiency thin-film silcion solar cells with the "micromorph"concept. Soalr Energy Materials and Solar Cells,1997,49:35-44
    [4] J. Meier, R. Fluckiger, H. Keppner, et al. Complete microcrystalline p-i-n solarcell--Crystalline or amorphous cell behavior? Appl. Phys. Lett.,1994,65(7):860-862
    [5] D. L. Staebler,C. R. Wronski. Reversible conductivity changes in discharge-producedamorphous Si. Applied Physics Letters,1977,31(4):292-294
    [6] J. Meier,U. Kroll,E. Vallat-Sauvain, et al. Amorphous solar cells, the micromorph conceptand the role of VHF-GD deposition technique. Solar Energy,2004,77(6):983-993
    [7] Baojie Yan, Guozhen Yue, Xixiang Xu, et al. High efficiency amorphous andnanocrystalline silicon solar cells. physica status solidi (a),2010,207(3):671-677
    [8] F. Finger,R. Carius,T. Dylla, et al. Instability phenomena in microcrystalline silicon films.Journal of Optoelectronics and Advanced Materials,2005,7(1):83-90
    [9] Baojie Yan,Guozhen Yue,Laura Sivec, et al. Innovative dual function nc-SiOx:H layerleading to a>16%efficient multi-junction thin-film silicon solar cell. Applied PhysicsLetters,2011,99(11):113512
    [10] Makoto Konagai. Present Status and Future Prospects of Silicon Thin-Film Solar Cells.Japanese Journal of Applied Physics,2011,50:30001
    [11] Andrej Ccaron,ampa,Olindo Isabella, et al. Optimal design of periodic surface texture forthin-film a-Si:H solar cells. Progress in Photovoltaics: Research and Applications,2010,18(3):160-167
    [12] Antonio Luque,Antonio Mart. The Intermediate Band Solar Cell: Progress Toward theRealization of an Attractive Concept. Advanced Materials,2010,22(2):160-174
    [13] A. Matsuda. Formation kinetics and control of microcrystallite in uc-Si:H from glowdischarge plasma. J. Non-Cryst. Solids,1983,59-60:767
    [14] Akihisa Matsuda. Growth mechanism of microcrystalline silicon obtained from reactiveplasmas,1999,1-6
    [15] Akihisa Matsuda. Recent understanding of the growth process of amorphous silicon for asilane glow-discharge plasma. Plasma Phys. Control. Fusion,1997,39:A431-A436
    [16] C. C. Tsai,G. B. Anderson,R. Thompson, et al. Control of silicon network structure inplasma deposition. Journal of Non-Crystalline Solids. Proceedings of the ThirteenthInternational Conference on Amorphous and Liquid Semiconductors,1989,114(Part1):151-153
    [17] Kenjiro Nakamura,Kunihiko Yoshino,Shinya Takeoka, et al. Roles of Atomic Hydrogen inChemical Annealing. Japanese Journal of Applied Physics,1995,34(2A):442-449
    [18] Vikram L. Dalal,Joshua Graves,Jeffrey Leib. Influence of pressure and ion bombardmenton the growth and properties of nanocrystalline silicon materials. Applied PhysicsLetters,2004,85(8):1413-1414
    [19] B. Drevillon,J. Perrin,J. M. Siefert, et al. Growth of hydrogenated amorphous silicon dueto controlled ion bombardment from a pure silane plasma. Applied Physics Letters,1983,42(9):801-803
    [20] B. Kalache, A. I. Kosarev, R. Vanderhaghen, et al. Ion bombardment effects onmicrocrystalline silicon growth mechanisms and on the film properties. Journal of AppliedPhysics,2003,93(2):1262-1273
    [21] Peter Horvath. Mass spectroscopic and optical studies of radiofrequency SiH4andH2-SiH4plasma:[Doctoral Thesis]. Budapest: Roland Eotvos university,2007
    [22] B. Strahm,A. Feltrin,R. Bartlome, et al. Optical emission spectroscopy to diagnosepowder formation in SiH4-H2discharges. San Diego,2009
    [23] E. Katsia,E. Amanatides,D. Mataras, et al. Effect of plasma parameters on the amorphousto microcrystalline silicon transition. Thin Solid Films,2006,511-512:285-289
    [24]韩晓艳,耿新华,侯国付等.高速沉积微晶硅薄膜光发射谱的研究.物理学报,2008,58(2):1344-1347
    [25] A. Descoeudres,L. Barraud,R. Bartlome, et al. The silane depletion fraction as anindicator for the amorphous/crystalline silicon interface passivation quality. AppliedPhysics Letters,2010,97(18):183505
    [26] Rainer Hippler,Holger Kersten,Martin Schmidt, et al. Low Temperature Plasmas:Fundamentals, Technologies and Techniques (2volume set): Wiley-VCH,2008,945
    [27] Michael A. Lieberman,Allan J. Lichtenberg. Principles Of Plasma Discharges AndMaterials Processing: John Wiley And Sons Ltd.,2005
    [28]郑少白,胡建芳,郭淑静等.等离子体-材料相互作用:等离子体诊断(第一卷:放电参量与化学).北京:电子工业出版社,1989
    [29] G. Parascandolo,R. Bartlome,G. Bugnon, et al. Impact of secondary gas-phase reactionson microcrystalline silicon solar cells deposited at high rate. Applied Physics Letters,2010,96(23):233508
    [30] G. Bugnon,A. Feltrin,R. Bartlome, et al. Microcrystalline and micromorph deviceimprovements through combined plasma and material characterization techniques. SolarEnergy Materials and Solar Cells,2011,95(1):134-137
    [31] B. Strahm,A. A. Howling,Ch Hollenstein. Plasma diagnostics as a tool for processoptimization: the case of microcrystalline silicon deposition. Plasma Physics andControlled Fusion,2007,49(12B):B411-B418
    [32] E. V. Johnson,Y. Djeridane,A. Abramov, et al. Experiment and modelling of very lowfrequency oscillations in RF-PECVD: a signature for nanocrystal dynamics. PlasmaSources Science and Technology,2001,17(3):35012-35029
    [33] N. Layadi,Cabarrocas P. Roca,B. Dr, et al. Real-time spectroscopic ellipsometry study ofthe growth of amorphous and microcrystalline silicon thin films prepared by alternatingsilicon deposition and hydrogen plasma treatment. Phys. Rev. B,1995,52(7):5136-5143
    [34] S. Nunomura,M. Kondo. Positive ion polymerization in hydrogen diluted silane plasmas.Applied Physics Letters,2008,93(23):231502
    [35] Shota Nunomura,Isao Yoshida,Michio Kondo. Transient Phenomena in Plasma-EnhancedChemical Vapor Deposition Processes of Thin-Film Silicon. Japanese Journal of AppliedPhysics,2010,49(10):106102
    [36] A. Gordijn,A. Pollet-Villard,F. Finger. At the limit of total silane gas utilization forpreparation of high-quality microcrystalline silicon solar cells at high-rate plasmadeposition: AIP,2011,211501
    [37] Peter Horvath,Alan Gallagher. Surface radicals in silane/hydrogen discharges. Journal ofApplied Physics,2009,105(1):13304
    [38]林揆训,林璇英,余云鹏等. Langmuir探针的中毒效应及其抑制.功能材料,1996(05)
    [39]王照奎,林揆训,娄艳辉等. SiCl4等离子体中的中性基团质谱测量.核聚变与等离子体物理,2006(03)
    [40]胡庆.低温等离子体放电过程的数值模拟:[硕士学位论文].成都:电子科技大学,2007
    [41]廖乃镘.氢化非晶硅薄膜制备及其微结构和光电性能研究:[博士学位论文].成都:电子科技大学,2009
    [42] Wei Jiang,Xiang Xu,Zhong-Ling Dai, et al. Heating mechanisms and particle flowbalancing of capacitively coupled plasmas driven by combined dc/rf sources. Physics ofPlasmas,2008,15(3):33502
    [43]张晓丹,张发荣,Amanatides Elefterious等.硅基薄膜沉积中等离子体辉光功率和阻抗的测试分析.物理学报,2007,56(9):5309-5313
    [44] X. D. Zhang,F. R. Zhang,E. Amanatides, et al. Modeling and experiments of high-pressureVHF SiH4/H2discharges for higher microcrystalline silicon deposition rate. Thin SolidFilms,2008
    [45] H. M. Mott-Smith,Irving Langmuir. The Theory of Collectors in Gaseous Discharges.Phys. Rev.,1926,28(4):727-763
    [46] Francis F. Chen. Langmuir probe analysis for high density plasmas. Physics of Plasmas,2001,8(6):3029-3041
    [47] Francis F. Chen. Langmuir probes in RF plasma: surprising validity of OML theory. PlasmaSources Science and Technology,2009,18(3):35012-35013
    [48] F. F. Chen. Numerical computations for ion probe characteristics in a collisionless plasma.Journal of Nuclear Energy. Part C, Plasma Physics, Accelerators, ThermonuclearResearch,1965,7(1):47
    [49] H. Kaki,A. Tomyo,E. Takahashi, et al. Interface structure of microcrystalline silicondeposited by inductive coupled plasma using internal low inductance antenna.,2008,202(22-23):5672-5675
    [50] P. Dvo ák. Measurement of plasma potential waveforms by an uncompensated probe.Plasma Sources Science and Technology,2010,19(2):25014
    [51] L. Oksuz,F. Sober o. n,A. R. Ellingboe. Analysis of uncompensated Langmuir probecharacteristics in radio-frequency discharges revisited. Journal of Applied Physics,2006,99(1):13304
    [52] S. Linnane,M. B. Hopkins. Analysis of an uncompensated Langmuir probe in a radiofrequency plasma. Plasma Sources Science and Technology,2009,18(4):45017-45018
    [53] Gagne R. R. J,Cantin A. Investigation of an rf Plasma with Symmetrical and AsymmetricalElectrostatic Probes. J. Appl. Phys.,1972,43:2639
    [54] M. Hannemann, F. Sigeneger. Langmuir probe measurements at incompleterf-compensation. Czechoslovak Journal of Physics,2006,56(2):B740-B748
    [55] Jin-Young Bang,Chin-Wook Chung. A numerical method for determining highly preciseelectron energy distribution functions from Langmuir probe characteristics. Physics ofPlasmas,2010,17(12):123506
    [56] N. St J. Braithwaite,N. M. P. Benjamin,J. E. Allen. An electrostatic probe technique forRF plasma. Journal of Physics E: Scientific Instruments,1987,20(8):1046
    [57] Anthony Dyson,Paul Bryant,John E. Allen. Multiple harmonic compensation of Langmuirprobes in rf discharges. Measurement Science and Technology,2000,11(5):554-559
    [58] N. Spiliopoulos,D. Mataras,D. E. Rapakoulias. Power dissipation and impedancemeasurements in radio frequency discharges. Journal Of Vacuum Science&TechnologyA,1996,14(5):2757-2765
    [59] J. W. Butterbaugh,L. D. Baston,H. H. Sawin. Measurement and analysis of radiofrequency glow discharge electrical impedance and network power loss. Journal of VacuumScience&Technology A: Vacuum, Surfaces, and Films,1990,8(2):916-923
    [60] Mark A. Sobolewski. Electrical characterization of radio-frequency discharges in theGaseous Electronics Conference Reference Cell. Journal of Vacuum Science&TechnologyA: Vacuum, Surfaces, and Films,1992,10(6):3550-3562
    [61] Peter Horvath,Alan Gallagher. Surface radicals in silane/hydrogen discharges. Journal ofApplied Physics,2009,105(1):13304
    [62] E. A. G. Hamers,A. Fontcuberta i. Morral,C. Niikura, et al. Contribution of ions to thegrowth of amorphous, polymorphous, and microcrystalline silicon thin films. Journal ofApplied Physics,2000,88(6):3674-3688
    [63] E. A. G. Hamers,W. G. J. H. van Sark,J. Bezemer, et al. Structural properties of a-Si:Hrelated to ion energy distributions in VHF silane deposition plasmas. Journal ofNon-Crystalline Solids,1998,226(3):205-216
    [64] W. Schwarzenbach,A. A. Howling,M. Fivaz, et al. Sheath impedance effects in very highfrequency plasma experiments. Journal of Vacuum Science&Technology A: Vacuum,Surfaces, and Films,1996,14(1):132-138
    [65] M. Fivaz,S. Brunner,W. Schwarzenbach, et al. Reconstruction of the time-averagedsheath potential profile in an argon radiofrequency plasma using the ion energy distribution.Plasma Sources Science and Technology,1995,4(3):373-378
    [66]张晓丹.器件质量级微晶硅薄膜及高效微晶硅太阳电池制备的研究:[博士学位论文].天津:南开大学,2005
    [67] S. Muthmann,A. Gordijn. Amorphous silicon solar cells deposited with non-constantsilane concentration. Solar Energy Materials and Solar Cells,2011,95(2):573-578
    [68] Jinhua Gu,Meifang Zhu,Liujiu Wang, et al. High quality microcrystalline Si films byhydrogen dilution profile. Thin Solid Films,2006,515(2):452-455
    [69] Frank J. Kampas,Mark J. Kushner. Effect of Silane Pressure on Silane-Hydrogen RF GlowDischarges. Ieee Transactions On Plasma Science,1986,14(2):173-178
    [70] Yun-Seong Lee,Jung-Hwan In,Seung-Kyu Ahn, et al. The trend of electron temperatureand electron density in the process of microcrystalline silicon solar cells. Current AppliedPhysics,2010,10(2, Supplement1):S234-S236
    [71] Junghoon,Joo. Numerical modeling of SiH4discharge for Si thin film deposition for thinfilm transistor and solar cells. Thin Solid Films,2011,519(20):6892-6895
    [72] S. Nunomura,I. Yoshida,M. Kondo. Time-dependent gas phase kinetics in a hydrogendiluted silane plasma. Applied Physics Letters,2009,94(7):71502
    [73] A. Salabas,L. Marques,J. Jolly, et al. Systematic characterization of low-pressurecapacitively coupled hydrogen discharges.,2004,95(9):4605-4620
    [74] L. Marques,J. Jolly,L. L. Alves. Capacitively coupled radio-frequency hydrogendischarges: The role of kinetics. Journal of Applied Physics,2007,102(6):63305
    [75] Lowell P. Theard, Jr. Wesley T. Huntress. Ion-molecule reactions and vibrationaldeactivation of H[sub2][sup+] ions in mixtures of hydrogen and helium. The Journal ofChemical Physics,1974,60(7):2840-2848
    [76] Mark J. Kushner. A model for the discharge kinetics and plasma chemistry during plasmaenhanced chemical vapor deposition of amorphous silicon. Journal of Applied Physics,1988,63(8):2532-2551
    [77] S. Nunomura,M. Kondo. Positive ion polymerization in hydrogen diluted silane plasmas.Applied Physics Letters,2008,93(23):231502
    [78] Yasuhiro Yamauchi,Tomoyoshi Baba,Tsukasa Yamane, et al. Dominant ion species inVHF SiH4/H2plasma: WILEY-VCH Verlag,2010,549-552
    [79] Madoka Takai,Tomonori Nishimoto,Michio Kondo, et al. Effect of higher-silaneformation on electron temperature in a silane glow-discharge plasma. Applied PhysicsLetters,2000,77(18):2828-2830
    [80]张世斌.氢化非晶硅/纳米晶相变域硅薄膜的研制与特性分析:[博士学位论文].北京:中国科学院半导体研究所,2002
    [81] B. Kalache,A. I. Kosarev,R. Vanderhaghen, et al. Ion bombardment effects onmicrocrystalline silicon growth mechanisms and on the film properties. Journal of AppliedPhysics,2003,93(2):1262-1273
    [82] B. Drevillon,J. Perrin,J. M. Siefert, et al. Growth of hydrogenated amorphous silicon dueto controlled ion bombardment from a pure silane plasma. Applied Physics Letters,1983,42(9):801-803
    [83] B. Lyka,E. Amanatides,D. Mataras. Relative importance of hydrogen atom flux and ionbombardment to the growth of μc-Si:H thin films. Journal of Non-Crystalline Solids,2006,352(9-20):1049-1054
    [84] P. Dvo ák. Measurement of plasma potential waveforms by an uncompensated probe.Plasma Sources Science and Technology,2010,19(2):25014
    [85] Kevin Ryan,David O. Farrell,A. R. Ellingboe. Spatial structure of plasma potentialoscillation and ion saturation current in VHF multi-tile electrode plasma source. CurrentApplied Physics,2011,11(5, Supplement):S114-S116
    [86] Mitsuyasu Yatsuzuka,Keiichi Morishita,Kikoh Satoh, et al. Measurement of rf Potential ina Magnetoplasma by a Capacitive Probe. Japanese Journal of Applied Physics,1985,24(Part1, No.12):1724-1725
    [87] M. A. Sobolewski. Electrical characteristics of argon radio frequency glow discharges in anasymmetric cell. Plasma Science, IEEE Transactions on,1995,23(6):1006-1022
    [88] Michael A. Lieberman,Allan J. Lichtenberg. Principles Of Plasma Discharges AndMaterials Processing: John Wiley And Sons Ltd.,2005
    [89] A. A. Howling,L. Derendinger,L. Sansonnens, et al. Probe measurements of plasmapotential nonuniformity due to edge asymmetry in large-area radio-frequency reactors: Thetelegraph effect. Journal of Applied Physics,2005,97(12):123308
    [90] L. Sansonnens,B. Strahm,L. Derendinger, et al. Measurements and consequences ofnonuniform radio frequency plasma potential due to surface asymmetry in large area radiofrequency capacitive reactors: AVS,2005,922-926
    [91] A. Lieberman M, M. M. Turner. Standing wave and skin effects in large-area,high-frequency capacitive discharges. Plasma Sources Science and Technology,2002,11(3):283-293
    [92] Thomas Mussenbrock,Torben Hemke,Dennis Ziegler, et al. Skin effect in a smallsymmetrically driven capacitive discharge. Plasma Sources Science and Technology,2008,17(2):25018
    [93]葛洪.微晶硅薄膜沉积过程中等离子体的诊断与模拟研究:[博士学位论文].天津:南开大学,2009
    [94] S. Nunomura,M. Kondo. Characterization of high-pressure capacitively coupled hydrogenplasmas. Journal of Applied Physics,2007,102(9):93306
    [95] E. Amanatides,D. Mataras,D. E. Rapakoulias. Effect of interelectrode space on propertiesof SiH4/H2deposition discharges operating at different radio frequencies. HighTemperature Materials Processes,2002,4:563-568
    [96]张发荣,张晓丹,Amanatides E等.微晶硅薄膜沉积过程中的等离子体光学与电学特性研究.物理学报,2008,57(5):3022-3026
    [97] E. Amanatides,D. Mataras,D. E. Rapakoulias, et al. Plasma emission diagnostics for thetransition from microcrystalline to amorphous silicon solar cells. Solar Energy Materials&Solar Cells,2006,87:795-805
    [98] B. M. Jelenkovi,Alan Gallagher. Particle accumulation in a flowing silane discharge.Journal of Applied Physics,1997,82(4):1546-1553
    [99] L. Boufendi,J. Gaudin,S. Huet, et al. Detection of particles of less than5nm in diameterformed in an argon--silane capacitively coupled radio-frequency discharge. AppliedPhysics Letters,2001,79(26):4301-4303
    [100] Yoshihiro Okuno,Hiroharu Fujita,Masaharu Shiratani, et al. Potential structure in silaneradio frequency discharge containing particles. Applied Physics Letters,1993,63(13):1748-1750
    [101] Thomas Mussenbrock,Torben Hemke,Dennis Ziegler, et al. Skin effect in a smallsymmetrically driven capacitive discharge. Plasma Sources Science and Technology,2008,17(2):25018
    [102] Yu-Ru Zhang,Xiang Xu,Annemie Bogaerts, et al. Fluid simulation of the phase-shifteffect in hydrogen capacitively coupled plasmas: II. Radial uniformity of the plasmacharacteristics. Journal of Physics D: Applied Physics,2012,45(1):15203
    [103]葛洪.微晶硅薄膜沉积过程中等离子体的诊断与模拟研究:[博士学位论文].天津:南开大学,2009
    [104] M. Long. Power efficiency oriented optimal design of high density CCP and ICP sourcesfor semiconductor RF plasma processing equipment. Plasma Science, IEEE Transactionson,2006,34(2):443-454
    [105] A. Hadjadj,N. Pham,P. Roca i. Cabarrocas, et al. Self-bias voltage diagnostics for theamorphous-to-microcrystalline transition in a-Si:H under a hydrogen-plasma treatment.Journal of Vacuum Science&Technology A: Vacuum, Surfaces, and Films,2010,28(2):309-313
    [106] E. V. Johnson,Y. Djeridane,A. Abramov, et al. Experiment and modelling of very lowfrequency oscillations in RF-PECVD: a signature for nanocrystal dynamics. PlasmaSources Science and Technology,2008,17(3):35029
    [107] M. N. van den Donker,E. A. G. Hamers,G. M. W. Kroesen. Measurements andsemi-empirical model describing the onset of powder formation as a function of processparameters in an RF silane/hydrogen discharge. Journal of Physics D: Applied Physics,2005,38(14):2382-2389
    [108] P. Bletzinger,Mark J. Flemming. Impedance characteristics of an rf parallel plate dischargeand the validity of a simple circuit model. Journal of Applied Physics,1987,62(12):4688-4695
    [109] L. P. Bakker,G. M. W. Kroesen,F. J. de Hoog. RF discharge impedance measurementsusing a new method to determine the stray impedances. Plasma Science, IEEE Transactionson,1999,27(3):759-765
    [110] V. Lisovskiy,J. P. Booth,K. Landry, et al. A technique for evaluating the RF voltageacross the electrodes of a capacitively-coupled plasma reactor. The European PhysicalJournal Applied Physics,2006,36(2):177-182
    [111] Weston C. Roth,Robert N. Carlile,John F. O'Hanlon. Electrical characterization of aprocessing plasma chamber. Journal of Vacuum Science&Technology A: Vacuum,Surfaces, and Films,1997,15(6):2930-2937
    [112] N. Spiliopoulos,D. Mataras,D. E. Rapakoulias. Power dissipation and impedancemeasurements in radio frequency discharges. Journal Of Vacuum Science&TechnologyA,1996,14(5):2757-2765
    [113] Paul A. Miller, Harold Anderson, Michael P. Splichal. Electrical isolation ofradio-frequency plasma discharges. Journal of Applied Physics,1992,71(3):1171-1176
    [114] W. G. M. van den Hoek,C. A. M. de Vries,M. G. J. Heijman. Power loss mechanisms inradio frequency dry etching systems. Journal of Vacuum Science&Technology B:Microelectronics and Nanometer Structures,1987,5(3):647-651
    [115]张晓丹,张发荣,Amanatides Elefterious等.硅薄膜沉积中等离子体辉光功率和阻抗的测试分析.物理学报,2007,56(9):5309-5313
    [116] A. J. van Roosmalen,P. J. Q. Voorst van Vader. A model for the power dissipation in rfplasmas. Journal of Applied Physics,1990,68(4):1497-1505
    [117] M. Mohamed Salem,J. F. Loiseau,B. Held. Impedance matching for optimization ofpower transfer in a capacitively excited RF plasma reactor. The European PhysicalJournal-Applied Physics,1998,3(01):91-95
    [118] V. A. Godyak,R. B. Piejak. In situ simultaneous radio frequency discharge powermeasurements. Journal of Vacuum Science&Technology A: Vacuum, Surfaces, andFilms,1990,8(5):3833-3837
    [119]王子宇,张肇仪,徐承和.射频电路设计-理论与应用:电子工业出版社,2005
    [120] B. Legradic,A. A. Howling,C. Hollenstein. Radio frequency breakdown betweenstructured parallel plate electrodes with a millimetric gap in low pressure gases. Physics ofPlasmas,2010,17(10):102111
    [121] S. M. Levitskii,Tekh. Fiz. Zh. An investigation of the breakdown potential of ahigh-frequency plasma in the frequency and pressure transition regions. Sov. Phys. Tech.Phys.,1957,2:887
    [122] P. Vidaud,S. M. A. Durrani,D. R. Hall. Alpha and gamma RF capacitance discharges in N2at intermediate pressures. Journal of Physics D: Applied Physics,1988,21(1):57
    [123] V. A. Godyak, R. B. Piejak, B. M. Alexandrovich. Evolution of theelectron-energy-distribution function during rf discharge transition to the high-voltagemode. Phys. Rev. Lett.,1992,68(1):40-43
    [124] Ph. Belenguer,J. P. Boeuf. Transition between different regimes of rf glow discharges.Phys. Rev. A,1990,41(8):4447-4459
    [125] I. V. Schweigert. Different Modes of a Capacitively Coupled Radio-Frequency Dischargein Methane. Phys. Rev. Lett.,2004,92(15):155001
    [126] J. P. Boeuf,Ph. Belenguer. Transition from a capacitive to a resistive regime in a silaneradio frequency discharge and its possible relation to powder formation. Journal of AppliedPhysics,1992,71(10):4751-4754
    [127] A. A. Fridman,L. Boufendi,T. Hbid, et al. Dusty plasma formation: Physics and criticalphenomena. Theoretical approach. Journal of Applied Physics,1996,79(3):1303-1314
    [128] V. Lisovskiy,J-P Booth,K. Landry, et al. Rf discharge dissociative mode in NF3and SiH4.Journal of Physics D: Applied Physics,2007,40(21):6631-6640
    [129]韩晓艳,张晓丹,侯国付等.非晶孵化层对高速生长微晶硅电池性能的影响.太阳能学报,2008,29(8):917-921
    [130] Arjan Verkerk,Jatindra K. Rath,Ruud Schropp. High deposition rate nanocrystallinesilicon with enhanced homogeneity. physica status solidi (a),2010,207(3):530-534
    [131] B. Strahm,A. A. Howling,L. Sansonnens, et al. Plasma silane concentration as adetermining factor for the transition from amorphous to microcrystalline silicon inSiH4/H2discharges. Plasma Sources Science and Technology,2007,16(1):80-89
    [132] Y. Mai,S. Klein,R. Carius, et al. Microcrystalline silicon solar cells deposited at high rates.Journal Of Applied Physics,2005,97(1):61-71
    [133] Jinhua Gu,Meifang Zhu,Liujiu Wang, et al. High quality microcrystalline Si films byhydrogen dilution profile. Thin Solid FilmsProceedings of the Eighth International Conference on Atomically Controlled Surfaces, Interfacesand Nanostructures and the Thirteenth International Congress on Thin Films-ACSIN-8/ICTF-13,2006,515(2):452-455
    [134] Baojie Yan, Guozhen Yue, Jeffrey Yang, et al. Hydrogen dilution profiling forhydrogenated microcrystalline silicon solar cells. Applied Physics Letters,2004,85(11):1955-1957
    [135] H. Li,R. H. Franken,R. L. Stolk, et al. Improvement of μc-SiH n–i–p cell efficiencywith an i-layer made by hot-wire CVD by reverse H2-profiling. Thin Solid Films,2008,516:755-757
    [136] A. H. M. Smets,T. Matsui,M. Kondo. High-rate deposition of microcrystalline siliconp-i-n solar cells in the high pressure depletion regime. Journal of Applied Physics,2008,104(3):34508
    [137] A. Gordijn,A. Pollet-Villard,F. Finger. At the limit of total silane gas utilization forpreparation of high-quality microcrystalline silicon solar cells at high-rate plasmadeposition: AIP,2011,211501
    [138] A. Descoeudres,L. Barraud,R. Bartlome, et al. The silane depletion fraction as anindicator for the amorphous/crystalline silicon interface passivation quality. AppliedPhysics Letters,2010,97(18):183505
    [139] Ashfaqul I. Chowdhury,Tonya M. Klein,Timothy M. Anderson, et al. Silane consumptionand conversion analysis in amorphous silicon and silicon nitride plasma deposition using insitu mass spectroscopy. J. Vac. Sci. Technol. A,1998,16(3):1852-1856
    [140] B. Strahm, Ch Hollenstein. Powder formation in SiH4-H2discharge in large areacapacitively coupled reactors: A study of the combined effect of interelectrode distance andpressure. Journal of Applied Physics,2010,107(2):23302
    [141]许盛之,张晓丹,李杨等.利用四极杆质谱监测硅薄膜沉积过程中的硅烷利用率.见:袁竹林魏启东,编.第十一届中国光伏大会及展览会.南京:东南大学出版社,2010,443-446
    [142] B. Lykas, E. Amanatides, D. Mataras, et al. Power consumption effect on themicrocrystalline silicon deposition process: a comparison between model and experimentalresults. Journal of Physics,2005,Conference Series10:198-201
    [143]葛洪.微晶硅薄膜沉积过程中等离子体的诊断与模拟研究:[博士学位论文].天津:南开大学,2009
    [144] E. Amanatides,A. Hammad,E. Katsia, et al. High pressure regime of plasma enhanceddeposition of microcrystalline silicon. Journal of Applied Physics,2005,97(7):73303
    [145] N. van Donker M,M. C. M. Transient depletion of source gases during materialsprocessing: a case study on the plasma deposition of microcrystalline silicon. New Journalof Physics,2007,9(8):280
    [146] Y. Ashida,M. Koyama,K. Miyachi, et al. Properties and stability of a-Si:H films byalternately repeating deposition and hydrogen plasma treatment,1991,1352-1356
    [147] R. W. Collins,A. S. Ferlauto,G. M. Ferreira, et al. Evolution of microstructure and phasein amorphous, protocrystalline,and microcrystalline silicon studied by real timespectroscopic ellipsometry. Solar Energy Materials&Solar Cells,2003,78:143-180
    [148] D. Hrunski,W. Grahlert,H. Beese, et al. Control of plasma process instabilities during thinsilicon film deposition. Thin Solid Films,2009,517(14):4188-4191
    [149]张晓丹.器件质量级微晶硅薄膜及高效微晶硅太阳电池制备的研究:[博士学位论文].天津:南开大学,2005
    [150]朱锋. P型微晶硅薄膜材料与非晶硅/微晶硅叠层太阳电池的研究:[博士学位论文].天津:南开大学,2006
    [151]郭群超.高速沉积器件质量级微晶硅材料及其在太阳电池上的应用:[博士学位论文].天津:南开大学,2006
    [152] Z. Iqbal,S. Veprek. Raman scattering from hydrogenated microcrystalline and amorphoussilicon. J. Phys. C: Solid State Phys.,1982,15:377-392
    [153]张世斌.氢化非晶硅/纳米晶相变域硅薄膜的研制与特性分析:[博士学位论文].北京:中国科学院半导体研究所,2002
    [154] Toshihisa Kitagawa, Michio Kondo,Akihisa Matsuda. control of crystallinity andorlentation of microcrystalline silicon using in situ weed observation,2000
    [155] X. D. Zhang,H. Zhang,Q. Yue, et al. A new method used to control the structure of highrate microcrystalline silicon thin films. physica status solidi (c),2010,7(3-4):541-544
    [156]孙福河.单室制备微晶硅电池:[硕士学位论文].天津:南开大学,2009
    [157]王光红.单室微晶硅电池:[博士学位论文].天津:南开大学,2010
    [158] D. Beeman,R. Tsu,M. F. Thorpe. Structural information from the Raman spectrum ofamorphous silicon. Phys. Rev. B,1985,32(2):874-878

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700