海南东部近海地区营养盐动力学的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近岸海域通常具有较高的初级生产力,以及多样和复杂的生态结构,因此,近岸海域营养盐的生物地球化学循环已成为海洋生态学等的重要研究内容。本研究于2006年12月、2007年8月、2008年7-8月和2009年3-4月对我国海南东部热带近岸海域不同水体(河流、河口、渴湖和近岸等)中营养盐及相关参数进行调查,旨在研究海南东部近海地区不同水体中营养盐浓度、分布特征及其季节和区域变化,探讨海南东部近岸营养盐的结构及其影响因子。主要研究结果如下:
     1、文昌/文教河营养盐浓度的季节变化很大。除2008年夏季文教河外,其他航次两条河中的DIN浓度均处于全球平均浓度与污水浓度水平之间;文昌/文教河中DIP浓度相对较低,属于清洁水体。由于氮肥的使用、污水排放,2007年NH4-N在DIN中的比例达到37-44%。冬、夏季DOP为TDP的主要组成成分,春季时无机磷则成为TDP的主要组成部分;文昌/文教河中DON/TDN的值分别为23%、55%。硅酸盐含量低于一般热带河流中的浓度,明显低于同一区域的万泉河中的含量。
     文昌/文教河口受潮汐作用影响明显,且有明显的季节变化。2006年冬季硝酸盐仅受海水稀释作用影响,呈现保守变化;2009年存在再生现象;2007年、2008年夏季存在反硝化,被大量消耗。说明河口区存在有机质的分解使无机氮得到再生以及氮的反硝化过程。因悬浮颗粒物含量大,河口区磷酸盐有吸附/解吸现象发生,以及有机质的分解而再生。
     2、万泉河中DIN含量高于一般未受污染的热带河流中浓度,低于受人类活动影响大的长江、珠江等,并低于文昌/文教河中含量。磷酸盐处于原始水体与干净水体间浓度。硅酸盐含量不仅高于全球河流中平均浓度,也明显高于热带河流中平均浓度。
     不同季节万泉河口硝酸盐成为DIN的主要组成成分。NO3-N、SiO3-Si在河口区跟盐度有负相关关系,呈保守分布;亚硝酸盐、铵盐变化复杂,表现出非保守的变化;由于颗粒物的吸附/解吸作用,磷酸盐在河口区有浓度相对恒定,且在2007年夏季低盐度区(<2.5PSU)出现再生。在河流及河口中,P成为浮游植物生长的潜在限制因子。
     3、于2008年8月、2009年4月对小海、老爷海进行多次调查,结果表明:小海潟湖内整体盐度低,且夏季高于春季。春季硝酸盐含量高于夏季,其他各项营养盐则为春季低于夏季。夏、春季DON分别占TDN的79%、36%;DOP/TDP分别为49%、47%,但夏季DOP含量约是春季的2.6倍。存在由春季潜在P限制到夏季N限制的转变。
     老爷海渴湖口门处受潮汐作用影响明显,营养盐含量低。潟湖中无机态营养盐及有机质含量高,无机磷、有机氮成为总溶解态氮、磷的主要组成部分。’渴湖内不存在营养盐限制。
     4、东部近岸海区陆源输入对沿岸浅水区影响比较大,深水区受陆源输入影响不如沿岸明显,营养盐含量由沿岸至远海逐渐降低。浓度由表至底逐渐升高,有明显的层化现象。不同季节中P都成为浮游植物生长的限制因子。
     5、于2008年8月25日至9月6日对南海北部进行了调查。结果表明:南海北部海区上层营养盐贫乏。营养盐浓度由表到底递增,有明显的层化现象。南海北部表层水体中氮磷营养盐通常低于浮游植物的生长阈值,此次调查时为P限制。
     6、根据营养盐收支模型计算可知,文昌/文教河口NO2-N、NH4-N、DSi、DON、DOP主要来源于河流输入,N03-N主要来源于地下水输入,为NO3-N、DOP的汇,NO2-N、NH4-N、DSi、DIP的源。万泉河口成为NO3-N、DIP、DSi和DOP的汇,NO2-N、NH4-N及DON的源。小海渴湖是除DON外其他各项营养盐的汇。老爷海渴湖是NO3-N、NH4-N、DIP、DOP的汇,DSi、DON的源。文昌/文教河、小海和老爷海对沿岸水体的影响不如万泉河产生的影响大。
The coastal ecosystems usually have high primary productivity, diverse and complex community, therefore, nutrient biogeochemical cycles have become the cone theme in ocean science. Four cruises were carried out along coastal ecosystems of Eastern Hainan(such as rivers, estuaries, lagoons and near-shore waters) to understand the level, distribution and seasonal variations of nutrients, in order to examine biogeochemical processes that influence nutrients composition. Some important conclusions are drawn as follows.
     1. Nutrient levels in the tropical Wenchang/Wenjiao rivers show wide range of seasonal variations. DIN concentrations in these two rivers are generally at the levels between the average global conditions to polluted waters except that Wenjiao river one cruise in 2008 are at clean waters levels. Ammonium contribution to DIN concentration is relatively up to 37-44% in the August 2007 cruise related to the the application of inorganic N fertilizer and wastewater discharge. DIP concentrations in the rivers are at the levels between pristine level and clean waters level compared to the global river data. So DIN/DIP ratios show wide range of variation(60-413). DON was the major part of TDN in winter and summer, DIP was the main part of TDP in spring. DON accounted for 23% of TDN in the Wenchang river and 55% in the Wenjiao river. Dissolved silicate levels in Wenchang and Wenjiao rivers are lower than average levels of tropical rivers, it's lower than the level of Wanquan river.
     Wenchang/Wenjiao river estuaries significantly affected by tidal action and had obvious seasonal variation. Nitrate behaved conservatively subjected to a simple estuarine dilution in the winter 2006; underwent regeneration in the spring 2009; has denitrification in both summer 2007 and 2008. This indicated that dissolved inorganic and organic nitrogen regenerated from degradation of organic matter and denitrification processes existed in the estuary in the summer. Phosphorus behaved desorption/adsorption from suspended particles along the salinity or degradation of organic matter in the estuary. Dissolved silicate behaved conservatively in the winter 2006 and spring 2009.
     Nutrients showed obvious tidal effect with low values at flood tide in Gaolong bay.
     2. DIN concentrations in the Wanquan river were higher than tropical river that were not polluted in the world, such as Amion and Zaire rivers, but lower than temperate rivers which significantly affected by human activities, such as Changjiang, Huanghe and Pearl rivers. DIP concentration in the river is at the levels between pristine level and clean waters level compared to the global river data. Dissolved silicate level in the Wanquan river is not only higher than average global conditions, but also at higher to general levels in tropical systems.
     NO3-N/DIN is the main part of DIN. Nitrate and dissolved silicate had a negative correlation with salinity in the estuary, indicating largely subjecting to a simple estuarine dilution, while nitrite and ammonium were non-conservative; phosphate undergo desorption/adsorption from onto suspended particles along the salinity gradient and/or degradation of organic matter in the estuary and has regeneration in 2007 when salanity below 2.5. In addition, phosphorus maybe the potential limit element for phytoplankton growth with high N/P concentration ratio (averagely, more than 61).
     3. Nutrient concentrations in surface waters of the Xiaohai and Laoyehai lagoon were determined during surveys in both August 2008 and April 2009. The results showed that:the overall salinity of the Xiaohai lagoon is low, and summer higher than spring. The concentrations of nutrients were higher in summer than spring except nitrate. DON accounted for 79% and 36% of TDN in summer and winter, respectively; DOP concentrations represented-49% of TDP in summer and 47% in spring, but the concentrations of DOP increased by 2.3 fold in summer 2008 than in spring 2009. Nutrient ratios showed obvious seasonal variation, indicating that limiting nutrients were nitrogen in summer and phosphorus might be the potential limiting element for phytoplankton growth in spring.
     The salinity in the inner bay of Laoyehai lagoon is lower than the mouth of the lagoon, and the average salinity was higher than that that in Xiaohai lagoon. Nutrient concentrations showed an obvious tidal effect with low values in the mouth of the lagoon.
     4. Nutrients level are low in eastern coastal of Hainan. Shallow coastal waters were significantly affected by terrestrial input, but deep water was not obvious. Nutrient concentrations increased from surface to bottom waters. Phosphorus was the limiting factor for phytoplankton.
     5. One cruise was carried out in the northern South China Sea(SCS). The result showed that oligotrophy is a significant characteristic in upper water column of the northern SCS. The concentration increased with obvious stratification from surface to bottom. According to nutrient concentrations, the limiting nutrient for phytoplankton growth was phosphotus in this region.
     6. Nutrient budgets demonstrate that in Wenchang/Wenjiao estuary, riverine input is a major source of NO2-N, NH4-N, DSi, DON, DOP, while groundwater discharge is the major source of NO3-N, and the estuary is the sink of NO3-N、DOP, source of NO2-N, NH4-N, DSi and DIP. Wanquan estuary behaves as a sink of NO3-N, DIP, DSi and DOP, source of NO2-N, NH4-N and DON. Xiaohai lagoon is a sink of all nutrients except for DON. Laiyehao lagoon behaves as a sink of NH4-N, DIP and DOP, source of DSi and DON. Wanquan river estuary transports more nutrients to coastal waters than Wenchang/Wenjiao estuary, Xiaohai lagoon and Laoyehai lagoon.
引文
[1]柴超,俞志明,葛蔚.河口海岸带地区营养盐收支及模型研究.海洋科学,2008,(001):65-69
    [2]柴扉,薛惠洁,侍茂崇.海南岛东部上升流研究.中国海洋学文集—南海海流数值计算及中尺度特征研究,2001a,13:129-137
    [3]柴扉,薛惠洁,侍茂崇.南海北陆架区3个典型反气旋涡水文特征及演变规律.中国海洋学文集—南海海流数值计算及中尺度特征研究,2001b,13:105-116
    [4]陈国强,高建华,朱大奎.海南岛万泉河口海岸动态及其整治对策.海洋通报,2004,
    [5]陈力琦.地下水与海水混合过程中营养盐变化的模拟研究:[硕士学位论文].杭州:浙江大学,2008
    [6]陈则实.中国海湾志,第11分册.北京:海洋出版社.1999,59-88
    [7]邓松,钟欢良.琼海沿岸上升流及其与渔场的关系.台湾海峡,1995,14(001):51-56
    [8]高建华,高抒.海南岛博鳌港沉积物的沿岸输送.海洋地质与第四纪地质,2002,22(2):41-48
    [9]葛明.胶州湾氮,磷营养盐循环收支动力学模型及其应用:[硕士学位论文].青岛: 中国海洋大学,2003
    [10]管秉贤,陈上及.中国近海的海流流系.中国科委海洋组海洋综合调查办公室全国海洋综合调查报告(第五册第六章),1964
    [11]管秉贤.海南岛以东外海的暖涡.黄渤海海洋,1997,15(004):1-7
    [12]管秉贤.南海北部冬季逆风海流的一些时空分布特征.海洋与湖沼,1985,16(6):429-438
    [13]郭芳,黄小平.海水网箱养殖对近岸环境影响的研究进展.水产科学,2006,25(001):37-41
    [14]国家海洋局.中国20世纪末海洋环境质量公报,http://www.soa.gov.cn/,2000
    [15]国家海洋局.2009年中国海洋环境质量公报, http://www.soa.gov.cn/,2009
    [16]海南省环境状况公报http://www.hainan.gov.cn/,2009
    [17]海南省环境状况公报http://www.hainan.gov.cn/,2007
    [18]韩舞鹰,王明彪.我国夏季最低表层水温海区-琼东沿岸上升流区的研究.海洋与湖沼,1990,21(003):267-275
    [19]韩舞鹰,马克美.粤东沿岸上升流氧的各种变化过程.热带海洋,1991,10(003):65-70
    [20]何悦强,郑庆华.大亚湾海水网箱养殖与海洋环境相互影响研究.热带海洋,1996,15(002):22-27
    [21]胡辉,汪思明,谷国传.海南岛东海岸小海渴湖水文基本特征.热带海洋,1997,(4):54-61
    [22]黄韬.珠江口和南海北部营养盐的分布特征及其控制因子:[硕士学位论文].厦门:厦门大学,2004
    [23]黄小平,黄良民.近海赤潮发生与环境条件之间的关系.海洋环境科学,2002,21(004):63-69
    [24]林洪瑛,韩舞鹰.珠江口伶仃洋枯水期十年前后的水质状况与评价.海洋环境科学,2001,20:28-31
    [25]刘慧,方建光.全球海域营养盐限制研究进展.海洋科学,2002,26(008):47-53
    [26]刘兴健,葛晨东.海南岛小海潟湖沉积环境演变研究.海洋通报,2007,26(4):71-78
    [27]刘兴健,葛晨东,陈平平,等.人类活动对海南省小海泻湖沉积环境的影响.环境化学,2007,26(003):384-387
    [28]廖小青.黄河三角洲地区地下水及其营养盐入海通量研究:[硕士学位论文].青岛:中国海洋大学,2005
    [29]刘学海.渤海近岸水域环境污染状况分析.环境保护科学,2010,36(1):14-18.
    [30]牛志广.近岸海域水环境容量的研究:[博士学位论文].天津:天津大学,2004
    [31]彭晓彤,周怀阳.海岸带营养盐生物地球化学研究评述.海洋通报,2002,21,69-77
    [32]任玲,杨军.海洋中氮营养盐循环及其模型研究.地球科学进展,2000,15(001):58-64
    [33]沈志良.沿岸近海营养物质收支动力学.海洋科学,1999,(3):39-42
    [34]苏妮,张磊,张耀玲,等.沿岸地下水排放通量.水文地质工程地质,2009,36(003):45-50
    [35]田向平,李春初.海南小海渴湖环境的破坏与治理.海洋环境科学,2007,26(1):91-942007,26(003):384-387
    [36]屠霄霞.东太平洋中国多金属结核开辟区营养盐动力学研究:[硕士学位论文].广州:中国科学院研究生院(广州地球化学研究所),2006
    [37]王宝灿.海南岛港湾海岸的形成与演变.北京:海洋出版社.2006,75-113
    [38]王世俊,李春初,田向平.海南岛小海沙坝-泻湖-潮汐通道体系自动调整及恶化.台湾海峡,2003,22(002):248-253
    [39]王颖.海南岛海岸环境特征.海洋地质动态,2002,18(003):1-9
    [40]薛惠洁,柴扉,徐丹亚,等.南海沿岸流特征及其季节变化.中国海洋学文集—南海海流数值计算及中尺度特征研究,2001,13:64-75
    [41]徐永健,钱鲁闽.海水网箱养殖对环境的影响.应用生态学报,2004,15(003):532-536
    [42]许艳苹.南海西部冷涡区域上层海洋营养盐的动力学:[硕士学位论文].厦门:厦门大学,2009
    [43]杨美兰,钟彦.大鹏湾南澳养殖水域的氮、磷含量特征.热带海洋,1998,17(002):74-80
    [44]杨卫华,高会旺,张永举.海水养殖对近岸海域环境影响的研究进展.海洋湖沼通报,2006,(1):100-107
    [45]姚云,郑世清,沈志良.胶州湾营养盐及富营养化特征.海洋通报,2007,26(004):91-98
    [46]曾昭璇,曾宪中.海南岛自然地理.北京:科学出版社.1989
    [47]张金娥.我国部分河流、河口及邻近海域中溶解态无机砷的分布及其影响因素:[硕士学位论文].青岛:中国海洋大学,2009
    [48]张武昌,孙松.大洋真光层中的新生产力和N的来源.海洋科学,2007,31(001):65-70
    [49]赵仕,徐继荣.海水网箱养殖对沉积环境的影响.黑龙江科技信息,2009,(018):117-119
    [50]周俊丽,刘征涛,孟伟,等.长江口营养盐浓度变化及分布特征.环境科学研究,2006,19(6):139-141
    [51]周名江,朱明远.中国赤潮的发生趋势和研究进展.生命科学,2001,13(002):54-59
    [52]朱小兵,高抒,陈妙红,等.海南岛博鳌港水体交换的初步研究.热带海洋学报,2003,22(003):71-77
    [53]朱新军,刘贯群,王淑英,等.白沙河流域地下水及营养盐向海湾输送.中国海洋大学学报,2005,35(001):67-72
    [54]Ammerman J.W. Seasonal variation in phosphate turnover in the Mississippi River plume and the inner Gulf Shelf:Rapid summer turnover, In:Texas Sea Grant Program,(Ed.), Nutrient Enhanced Coastal Ocean Productivity, NECOP Workshop Proceedings, October 1991,NOAA Coastal Ocean Program. Texas Sea Grant Publications, College Station,69-75
    [55]Babu K. N., Ouseph P. P., Padmalal D. Interstitial water-sediment geochemistry of N, P and Fe and its response to overlying waters of tropical estuaries:a case from the southwest coast of India. Environmental Geology,2000,39(6):633-640
    [56]Bates N., Hansell D. Temporal variability of excess nitrate in the subtropical mode water of the North Atlantic Ocean. Marine Chemistry,2004,84:225-241
    [57]Bennekom A. J.,Van and Wetsteijin F. J. The winter distribution of nutrients in the Southern Bight of the North Sea (1961-1978) and in the estuaries of the Scheldt and the Rhine/Meuse. Netherlands Journal of Sea Research,1990,25 (1-2):75-87
    [58]Bianchi T. Biogeochemistry of Estuaries. New York, Oxford University Press,2007,299-372
    [59]Borgne R. T., Feely R., Mackey D. Carbon fluxes in the equatorial Pacific:a synthesis of the JGOFS programme. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography,2002, 49(13-14):2425-2442
    [60]Brabovith A., Dinnel S. P., Goolby D.A. Variability and prediction of freshwater and nitrate fluxes for the Louisiana-Texas shelf:Mississippi and Atchafalaya River source functions. Estuaries and Coasts,1994,17 (4):766-778
    [61]Burnett W., Bokuniewicz H., Huettel M., et al. Groundwater and pore water inputs to the coastal zone. Biogeochemistry,2003,66 (1):3-33
    [62]Cai W. J., Dai M. H., Wang Y. C., et al. The biogeochemistry of inorganic carbon and nutrients in the Pearl River estuary and the adjacent Northern South China Sea. Continental Shelf Research,2004,24 (12):1301-1319
    [63]Carpenter P. D., Smith J. D. Effect of pH, iron and humic acid on the estuarine behaviour of phosphate. Environmental Techmology,1984,6:65-72
    [64]Center for Environmental, Fishery, and Aquaeulture Seienees. Nutrient input to the sea and the impact on the marine ecosystem(JoNuSl 1), UK:CEFAS, Lowestoft,2001
    [65]Chai F, Dugdale R, Peng T, et al. One-dimensional ecosystem model of the equatorial Pacific upwelling system. Part Ⅰ:model development and silicon and nitrogen cycle. Deep-Sea Research Part Ⅱ,2002,49(13-14):2713-45
    [66]Chen B. The effects of growth rate, light, and nutrients on the C/chl-a ratio for phytoplankton in the Mississippi River plume:[MS Thesis]. Hattiesburg:University of Southern Mississippi, 1994
    [67]Chen Y.L., Chen H.Y., Karl D.M., et al. Nitrogen modulates phytoplankton growth in spring in the South China Sea. Continental Shelf Research,2004,24(4-5):527-541
    [68]Cipollini P., Cromwell D., Challenor P., et al. Rossby waves detected in global ocean colour data. Geophysical Research Letters,2001,28 (2):323-326
    [69]Dagg M., Benner R., Lohrenz S., et al. Transformation of dissolved and particulate materials on continental shelves influenced by large rivers:plume processes. Continental Shelf Resea-rch,2004,24 (7-8):833-858
    [70]Diaz R., Rosenberg R. Marine benthic hypoxia:a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanography and marine biology An annual review,1995,33:245-303
    [71]Dinnel S. P., Brabovith A. Water discharge, nitrate concentration and nitrate flux in the lower Mississippi River. Journal of Marine Systems,1993,4 (4):315-326
    [72]Dortch Q., Whitledge T.E. Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions. Continental Shelf Research,1992,12 (11): 1293-1309
    [73]Eyre B. Nutrient Biogeochemistry in the Tropical Moresby River Estuary System North Queensland, Australia. Estuarine, Coastal and Shelf Science,1994,39:15-31
    [74]Gaillardet J., Dupre B., Louvat P., et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology,1999,159 (1-4):3-30
    [75]Garside C. A chemiluminescent technique for the determination of nanomolar concentrations of nitrate and nitrite in seawater. Marine Chemistry,1982,11(2):159-167
    [76]Goldman J.C., McCarthy J.J., Peavey D.G. Growth rate influence on the chemical composite-on of phytoplankton in oceanic waters. Nature,1979,279:210-215
    [77]Goldman J., McGillicuddy D. J. Effect of large marine diatoms growing at low light on episodic new production. Limnology and Oceanography,2003,48:1176-1182
    [78]Gong W. P., Shen J., Jia J. J. The impact of human activities on the flushing properties of a semi-enclosed lagoon:Xiaohai, Hainan, China. Marine environmental research,2008,65 (1): 62-76
    [79]H.D.霍兰.大气与海洋化学.北京:科学出版社,1986
    [80]Hall P., Holby O., Kollberg S., et al. Chemical fluxes and mass balances in a marine fish cage farm. Ⅳ. Nitrogen Marine Ecology Progress Series,1992,89:81-91
    [81]Harris G. Phytoplankton ecology:Structure, function and fluctuation. Chapman and Hall Ltd., London,1986
    [82]Helcom.Third Periodic Assessment on the State of the Marine Environment of the Baltic Sea, 1989-1993:Background Document, Helsinki:Helsinki Commission, Baltic Marine Environ-ment Protection Commission,1996
    [83]Hu M.H., Yang Y. P, Xie C. L., et al. Phosphate limitation of phytoplankton growth in the Chang jiang Estuary. Acta Oceanologica Sinica,1990,9 (3):405-411
    [84]Jickells T.D. Nutrient biogeochemistry of the coastal zone. Science,1998,281 (5374):217-222
    [85]Jennerjahna T C, Ittekkt V, Klopper S, et al. Biogeochemistry of a tropical river affected by human activities in its catchment:Brantas River estuary and coastal waters of Madura Strait, Java, Indonesia. Estuarine, Coastal and Shelf Science,2004,60 (3):503-514
    [86]Jennerjahn T. C., Knoppers B. A., Weber F. L., et al. Factors Controlling Dissolved Silica in Tropical Rivers.The Silicon Cycle:Human Perturbations and Impacts on Aquatic Systems 2006,29-51
    [87]Jiang M., Chai F. Physical and biological controls on the latitudinal asymmetry of surface nutrients and pCO2 in the central and eastern equatorial Pacific. Journal of Geophysical Research,2005,110(doi:10.1029/2004JC002715):1-13
    [88]Justic D., Rabalais N. N., Turner R. E. Stoichiometry nutrient balance and origin of coastal eutrophication. Marine Pollution Bulletin,1995,30:41-46
    [89]Karl D. Nutrient dynamics in the deep blue sea. Trends in Microbiology,2002,10(9): 410-418
    [90]Karl D., Letelier R., Tupas L., et al. The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature,1997,388:533-538
    [91]Karl D.M., Tien G. MAGIC:A sensitive and precise method for measuring dissolved phosphorus in aquatic environments. Limnology and Oceanography,1992,37:105-116
    [92]Lagus A., Suomela J., Weithoff G., Heikkil K., et al. Species-specific differences in phyto-plankton responses to N and P enrichments and the N:P ratio in the Archipelago Sea, northern Baltic Sea. Journal Plankton Research,2004,26:779-798
    [93]Ledwell J.R., Watson A.J., Law C.S. Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature,1993,364 (6439):701-703
    [94]Lewis M.R., Hebert D., Harrison W.G., et al. Vertical nitrate fluxes in the oligotrophic ocean. Science,1986,234(4778):870-873
    [95]Liss P. S. Conservative, and non-conservative behaviour of dissolved constituents during estu-arine mixing. London, Academic Press,1976,93-130
    [96]Liu S.M.,Li X.N, Zhang J., et al.Nutrient Dynamics in Jiaozhou Bay. Water Air Soil Pollution,2007,7,593-605
    [97]Liu S. M., Hong G. M., Zhang J., et al. Nutrient budgets for large Chinese estuaries. Biogeo-sciences,2009,6 (1):391-435
    [98]Liu S. M., Zhang J., Chen H. T., et al. Factors influencing nutrient dynamics in the eutrophic Jiaozhou Bay, North China. Progress in Oceanography,2005,66:66-85
    [99]Liu S.M, Zhang J. Nutrient Dynamics in the Macro-Tidal Yalujiang Estuary.2004
    [100]Lohrenz S. E., Fahnenstiel G. L., Redalje D. G., et al. Nutrients, irradiance, and mixing as factors regulating primary production in coastal waters impacted by the Mississippi River plume. Continental Shelf Research,1999,19 (9):1113-1141
    [101]LOICZ. LOICZ Annual Report 2001. http://www.nioz.nl/loicz,2002
    [102]Mackey D, Parslow J, Higgins H, et al. Plankton productivity and biomass in the western equatorial Pacific:biological and physical controls. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography,1995,42(2-3):499-533
    [103]McGillicuddy D. J. Eddy-induced nutrient supply and new production in the Sargasso Sea. Deep Sea Research Part Ⅰ:Oceanographic Research Papers,1997,44 (8):1427-1450
    [104]McGillicuddy D. J., Robinson A.R., Siegel D.A., et al. Influence of mesoscale eddies on new production in the Sargasso Sea. Nature,1998,394 (6690):263-266
    [105]McGillicuddy D. J., Anderson L., Bates N., et al. Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science,2007,316:1021-1026
    [106]McPhaden M. J, Zhang D. X.. Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature,2002,415(6872):603-608
    [107]Menzel D.W., Ryther J.H. Annual variations in primary production of the Sargasso Sea off Bermuda. Deep Sea Research I,1961,7 (4):282-288
    [108]Meybeck M. The IGBP water group:a response to a growing global concern. Global Change Newsletters,1998,36:8-12
    [109]Michaels A.F., Knap A.H. Overview of the US JGOFS Bermuda Atlantic Time-series Study and the Hydrostation S program. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography,1996,43(2-3):157-98
    [110]Millero F. Chemical oceanography,2nd ed. CRC Press, Inc., Boca Raton,1996, pp.281-306
    [111]Morris A. W., Bale A. J., Howland R. J. Nutrient distributions in an estuary:evidence of che-mical precipitation of dissolved silicate and phosphate. Estuarine, Coastal and Shelf Science, 1981,12:205-216
    [112]Morse J. W., Morin J. Ammonium interaction with coastal marine sediments:influence of redox conditions on K. Marine Chemistry,2005,95 (1-2):107-112
    [113]Nixon S. W. Coastal marine eutrophication:A definition, social causes, and future concerns. Ophelia,1995,41:199-219
    [114]Offiecer C. B., Ryther J. H. The possible importance of silicon in marine eutrophication. Marine Ecology Progress Series 1980,3:83-91
    [115]Ormaza-Gonzalez F, Statham P. Determination of dissolved inorganic phosphorus in natural waters at nanomolar concentrations using a long capillary cell detector. Analytica Chimica Acta,1991,244:63-70
    [116]Papush L., Danielsson A., Rahm L. Dissolved silica budget for the Baltic Sea. Journal of Sea Research,2009,62:31-41
    [117]Platt T., Harrison W.G. Biogenic fluxes of carbon and oxygen in the ocean. Nature,1985, 318:55-58
    [118]Prospero J.M., Barrett K., Church T., et al. Atmospheric deposition of nutrients to the North Atlantic Basin. Biogeochemistry,1996,35 (1):27-73
    [119]Rabalais N. N., Turner R. E., Justic D., et al. Nutrient changes in the Mississippi River and system responses on the adjacent continental shelf. Estuaries and Coasts,1996,19 (2):386-407
    [120]Rabouille C., Conley D. J., Dai M. H., et al. Comparison of hypoxia among four river domi-nated ocean margins:The Changjiang (Yangtze), Mississippi, Pearl, and Rhone rivers. Continental Shelf Research,2008,28:1527-1537
    [121]Redfield A.C.The biological control of chemical factors in the environment.American Scientist,1958,46(3):205-221
    [122]Rimmelin P., Dumon J. C., Maneux E., et al. Study of annual and seasonal dissolved inorganic nitrogen inputs into the Arcachon Lagoon, Atlantic Coast (France). Estuarine, Coastal and Shelf Science,1998,47:649-659
    [123]Shen Z. L. Historical changes in nutrient structure and its influences on phytoplantkon com-position in Jiaozhou Bay. Estuarine, Coastal and Shelf Science,2001,52 (2):211-224
    [124]Sheppard C. Seas at the millennium:an environmental evaluation:1. Regional chapters: Europe, The Americas and West Africa. Elsevier,2000a,1-934
    [125]Sheppard C. Seas at the millennium:an environmental evaluation:2. Regional chapters:The Indian Ocean to The Pacific. Elsevier,2000b,1-920
    [126]Siegel D.A. The Rossby rototiller. Nature,2001,409:576-577
    [127]Siegel D.A., Iturriaga R., Bidiare R.R., et al. Meridional variations of the springtime phyto-plankton community in the Sargasso Sea. Journal of Marine Research,1990,48(2):379-412
    [128]Siegel D.A., McGillicuddy D. J., Fields E.A. Mesoscale eddies, satellite altimetry, and new production in the Sargasso Sea. Journal of Geophysical Research,1999,104 (C6):13359-13379
    [129]Smayda T. J. Novel and nuisance phytoplankton blooms in the sea:Evidence for a global epidemic. In Toxic Marine Phytoplankton (E. Grancli, B. Sundstorm, R. Edler & D.M. Aderson eds.), Elsevier, New York,1990,29-40
    [130]Smith S.V., Hitchcock G.L. Nutrient enrichments and phytoplankton growth in the surface waters of the Louisiana Bight. Estuaries and Coasts,1994,17 (4):740-753
    [131]Taniguchi M., Burnett W., Cable J., et al. Investigation of submarine groundwater dischar-ge. Hydrological Processes,2002,16 (11):2115-2129
    [132]Thorpe J., Talbot C., Miles M., et al. Food consumption in 24 hours by Atlantic salmon (Salmo salar L.) in a sea cage. Aquaculture,1990,90 (1):41-47
    [133]Treguer P., Nelson D. M., Van Bennekom A. J., et al. The silica balance in the world ocean: a reestimate.Science,1995,268:375-379
    [134]Turner R. E., Rabalais N. N. Changes in Mississippi River water quality this century. Biosc-ience,1991,41 (3):140-147
    [135]Turner R. E., Rabalais N. N. Nan Z. Z.Phytoplankton biomass, production and growth limit-ations on the Huanghe (Yellow River) continental shelf. Continental Shelf Research,1990, 10 (6):545-571
    [136]Turner R. E., Rabalais N. N., Justic D., et al. Future aquatic nutrient limitations. Marine Poll-ution Bulletin,2003,46:1032-1034
    [137]ValielaJ., Costa K., Foreman J. M., Teal, et al Transport of water-borne nutrients from water-sheds and their effects on coastal waters. Biogeochemistry,1990,10:177-198
    [138]Vitousek P. M., Aber J., Bayley S.E., et al. Human Alteration of the Global Nitrogen Cycle: Causes and Consequences. Ecological Society of America (ESA),1997,16:1-15
    [139]Walsh I.D., Gardner W.D., Richardson M.J., et al. Particle dynamics as controlled by the flow field of the eastern equatorial Pacific. Deep Sea Research Part Ⅱ:Topical Studies in Ocean-ography,1997,44(9-10):2025-2047
    [140]Webster I.T., Smith S.V., Parslow J.S. Implications of spatial and temporal variation for biogeochemical budgets of estuaries. Estuaries and Coasts,2000,23 (3):341-3
    [141]Wen L. S., Jiann K. T., Liu K. K. Seasonal variation and flux of dissolved nutrients in the Danshuei Estuary, Taiwan:A hypoxic subtropical mountain river. Estuarine, Coastal and Shelf Science,2008,78:694-704
    [142]Williams R. G., Follows M. J. The Ekman transfer of nutrients and maintenance of new pro-duction over the North Atlantic. Deep-Sea Res I,1998,45:461-489
    [143]Wu R. S. S. The environmental impact of marine fish culture:towards a sustainable future. Marine pollution bulletin,1995,31 (4-12):159-166
    [144]Xu Y. P., Dai M. H., Zhai W.D., et al. Short-term dynamics of nutrients influenced by up-welling in a small oligotrophic coastal ecosystem, Gan Bay, in the northwest Philippines. Progress in Natural Science,2009,19:595-601
    [145]Ye L. A typical estuary consisting of a tidal inlet and lagoon system and its engineering significance. Estuaries and Coasts,1988,11 (4):250-254
    [146]Yin K. D., Qian P.Y., Chen J. C., et al. Dynamics of nutrients and phytoplankton biomass in the Pearl River estuary and adjacent waters of Hong Kong during summer:preliminary evidence for phosphorus and silicon limitation. Marine Ecology Progress Series,2000,194: 295-305
    [147]Yin K. D., Qian P. Y., Wu M. C., et al. Shift from P to N limitation of phytoplankton growth across the Pearl River estuarine plume during summer. Marine Ecology Progress Series,2001,221:17-28
    [148]Yin K., Harrison P. J. Nitrogen over enrichment in subtropical Pearl River estuarine coastal waters:Possible causes and consequences. Continental Shelf Research,2008,28 (12):1435-144
    [149]Zhang J., Yu Z. G., Wang J.T, et al. The subtropical Zhujiang (Pearl River) estuary:nutrient, trace species and their relationship to photosynthesis. Estuarine, Coastal and Shelf Science, 1999,49 (3):385-400

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700