V波段新型慢波结构行波管的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
V波段作为毫米波频段一个重要的大气衰减窗口,在军事和民用领域都显示出了巨大的应用潜力。目前,相对于美国、日本和欧洲等,我国对该波段资源的开发和利用显得相对滞后。为满足日趋复杂的战术军事通信和信息对抗的需要,并进一步提升我国毫米波电真空器件的理论和关键技术水平,开展对该波段的研究工作具有重要的理论和现实意义。本论文以V波段行波管为选题,以新型全金属慢波结构为主线,重点研究了两类新型的全金属慢波结构在V波段行波管中的应用。本论文的主要工作和创新点总结如下:
     1.利用曲折波导慢波结构完成了对一只V波段连续波行波管的优化设计,包括慢波结构、互作用电路、高频能量耦合系统以及聚焦磁系统等,并率先在国内开展了对V波段曲折波导行波管的实验研究。
     2.为了提高曲折波导行波管的输出功率,提出了一种新型的带状注曲折波导慢波结构,并利用该结构和带状电子注作为注-波互作用电路,完成了对V波段大功率行波管的设计。研究结果表明:采用带状电子注能极大地增加互作用面积,从而可以在不增加电流密度的情况下获得更大的输出功率。同时,只要带状电子注通道的尺寸选择合适,对行波管的带宽和电子效率影响不大,这为今后研制V波段大功率行波管提供了一个不错的思路和很好的解决方案。
     3.提出了一种新型的宽带大功率慢波结构一V型曲折矩形槽慢波结构,并利用该结构完成了对V波段行波管互作用电路的设计。研究结果表明:该结构能在保持良好工作性能的同时增加互作用面积,从而可以在不增加电流密度的情况下采用更大的电子注电流,因而能获得更大的输出功率。同时,该结构是一个典型的二维结构,且不需要单独加工电子注通道,加工和装配都十分简单。因此,V型曲折矩形槽慢波结构是一种有潜力的宽带大功率毫米波慢波结构,它的提出将对宽带大功率毫米波辐射源的发展起到积极的推动作用。
     4.提出了一种适用于重入式双交错梯形线耦合腔慢波结构的输入/输出耦合结构,很好地解决了外部电路与慢波结构之间的能量耦合问题,并将该结构成功应用于V波段行波管的设计之中,完成了对一只100W重入式双交错梯形线耦合腔行波管的具体设计。研究结果表明:相比曲折波导行波管,在电子注电压基本相同的情况下,重入式双交错梯形线耦合腔行波管具有更大的输出功率和更高的电子效率,且通过调节电子注电压能使其工作带宽拓展至与曲折波导相当,这为我们研制V波段大功率行波管提供了又一优选方案。
     5.为三槽梯形线耦合腔慢波结构提出了一种匹配良好的输入/输出能量耦合结构,很好地解决了与外电路之间的能量耦合问题,并利用该结构和一个长宽比为5:1的带状电子注完成了对V波段行波管互作用电路的设计。粒子模拟结果表明:当电子注电压和电流分别为13.2kV和300mA时,在58-64GHz的频带范围内,该管的饱和输出功率大于320W,对应的饱和增益和电子效率分别大于32.56dB和8%。该结构为今后研制V波段宽带大功率行波管提供了一个良好的方案。
As an important atmospheric attenuation window, the V-band has been shown great potential on both military and civil areas. At present, the development and utilization of this band in our county lags relatively behind compared with USA, Japan and Europe. In order to meet the requirement of complex military communication and information countermeasure, and to further improve the theory and key technology level on millimeter-wave vacuum electronics, researches on this band are of great significance in both theory and practice. The dissertation is based on the V-band traveling-wave tube and puts emphasis on the research of two kinds of novel all-metal slow-wave structures. And the application potentials of these structures in V-band traveling-wave tube are analyzed. The main work and innovations of this dissertation are as follows:
     1. The folded waveguide slow-wave structure is employed to design the V-band CW traveling-wave tube, including the slow-wave structure, the interaction circuit, the high-frequency coupling structure and the magnetic focusing system, etc. And the experimental study on the V-band traveling-wave tube is conducted firstly in domestic.
     2. In order to improve the output power of the folded waveguide traveling-wave tube, a novel sheet beam folded waveguide is proposed. And design of the V-band high-power traveling-wave tube is completed by employing this structure and sheet electron beam as the interaction circuit. From the research results, it can greatly increase the interaction area by adopting the sheet electron beam, which can acquire more output power without increasing the current density. Meanwhile, it has little effect on the bandwidth and electron efficiency of the tube if proper size of the beam channel is chosen. Therefore, it provides a good idea for the development of V-band high-power traveling-wave tube.
     3. A novel wideband high-power slow-wave structure called V-shape folded rectangular groove is proposed innovatively, and the interaction circuit for the V-band traveling-wave tube is designed by employing this structure. The research results show that it can increase the interaction area without variation of good working performance, which can adopt the sheet electron beam with larger area to acquire more output power. Meanwhile, it is a typical two-dimensional structure and don't need to machining the beam tunnel, which can be fabricated and assembled easily. Therefore, as a very potential wideband high-power millimeter-wave structure, the V-shape folded rectangular groove waveguide will play a positive role in the development of wideband high-power millimeter-wave radiation sources.
     4. In order to solve the energy coupling problem between external circuit and the reentrant double staggered ladder line coupled-cavity slow-wave structure, a well-matched input and output coupler is proposed. And design of a100watts V-band coupled-cavity traveling-wave tube is completed by employing this structure. Compared with the folded waveguide traveling-wave tube, it has more output power and higher electron efficiency under the condition of the basiclly same voltage. And the working bandwidth of the tube can be expanded to the same level of the folded waveguide travel ing-wave tube by tuning the beam voltage. Therefore, it provides another optimal scheme for the development of V-band high-power traveling-wave tube.
     5. A well-matched input and output coupler is proposed for the three slot ladder line coupled-cavity slow-wave structure, and the interaction circuit for the V-band traveling-wave tube is designed by employing this structure and a5:1aspect-ratio sheet electron beam. From our calculations, when the cathode voltage and beam current are set to13.2kV and300mA, the three slot ladder line coupled-cavity traveling-wave tube can produce saturated output power of over320watts, the corresponding saturated gain and electron efficiency can reach over32.56dB and8%, respectively. This structure provides a good scheme for the development of V-band wideband high-power traveling-wave tube.
引文
[1]庞之浩.世界通信/导航卫星回顾与展望.第七届卫星通信新技术新业务年会,2011,11-20
    [2]王娟,吴刚,样明华,等.大功率毫米波行波管发展现状.真空电子技术,2010,52(5):38-42
    [3]瞿波,冯进军.高效率毫米波行波管.真空电子技术,2010,52(2):16-20
    [4]魏晨曦.美军用卫星MILSTAR系统简介.邮电设计技术,1998,(12):17-20
    [5]G. K. Kornfeld, E. Bosch, W. Gerum, et al.60 GHz space TWT to address future market. IEEE Trans. Electron Devices,2001,48(1):68-71
    [6]王文祥.微波工程技术.北京:国防工业出版社.2009,1-677
    [7]甘体国.毫米波工程.成都:电子科技大学出版社,2006,1-4
    [8]薛良金.毫米波工程基础.北京:国防工业出版社,1998,1-14
    [9]石星.毫米波雷达的应用和发展.电讯技术,2006,46(01):1-9
    [10]申明磊.V波段毫米波功率放大器的研究:[硕士学位论文].南京:南京理工大学,2004,1-4
    [11]朱全庆,邹雪城,东振中,等IEEE 1394未来总线.微电子学与计算机,2001,18(4):52-56
    [12]P. Smulders. Exploiting the 60 GHz Band for Local Wireless Multimedia Access:Prospects and Future Directions. IEEE Communications Magazine,2002,40(1):140-147
    [13]肖雷.毫米波雷达的发展状况及其应用.集成电路通讯,2007,25(2):37-40
    [14]王斌,刘昭度,何玮,等.车用测距雷达研究进展.传感器与微系统,2006,25(3):7-9
    [15]A. Haderer, C. Wagner, R. Feger, et al. A 77 GHz FMCW front-end with FPGA and DSP support. The International Radar Symposium,2008,1-6
    [16]IEEE Computer Society. Wireless Medium Access Control and Physical Layer Specifications for High Rate Wireless Personal Area Networks. New York, USA,2009,1-169
    [17]杨辉.毫米波全固态集成接收前端的研制:[硕士学位论文].成都:电子科技大学,2008,1-30
    [18]C. Thakkar, L. Kong, K. Jung, et al. A 10 Gb/s 45 mW adaptive 60 GHz baseband in 65 nm CMOS. VLSI Circuits Symposium,2011,24-25
    [19]C. Y. Hsieh, J. J. Kuo, Z. M. Tsai, et al. A 57-66 GHz medium power amplifier in 65-nm CMOS technology. Asia-Pacific Microwave Conference Proceedings,2010,1617-1620
    [20]M. Micovic, A. Kurdoghlian, et al. W-band GaN MMIC with 842 mW output power at 88 GHz. IEEE MTT-S International Microwave Symposium Digest,2010,237-239
    [21]J. X. Qiu, B. Levush, J. Pasour, et al. Vacuum tube amplifiers. IEEE Microwave Magazine, 2009,10(7):38-51
    [22]刘军华.不断发展的行波管技术.真空电子技术,2010,52(4):83-86
    [23]廖复疆.大功率微波电真空电子学技术进展.电子学报,2006,34(3):513-516
    [24]字张雄.大功率行波管的现状与发展.真空电子技术,2008,52(5):58-61
    [25]M. K. Alaria, A. Bera, et al. Design and Development of Helix Slow-Wave Structure for Ku-Band TWT. IEEE Trans. Plasma Science,2011,39(1):550-554
    [26]刘燕文,韩勇,丁耀根,等.螺旋线行波管慢波组建散热性能的研究进展.中国电子学会真空电子学分会第十八届学术年会论文集,2011,358-361
    [27]吴常津.毫米波耦合腔行波管高频系统的基本特点与工艺结构综述.真空电子技术,2001,43(3):11-18
    [28]刘洋.宫玉彬.沈飞,等.一种V型曲折波导慢波结构的研究.中国电子学会真空电子学分会第十八届学术年会论文集,2011,160-164
    [29]宫玉彬,魏彦玉,黄民智,等.新型慢波系统毫米波行波管研究.微波学报,2010.26(S1):404-408
    [30]王文祥,宫玉彬,魏彦玉,等.大功率行波管新型慢波线技术的进展.真空电子技术,2002,44(6):13-18
    [31]王文祥,余国芬,宫玉彬,等.行波管慢波系统的新进展—全金属慢波结构.真空电子技术,1995,37(5):30-37
    [32]J. K. Waterman. Folded-waveguide millimeter-wave circuit model:[Master's thesis]. California:Stanford University,1979
    [33]D. Gallagher, J. Richards, C. Armstrong. Millimeter-wave folded waveguide TWT development at Northrop Grumman. IEEE International Conference on Plasma Science,1997, 161
    [34]D. Gallagher, J. Tucek, M. Converse, et al. Optimized Design of Folded Waveguide TWTs. Third IEEE International Vacuum Electron Conference,2002,46
    [35]J. Tucek, M. Basten, D. Gallagher, et al.220 GHz Folded Waveguide Circuits for High Power Amplifiers. IEEE International Vacuum Electronics Conference,2009,108-109
    [36]J.Tucek, M. Basten, D. Gallagher, et al. Sub-Millimeter and THz Power Amplifier Development at Northrop Grumman. IEEE International Vacuum Electronics Conference, 2010,19-20
    [37]O. V. Makarova, R. Divan, J. Tucek, et al. Fabrication of Solid Copper 220 GHz Folded Waveguide Circuits by UV Lithography. IEEE International Vacuum Electronics Conference, 2010,183-184
    [38]K. Nguyen, L. Ludeking, J. Pasour, et al. Design of a High-Gain Wideband High-Power 220-GHz Multiple-beam Serpentine TWT. IEEE International Vacuum Electronics Conference, 2010,23-24
    [39]M. Basten, J. Tucek, D. Gallagher, et al. A Multiple Electron Beam Array for a 220 GHz Amplifier. IEEE International Vacuum Electronics Conference,2009,110-111
    [40]A. J. Theiss, D. B. Lyon, Y. Hiramatsu. An integral-polepiece folded-waveguide slow-wave circuit for high-power millimeter-wave TWTs. IEDM,1993,149-151
    [41]D. B. Lyon, A. J. Theiss. Litton folded-waveguide high-power millimeter-wave TWTs. IEDM, 1994,918-920
    [42]J. T. Alan, C. J. Meadows, R. B. True. Experimental Investigation of a Novel Circuit for Millimeter-Wave TWTs. IEEE Trans. Electron Devices,2007,54(5):1054-1060
    [43]A. J. Theiss, C. J. Meadows, R. Freeman, et al. High-average power W-band TWT development. IEEE Trans. Plasma Science,2010,38(6):1239-1243
    [44]C. Kory, R. L. Ives, M. Read, et al. W-band MEMS-based TWT development. IEEE International Vacuum Electronics Conference,2004,88-89
    [45]C. Kory, R. L. Ives, M. Read, et al. Microfabricated W-band traveling wave tubes. The Joint 30th International Conference on IRMMW-THz,2005,85-86
    [46]C. Kory, R. L. Ives, M. Read, et al. Overview of W-Band Traveling Wave Tube Programs. IEEE International Vacuum Electronics Conference,2006,447-448
    [47]H. J. Ha, S. S. Jungy, G. S. Park. Linear Theory of a Folded Waveguide Traveling-Wave Tube. Journal of the Korean Physical Society,1999,34(3):297-300
    [48]H. J. Ha, W. K. Han, G. S. Park. Nonlinear theory of folded waveguide TWT. International Vacuum Electronics Conference,2000,35
    [49]S. T. Han, K. H. Jang, J. K. So, et al. Low-voltage operation of Ka-band folded waveguide traveling-wave tube. IEEE Trans. Plasma Science,2004,32(1):60-66
    [50]J. K. So, Y. M. Shin, et al. Experimental Investigation of Micro-fabricated Folded Waveguide Backward Wave Oscillator for Submillimeter Application. The Joint 31st International Conference on IRMMW-THz,2006,315
    [51]S. Bhattacharjee, J. H. Booske, C. L. Kory, et al. Investigations of folded waveguide TWT oscillators for THz radiation. IEEE International Conference on Vacuum Electronics,2003, 317-318
    [52]S. Bhattacharjee, J. H. Booske, C. L. Kory, et al. Folded waveguide traveling-wave tube sources for terahertz radiation. IEEE Trans. on Plasma Science,2004,32(3):1002-1014
    [53]冯进军,胡银富,蔡军,等.w波段行波管发展评述.真空电子技术,2010,52(2):27-32
    [54]何俊.毫米波新型曲折波导行波管的研究:[博士学位论文].成都:电子科技大学,2010,35-41
    [55]H. R. Gong, Y. B. Gong, T. Tang, et al. Experimental Investigation of a High-Power Ka-Band Folded Waveguide Traveling-Wave Tube. IEEE Trans. Electron Devices,2011,58(7): 2159-2163
    [56]Xu Ao, Wang Wen Xiang, Wei Yan Yu, et al. Analysis of space harmonic selectivity of period-varying folded waveguide. Chinese Physics B,2009,18(3):1270-1275
    [57]Xu Ao, Wang Wen Xiang, Wei Yan Yu, et al. The study of synchronization in the periodic nonuniform folded waveguide. Chinese Physics B,2009,18(2):810-814
    [58]徐翱.变周期慢波系统的研究:[博士学位论文].成都:电子科技大学,2009
    [59]Y. B. Gong, H. R. Yin, Y. Y. Wei. Study of Traveling Wave Tube with Folded-Waveguide Circuit Shielded by Photonic Crystals. IEEE Transactions on Electron Devices,2010,57(5): 1137-1145
    [60]殷海荣.光子晶体行波管研究:[博士学位论文].成都:电子科技大学,2007,1-156
    [61]Y. B. Gong, H. R. Yin, L. N. Yue, et al. A 140-GHz Two-Beam Overmoded Folded-Waveguide Traveling-Wave Tube. IEEE Trans. on Plasma Science,2011,39(3):847-851
    [62]何俊,魏彦玉,赵国庆,等.曲折双脊波导慢波结构的研究.中国电子学会真空电子学分会第十七届学术年会论文集,2009,285-289
    [63]何俊,魏彦玉,宫玉彬,等.Ka波段曲折双脊波导行波管的研究.物理学报,2010,59(4):2843-2849
    [64]廖明亮,魏彦玉,何俊,等.两种新型毫米波曲折波导慢波线的研究.中国电子学会真空电子学分会第十七届学术年会论文集,2009,89-92
    [65]Jun He, Yanyu Wei, Yubin Gong, et al. Linear Analysis of a W band Groove-loaded Folded Waveguide Traveling Wave Tube. Physics of Plasmas,2010,17:113305
    [66]何俊,魏彦玉,宫玉彬,等.脊加载曲折波导行波管注波互作用的线性理论研究.物理 学报,2010,59(9):6659-6665
    [67]方天宇.新型曲折波导行波管的研究:[硕士学位论文].成都:电子科技大学,2011,1-50
    [68]B. G. James. Coupled-cavity TWT designed for future mm-wave systems. Microwave Syst. News Commun. Technol.,1986,16:105-106
    [69]B. G. James, P. Kolda. A ladder circuit coupled-cavity TWT at 80-100 GHz. The 1986 International Electron Devices Meeting. Los Angeles, USA,1986,12:494-497
    [70]B. G. James, D. A. Shepard, J. R. Legarra. A CFPPM focused 250 Watt CW millitron at 27-30 GHz. International Electron Devices Meeting.1987,489-491
    [71]J. R. Legarra, M. Cascone, J. Cusick, et al. A CW 500 Watt Ka-Band Coupled-Cavity TWT for Digital Satellite Communication. The 4th IEEE International Conference on Vacuum Electronics,2003,42-43
    [72]J. R. Legarra, J. Cusick, R. Begum, et al. A 500-W coupled-cavity TWT for Ka-band communication. IEEE Trans. Electron Devices,2005,52(5):665-668.
    [73]H. J. Kim, H. J. Kim, J. J. Choi, et al. Particle-In-Cell Simulations on a Ka-band, Double-Slot Staggered Coupled-Cavity Traveling-Wave Tube. IEEE International Vacuum Electronics Conference,2008,302-303
    [74]H. J. Kim, H. J. Kim, J. J. Choi. MAGIC3D Simulations of a 500-W Ka-Band Coupled-Cavity Travel ing-Wave Tube. IEEE Trans. Electron Devices,2009,56(1):149-155
    [75]Yu-bin Gong, Yuan-long Mo, Yong-dong Zhou, et al. Analysis for the double staggered ladder circuit. Int. J. of IR/MM waves,1996,17(4):796-777.
    [76]宫玉彬,周永东,莫元龙,等.毫米波双交错梯形耦合腔链的研究.电子学报,1996,24(3):19-22
    [77]宫玉彬,莫元龙.毫米波宽带TWT双交错慢波结构的理论.电子科技大学学报,1993,22(3):284-290
    [78]宫玉彬,莫元龙,孙嘉鸿.双交错Millitron慢波结构的实验研究.电子科技大学学报,1993,22(6):655-658
    [79]Y. M. Shin, G. S. Park, G. P. Scheitrum, et al. Novel Coupled-Cavity TWT Structure Using Two-Step LIGA Fabrication. IEEE Trans. Plasma Science,2003,31(6):1317-1324
    [80]S. J. Cooke, B. Levush, T. M. Antonsen. A coupled-cavity slow-wave structure for sheet-beam devices. IEEE International Vacuum Electronics Conference, Monterey, CA,487-488,2006
    [81]P. B. Larsen, D. K. Abe, S. J. Cooke, et al. Characterization of a Ka-band Sheet-Beam Coupled-Cavity Slow-Wave Structure. IEEE Trans. Plasma Science,2010,38(6):1244-1254
    [82]P. B. Larsen, D. K. Abe, S. J. Cooke, et al. Experimental Characterization of a Ka-Band Sheet-Beam Coupled-Cavity Slow-Wave Structure. IEEE International Vacuum Electronics Conference,2009,225-226
    [83]S. J. Cooke, B. Levush, G. S. Nusinovich. Linear TWT analysis for sheet-beam interaction. IEEE International Vacuum Electronics Conference,2008,181-182
    [84]王文祥,唐涛,岳玲娜,等.曲折槽波导慢波线.中国专利,ZL 2009 2 0082778.6,2010-08-04
    [85]Y. Tian, L. Yue, J. Xu, et al. A Novel Slow-Wave Structure-Folded Rectangular Groove Waveguide for Millimeter-Wave TWT. IEEE Trans. Electron Devices,2012,59(2):510-515
    [86]田艳艳,岳玲娜,许雄,等.W波段曲折矩形槽波导行波管的模拟研究.中国电子学会真空电子学分会第十八届学术年会论文集,2011,61-64
    [87]薛东海.曲折槽波导新型慢波结构的高频特性研究:[硕士学位论文].成都:电子科技大学,2006,32-51
    [88]张明皓,魏彦玉,岳玲娜,等.曲折矩形槽波导慢波结构高频特性分析.中国电子学会真空电子学分会第十八届学术年会论文集,2011,263-267
    [89]薛东海,王文祥,岳玲娜,等.曲折矩形槽波导慢波系统的高频特性.真空电子技术,2006,48(3):11-13
    [90]H. Limburg, D. Zamora, J. Davis, et al. A 75 Watts,59 to 64 GHz Space TWT. NASA Contractor Report,1995,1-39
    [91]J. D. Wilson, P. Ramins, D. A. Force. A high-efficiency 59 to 64 GHz TWT for intersatellite communications. International Electron Devices Meeting,1991,585-588
    [92]J. D. Wilson, C. L. Kory. Simulation of cold-test parameters and RF output power for a coupled-cavity traveling-wave tube. IEEE Trans. Electron Devices,1995,42(11):2015-2020
    [93]C. L. Kory, J. D. Wilson. Novel high-gain, improved-bandwidth, finned-ladder V-band traveling-wave tube slow-wave circuit design. IEEE Trans. Electron Devices,1995,42(9): 1686-1692
    [94]申明磊.V波段毫米波功率放大器的研究:[硕士学位论文].南京:南京理工大学,2004,41-60
    [95]陈春红.V波段低噪声放大器的研制:[硕士学位论文].南京:南京理工大学,2004,33-46
    [96]刘抒民.V波段低噪声放大器的设计:[硕士学位论文].南京:南京理工大学,2004, 8-56
    [97]邓勇CMOS基V波段毫米波低噪声放大器:[硕士学位论文].成都:电子科技大学,2008,44-64
    [98]宋立娜,李晓,叶荣钦.一种V波段近距离探测毫米波功率放大器设计.电子科技,2011,24(7):57-60
    [99]Y. H. Na, S. W. Chung, J. J. Choi. Analysis of a broadband Q band folded waveguide traveling-wave tube. IEEE Trans. Plasma Science,2002,30(3):1017-1023
    [100]Y. M. Shin, L. R. Barnett, N. C. Luhmann. Phase-Shifted Travel ing-Wave-Tube Circuit for Ultrawideband High-Power Submillimeter-Wave Generation. IEEE Transactions on Electron Devices,2009,56(5):706-712
    [101]蔡军.W波段折叠波导慢波结构的研究:[博士学位论文].山东:山东大学,2006,58-78
    [102]廖承恩.微波技术基础.西安:西安电子科技大学出版社.2005,65-84
    [103]G. Dohler, D. Gagne, D. Gallagher, et al. Serpentine waveguide TWT. International Electron Devices Meeting,1987,485-488
    [104]J. R. Pierce. Traveling Wave Tubes. Princeton NJ:Van Nostrand,1950,231-259
    [105]J. H. Booske, M. C. Converse, M. C. Kory, et al. Accurate parametric modeling of folded waveguide circuits for millimeter-wave traveling wave tubes. IEEE Transactions on Electron Devices,2005,52(5):685-694
    [106]Ansoft Corp. Ansoft HFSS User's Reference, http://www.ansoft.com.cn/
    [107]CST Corp. CST MWS&PS Tutorials, http://www.cstchina.cn/
    [108]R. L. Zheng, X. Y. Chen. Parametric Simulation and Optimization of Cold-test Properties for a 220 GHz Broadband Folded Waveguide Traveling-wave Tube. J. Infrared Milli. Terahz Waves,2009,30:945-958
    [109]杨祥林.微波器件原理.北京:电子工业出版社,1994,139-141
    [110]巩华荣,宫玉彬,唐涛,等.折叠波导行波管切断匹配的设计.强激光与粒子束,2011,23(2):445-448
    [111]徐玮,林祖伦,贺兆昌,等.利用MWS设计螺旋线行波管耦合系统.电子器件,2008,31(5):1627-1630
    [112]唐涛,巩华荣,宫玉彬,等.毫米波折叠波导行波管输入输出过渡波导设计.强激光与粒子束,2010,22(5):1103-1106
    [113]张丁.X波段盒型输出窗频率特性的改进.电子与信息学报,2007,29(6):1518-1520
    [114]邓德荣,周霖,单李军.X波段耦合腔行波管周期永磁聚焦系统.强激光与粒子束,2010, 22(4):837-840
    [115]张虹,刘伟伟,李顺.一种新型周期永磁聚束系统的设计.真空电子技术,2010,52(3):11-14
    [116]电子管设计手册编辑委员会.微波电子管磁路设计手册.北京:国防工业出版,1984:274-291
    [117]沈金亮,宫玉彬,王战亮,等.交错磁场聚焦带状电子注的研究.空间电子技术,2009,1:60-64
    [118]J. H. Booske, B. D. McVey, et al. Stability and confinement of nonrelativistic sheet electron beams with periodic cusped magnetic focusing. J. Appl. Phys.,1993,73(9):4140-4155
    [119]K. T. Nguyen, J. A. Pasour, et al. Intense sheet electron beam transport in a uniform solenoidal magnetic field. IEEE trans. Electron devices,2009,55(5):744-752
    [120]阮存军,王树忠,韩莹,等.高传输通过率带状电子注聚焦与传输特性的研究.物理学报,2011,60(8):084105
    [121]郭先奎.片状电子注电子枪理论研究:[硕士学位论文].成都:电子科技大学,2008,1-50
    [122]王同波.带状电子注在Wiggler磁场中的传输特性研究:[硕士学位论文].成都:电子科技大学,2008,1-53
    [123]王同波,段兆云,王战亮Wiggler磁场聚焦带状电子注.强激光与离子束,2008,20(12):2041-2045
    [124]F. J. Tischer. The Groove Guide, a Low-loss Waveguide for Millimeter Waves. IEEE Trans. Microw. Theory Tech.,1963,11(5):291-296
    [125]刘金莹,秦建章.矩形波导-槽波导转换器的优化设计.电波科学学报,1991,6(Z1):443
    [126]张克潜,李德杰.微波与光电子学中的电磁理论.北京:电子工业出版社.2001,293-301
    [127]V. L. Christie, M. Sumathy, L. Kumar, et al. Optimization of waveguide coupler for coupled-cavity TWT using artificial neural network. IEEE International Vacuum Electronics Conference,2010,263-264
    [128]T. Kageyama. The Design of the transition region in coupled-cavity TWT. IEEE International Vacuum Electronics Conference,2002,102-103
    [129]L. Young. Stepped-impedance transformers and filter prototypes. IRE Trans. Microw. Theory Tech.,1962,10(5):339-359
    [130]刘宏.矢量网络分析仪的校准方法.电子质量,2011,292(7):71-77
    [131]王战亮.带状电子注的形成,传输与应用研究:[博士学位论文].成都:电子科技大学,2010,1-117
    [132]Wang Zhanliang, Gong Yubin, Wei Yanyu, et al. Stable sheet beam transport in periodic nonsymmetric quadrupole field. IEEE Trans. Plasma Science,2010,38(1)
    [133]Wang Zhanliang, Gong Yubin, Wei Yanyu, et al. The conditions for stable sheet electron beams transport in periodic permanent magnet fields. JIMTW,2010,31(6):649-658
    [134]赖剑强,宫玉彬,魏彦玉,等.一种带状电子注行波管多级降压收集极.中国专利,ZL 2011 20106737.3,2011-10-05

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700