硬质合金刀具与Ti-6Al-4V钛合金的化学性能匹配研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金材料的导热系数小、高温化学活性大、弹性模量低、与其他金属材料摩擦系数大等特性使它成为一种典型的难加工材料。本文通过理论分析与试验研究相结合的方式,模拟和研究了切削加工钛合金(Ti-6Al-4V)时不同硬质合金刀具材料与工件材料的溶解-扩散情况,系统研究了硬质合金刀具材料与钛合金之间的化学性能相互匹配关系。最后,通过Ti-6Al-4V钛合金的铣削实验,验证并分析了在切削加工Ti-6Al-4V时不同硬质合金刀具的氧化磨损和溶解-扩散磨损,建立了硬质合金刀具材料与钛合金之间的化学性能匹配关系,从而为选择合适刀具材料切削加工钛合金提供了依据。
     利用热力学溶液理论,计算了硬质合金刀具材料中的WC、TiC和Co在Ti中的溶解度。刀具材料中的WC、TiC和Co在Ti中的溶解度都受温度的影响较大:温度越高,其在Ti中的溶解度越大。通过对菲克扩散定律的分析,得到了适合硬质合金刀具材料和Ti-6Al-4V之间的元素溶解-扩散浓度表达式和扩散通量表达式。根据元素溶解-扩散的浓度表达式,进一步得到了计算刀具材料和钛合金之间各元素扩散系数的方法,从而为合理解释和分析溶解-扩散试验的结果提供了理论依据。同时,对硬质合金刀具材料与Ti-6Al-4V之间元素扩散的微观机理进行了探讨。
     利用物质吉布斯自由能函数法对硬质合金刀具材料和Ti-6Al-4V钛合金可能发生的氧化反应进行了热力学计算,从理论上对氧化反应能否发生及其氧化产物进行了分析。温度为1000 K时的热力学计算结果表明:硬质合金刀具材料和Ti-6Al-4V在空气中都能发生氧化反应,其中刀具材料中的WC、TiC和Co分别被氧化成WO3、TiO2和CO3O4;而钛合金中的Ti、Al、V也会被氧化并生成相应的氧化产物;钛合金中的Ti与刀具材料中的WC会发生置换反应,生成TiC和W。
     选用YT5、YT15、YG6、YG6X和YG8五种硬质合金刀具材料与Ti-6Al-4V进行元素溶解-扩散试验。通过试验,全面分析了在相同溶解-扩散条件下不同刀具材料与Ti-6Al-4V的元素溶解-扩散,系统考察了扩散温度和扩散时间对元素溶解-扩散的影响。试验表明:相同扩散条件下,YT类硬质合金刀具材料与Ti-6Al-4V之间的元素溶解-扩散程度比YG类的严重;Co含量多的YG类硬质合金刀具材料与Ti-6Al-4V的元素溶解-扩散程度严重;细晶粒的刀具材料与Ti-6Al-4V的元素溶解-扩散程度轻微;五种硬质合金刀具材料与Ti-6Al-4V之间的元素溶解-扩散剧烈程度按由大到小的顺序排列为:YT15>YT5>YG8>YG6>YG6X;扩散温度对元素溶解-扩散的影响很大,温度越高,刀具材料与钛合金之间的元素溶解-扩散越剧烈;扩散时间对元素溶解-扩散影响表现为:溶解-扩散时间越长,元素的溶解-扩散深度越大,当扩散时间达到1.5 h左右时,溶解-扩散基本达到一个稳定的状态,即使继续延长扩散时间,元素的扩散深度增加很小。
     对元素扩散后的刀具材料进行了硬度测试,试验得出:未发生溶解-扩散的刀具硬度基本没有变化;发生溶解-扩散的刀具硬度有明显变化,在靠近扩散界面处,刀具的硬度值明显低于其正常硬度值,远离扩散界面一定距离后,刀具的硬度逐渐恢复至正常水平。虽然刀具材料与钛合金之间的元素溶解-扩散深度只有几个微米,但元素的溶解-扩散流失对刀具材料硬度的影响深度超过几十个微米。
     通过五种硬质合金刀具材料的氧化试验,系统研究了不同硬质合金刀具材料的抗氧化性能好坏。研究表明:温度为800 K时,硬质合金刀具材料在空气中开始发生氧化反应;温度为900 K时,刀具材料中的WC已经被部分氧化成WO3,Co元素被氧化成CO3O4;刀具材料中的TiC,在温度达到1300 K时才发现其氧化产物TiO2;YT类硬质合金刀具的抗氧化性一般比YG类的好;刀具成分相同时,晶粒尺寸是影响刀具抗氧化性能的关键因素,晶粒越小,刀具的抗氧化性能越好。通过Ti-6Al-4V的氧化试验,可以得出:在1100K时,Ti与空气中的02和N2发生氧化反应,生成Ti02和Ti4N3。
     在相同切削参数下进行Ti-6Al-4V的铣削实验,实验结果显示:YT类硬质合金刀具的磨损程度远远大于YG类刀具的磨损程度,溶解-扩散磨损和氧化磨损是刀具的主要磨损机理;五种硬质合金刀具的氧化磨损程度按由强到弱的顺序排列为:YT15>YT5>YG6>YG8>YG6X;切削加工过程中,钛合金切屑容易粘结在刀具表面并在高温和元素浓度梯度作用下与刀具材料发生元素的溶解-扩散,五种刀具材料的溶解-扩散磨损程度按由强到弱顺序排列为:YT15>YT5>YG8>YG6>YG6X。
     通过理论分析和试验研究相结合的方法,对上述五种不同硬质合金刀具材料与Ti-6Al-4V钛合金进行化学性能匹配研究,得出:细晶粒的YG类刀具材料与Ti-6Al-4V之间的元素溶解-扩散程度最小;在Ti-6Al-4V钛合金的铣削实验中,细晶粒YG类刀具的氧化磨损和溶解-扩散磨损程度最低;从刀具材料与工件材料的化学性能匹配分析,细晶粒YG类硬质合金刀具最适合Ti-6Al-4V钛合金的切削加工。
Titanium alloy is well known as a typical difficult-to-machine material because of its low thermal conductivity, high chemical reactivity, low modulus of elasticity and high friction factor with other metal materials. This paper selected the wear mechanism of cutting tools in high-speed machining titanium alloy as an entry point, through theory analysis and experiment research, simulated the dissolution-diffusion process between cemented carbide tools and work-piece, systemically investigated the chemical performance matching relationship between cemented carbide tools and titanium alloy. At last, oxidation wear and dissolution-diffusion wear of different carbide tools were validated and analyzed through milling titanium alloy experiments, the chemical properties matching relationship were set up between carbide tools and titanium alloy, providing reliable bases for choosing suitable carbide tools in high-speed machining titanium alloy.
     Based on the thermodynamic theory of dissolubility, the solubility of WC, TiC and Co in Ti were calculated. The solubility of WC, TiC and Co in Ti were greatly effected by temperature, and the solubility in Ti increased as the temperature increased. Expression of element diffusion concentration and expression of diffusion flux that adapt to carbide tools and titanium alloy were obtained through Fick's laws of diffusion analysis. Further more, based on the expression of element diffusion concentration, we got the method for calculating diffusion coefficients between carbide tools and titanium alloy, accordingly provided theoretical foundation for explaining and analyzing diffusion experiments logically. We also made primary discussion about microscopic mechanism in element diffusion between carbide tools and titanium alloy.
     Thermodynamic calculation of oxidation reaction between carbide tools and titanium alloy was got using Gibbs-Free Energy function, then oxidation reaction possibility and reaction products were analyzed theoretically. The results showed that at a temperature of 1000 K oxidation reaction would took place between carbide tools and titanium alloy in the air, WC, TiC and Co in carbide tools were oxidated into WO3, Co3O4 and TiO2 respectively, Ti, Al, and V in titanium alloy were also oxidated into corresponding oxidation products, Ti in titanium and WC in carbide tools turned into TiC and W through displacement reaction.
     Five carbide tools of YT5, YT15, YG6, YG6X and YG8 were chosen for element diffusion experiment with Ti-6Al-4V, element diffusion of different carbide tool materials with Ti-6Al-4V under the same diffusion condition was analyzed in detail, and the diffusion effect between tool material and workpiece material caused by diffusion temperature and diffusion time was reviewed systemically. The results showed that under the same condition, element diffusion of YT carbide tool materials with Ti-6Al-4V was serious than YG, YG carbide tool materials containing more Co had a more serious diffusion degree, and fine grain tool materials had a little diffusion with Ti-6Al-4V; dissolution-difusion degree between Ti-6Al-4V and the five carbide tools were as follows:YT15>YT5>YG8>YG6>YG6X; diffusion temperature greatly effected element diffusion, diffusion degree between carbide tools and titanium alloy increased as temperature increased; diffusion degree also increased as diffusion time increased, and reached a stable state after about 1.5 h, then it hardly increased even extend diffusion time.
     Tool hardness was tested after diffusion experiment, and the results showed that there was nearly no changes in tool hardness that carried no diffusion, but tool hardness that had carried diffusion greatly changed, hardness near the diffusion interface obviously decreased compared with normal tool hardness, and hardness far away form the interface reached a normal level gradually. Although it is only several microns took place between tool material and titanium alloy, the effect caused by diffusion was more than several tens of microns.
     Antioxygenic property of different tool materials was systemically analyzed by oxidation experiment using five carbide tools. Results showed that oxidation reaction of carbide tool materials took place when temperature reached 800 K, WC in tool materials was partly oxidated into WO3, and Co was oxidated into Co3O4 in the temperature of 900 K, TiC in tool materials was found oxidated into TiO2 when the temperature reached 1300 K, antioxygenic property of YT was better than YG, the main factor effect carbide tool oxidation was grain size when components and content were nearly the same, the smaller of the grain size, the better antioxygenic property. Through the oxidation reaction experiment of Ti-6A1-4V, we found that oxidation reaction took place at the temperature of 1100 K, Ti reacted with O2 and N2 in the air and resulting into TiO2 and Ti4N3.
     Milling experiment of Ti-6AI-4V was done under the same cutting parameters, and the results showed that wear degree of YT carbide tools was far more than YG carbide tools, dissolution-diffusion wear and oxidation wear were the main wear mechanism; the oxidation wear degree of the five carbide tools were as follows:YT15>YT5> YG6>YG8>YG6X; during the progress of cutting, titanium alloy chipping was clearly found bonded on tool surface, and made element diffusion easily took place with tool materials, dissolution-diffusion degree of the five carbide tools were as follows:YT15>YT5>YG8>YG6>YG6X.
     The chemical performance matching relationship between the five different carbide tools and Ti-6A1-4V was investigated through theory analysis and experiment research, and we concluded that:dissolution-diffusion degree of YG fine grain carbide tool was the least; YG fine grain tool had a smallest dissolution-diffusion wear and oxidation wear during practical cutting, so YG fine grain carbide tool material had a best chemical matching with Ti-6Al-4V.
引文
[1]Gurappa I. Protection of titanium alloy components against high temperature corrosion [J]. Materials Science and Engineering A.2003,356 (1-2):372-380.
    [2]Ezugwu E O, Wang Z M. Titanium alloys and their machinability--a review [J]. Journal of Materials Processing Technology.1997,68 (3):262-274.
    [3]莱茵斯C,皮特尔斯M.钛与钛合金[M].陈振华译.北京:化学工业出版社,2005:1-20.
    [4]Oda Y, Okabe T. Effect of corrosion on the strength of soldered titanium and Ti-6A1-4V alloy [J]. Dental Materials.1996,12 (3):167-172.
    [5]谢成本.钛及钛合金铸造[M].北京:机械工业出版社,2005:8-25.
    [6]张春江.钛合金切削加工技术[M].西安:西北工业大学出版社,1986:1-25.
    [7]张喜燕,赵永庆,白晨光,钛合金及应用[M].北京:化学工业出版社,2005:287-302.
    [8]刘莹,曲周德,王本贤.钛合金TC4的研究开发与应用[J].兵器材料科学与工程.2005,28(5):47-50.
    [9]Niinomi M, Kuroda D, Fukunaga K, et al. Corrosion wear fracture of new β type biomedical titanium alloys [J]. Materials Science and Engineering A.1999,263 (2):193-199.
    [10]Gurrappa I, Venugopala R D. Characterisation of titanium alloy, IMI-834 for corrosion resistance under different environmental conditions [J]. Journal of Alloys and Compounds.2005,390 (1-2): 270-274.
    [11]Luiz de Assis S, Wolynec S, Costa I. Corrosion characterization of titanium alloys by elecrochemical techniques [J]. Electrochemica Acta.2006,51 (8-9):1815-1819.
    [12]杨冠军.钛合金研究和加工技术的新进展[J].钛工业进展.2001,(3):1-5.
    [13]William D, Brewer R, Keith B, et al. Titanium alloys and processing for high speed aircraft [J]. Materials Science and Engineering A.1998,243 (1-2):299-304.
    [14]Niinomi M, Kobayashi T. Fracture characteristics analysis related to the microstructures in titanium alloys [J]. Materials Science and Engineering A.1996,213 (1-2):16-24.
    [15]Honnorat Y. Issues and breakthrough in the manufacture of turboengine titanium parts [J]. Materials Science and Engineering A.1996,213 (1-2):115-123.
    [16]Fanning J C. Properties of TIMETAL 555 (Ti-5.5Al-5Mo-5V-3Cr) [J]. Journal of Materials Engineering and Performance.2005,14:788-791.
    [17]Lopez de lacalle L N, Perez J, Llorente J I, et al. Advanced cutting conditions for the milling of aeronautical alloys [J]. Journal of Materials Processing Technology.2000,100 (1-3):1-11.
    [18]Kitagawa T, Kubo A, Maekawa K. Temperature and wear of cutting tools in high-speed machining of Inconel 718 and Ti-6Al-6V-2Sn [J]. Wear.1997,202 (2):142-148.
    [19]Nabhani F. Machining of aerospace titanium alloys [J]. Robotics and Computer-Integrated Manufacturing.2001,17 (1-2):99-106.
    [20]Motonishi S, Hara Y, Isoda S, et al. Study on machining of titanium and its alloys [J]. Kobelco Technology Review.1987, (2):28-31.
    [21]日本钛协会.钛材料及其应用[M].周连在译.北京:冶金工业出版社,2008:16-136.
    [22]Boyer R R, Briggs R D. The use of beta titanium alloys in the aerospace industry [J]. Journal of Materials Engineering and Performance.2004,56:681-685.
    [23]Zhou Y G, Zeng W D, Yu H Q. An investigation of a new near-beta forging process for titanium alloys and its application in aviation compinents [J]. Materials Science and Engineering A.2005, 393 (1-2):204-212.
    [24]Boyer R. R. An overview on the use of tianium in the aerospace industry [J]. Materials Science and Engineering.1996,213:103-114.
    [25]彭艳萍,曾凡昌.国外航空钛合金的发展应用及其特点分析[J].材料工程.1997,(10):3-6.
    [26]Gurrappa I. Characterization of titanium alloy Ti-6Al-4V for chemical, marine and industrial applications [J]. Materials Characterization.2003,51 (2-3):131-139.
    [27]Makoto Y. An overview on the development of titanium alloys for non-aerospace application in Japan [J]. Materials Science and Engineering A.1996,213 (1-2):8-15.
    [28]Schutz R W, Watkins H B. Recent developments in titanium alloy application in the energy industry [J]. Materials Science and Engineering A.1998,243 (1-2):305-315.
    [29]赵永庆,魏剑锋.钛合金的应用和低成本制造技术[J].材料导报.2003,17(4):5-7.
    [30]吴全兴.日本纯钛及钛合金加工材标准的修订[J].钛工业进展.2001,(6):45-46.
    [31]Wang K. The use of titanium for medical applications in the USA [J]. Materials Science and Engineering A.1996,213 (1-2):134-137.
    [32]Mitsuo N. Recent research and development in titanium alloys for biomedical applications and healthcare goods [J]. Science and Technology of Advanced Materials.2003,4 (5):445-454.
    [33]Rack H J, Qazi J I. Titanium alloys for biomedical applications [J]. Materials Science and Engineering C.2006,26 (8):1269-1277.
    [34]Taddei E B, Henriques V A R, Silva C R M, et al. Production of new titanium alloy for orthopedic implants [J]. Materials Science and Engineering C.2004,24 (5):683-687.
    [35]李文平.钛合金的应用现状及发展前景[J].轻金属.2002,(5):53-55.
    [36]林玉栋.钛及钛合金的焊接[J].新材料新工艺.2001,(5):17-20.
    [37]Masafumi K. The use of cutting temperature to evaluate the machinability of titanium alloys [J]. Acta Biomaterialia.2009,5 (2):770-775.
    [38]Ezugwu E O, Bonney J, Yamane Y. An overview of the machinability of aeroengine alloys [J]. Journal of Materials Processing Technology.2003,134 (2):233-253.
    [39]Qu J, Blau P J, Thomas R, et al. Friction and wear of titanium alloys sliding against metal, polymer, and ceramic counterfaces [J]. Wear.2005,258 (9):1348-1356.
    [40]Singh R, Khamba J S. Taguchi technique for modeling material removal rate in ultrasonic machining of titanium [J]. Materials Science and Engineering A.2007,460-461:365-369.
    [41]Singh R, Khamba J S. Investigation for ultrasonic machining of titanium and its alloys [J]. Journal of Materials Processing Technology.2007,183 (2-3):363-367.
    [42]Singh R, Khamba J S. Ultrasonic machining of titanium and its alloys:A review [J]. Journal of Materials Processing Technology.2006,173 (2):125-135.
    [43]Hascalik A, Caydas U. Electrical discharge machining of titanium alloy (Ti-6Al-4V) [J]. Applied Surface Science.2007,253 (22):9007-9016.
    [44]张云鹏,赵伟,孙广标,等.超声电火花复合加工钛合金表明质量研究[J].电加工与模具.2009,(1):22-25.
    [45]Zhao W S, Wang Z L, Di S C, et al. Ultrasonic and electric discharge machining to deep and small hole on titanium alloy [J]. Journal of Materials Processing Technology.2002,120 (1-3):101-106.
    [46]王振龙,迟关心,狄士春,等.钛合金深小孔的微细超声电火花加工技术[J].兵工学报.2000,
    21(4):346-349.
    [47]苌浩,何宁,满忠雷.TC4的铣削加工中铣削力和刀具磨损研究[J].航空精密制造技术.2003,3(39):30-33.
    [48]张宁.高速钢磁控溅射离子镀TiN涂层的性能研究[J].材料热处理技术.2009,38(16):104-106.
    [49]邓敏,潘应君,尹作鹏.高速钢表面PN+PVD复合处理工艺和性能研究[J].武汉科技大学学报.2009,32(2):137-141.
    [50]肖继明,李言,白力静,等.CrAlTiN涂层高速钢刀具的切削性能和磨损特性[J].材料热处理学报.2005,26(6):117-121.
    [51]肖诗纲.刀具材料及其合理选择[M].第2版.北京:机械工业出版社,1990:349-360.
    [52]List G, Nouarl M, Gehin D, et al. Wear behaviour of cemented carbide tools in dry machining of aluminium alloy [J]. Wear.2005,259 (7-12):1177-1189.
    [53]Filice L, Micari F, Settineri L, et al. Wear modelling in mild steel orthogonal cutting when using uncoated carbide tools [J]. Wear.2007,262 (5-6):545-554.
    [54]Kindermann P, Schlund P. High-temperature fatigue of cemented carbides under cyclic loads [J]. International Journal of Refractory Metals & Hard materials.1999,17 (1-3):55-68.
    [55]杨振朝,张定华,姚倡锋,等.TC4钛合金高速铣削参数对表面完整性影响研究[J].西北工业大学学报.2009,27(4):538-543.
    [56]龙震海,王西彬,刘志兵.高速铣削难加工材料时硬质合金刀具前刀面磨损机理及切削性能研究[J].摩擦学学报.2005,25(1):83-87.
    [57]Komanduri R, Reed WR. Evaluation of carbide grades and a new cutting geometry for machining titanium alloys [J]. Wear.1983,92 (1):113-123.
    [58]Dearnley P A, Grearson A N. Evaluation of principal wear mechanisms of cemented carbides and ceramics used for machining titanium alloy IMI 318 [J]. Materials Science and Technology.1986,2 (1):47-58.
    [59]危卫华,徐九华,傅玉灿,等置氢钛合金TC4的切削加工性研究[J].南京航空航天大学学报.2009,41(5):633-638.
    [60]许鸿昊,左敦稳,朱笑笑,等.拉伸高速铣削对TC4钛合金疲劳性能的影响[J].南京航空航天
    大学学报.2008,40(2):260-264.
    [61]Ezugwu E O. Improvements in the machining of aero-engine alloys using self-propelled rotary tooling technique [J]. Journal of Materials Processing Technology.2007,185 (1-3):60-71.
    [62]Lei S T, Liu W J. High-speed machining of titanium alloys using the driven rotary tool [J]. International Journal of Machine Tools and Manufacture.2002,42 (6):653-661.
    [63]赵威,何宁,李亮,等.氮气油雾介质下Ti-6Al-4V钛合金高速铣削试验研究[J].南京航空航天大学学报.2006,38(5):634-638.
    [64]Ribeiro M V, Moreira M R V, Ferreira J R. Optimization of titanium alloy (6Al-4V) machining [J]. Journal of Materials Processing Technology.2003,143-144:458-463.
    [65]Cheharon C H. Tool life and surface integrity in turning titanium alloy [J]. Journal of Materials Processing Technology.2001,118 (1-3):231-237.
    [66]Cheharon C H, Jawaid A. The effect of machining on surface integrity of titanium alloy Ti-6% Al-4% V [J]. Journal of Materials Processing Technology.2005,166 (2):188-192.
    [67]Puerta Velasquez J D, Bolle B, Chevrier P, et al. Metallurgical study on chips obtained by high speed machining of a Ti-6wt.%Al-4wt.%V alloy [J]. Materials Science and Engineering A.2007, 452-453:469-474.
    [68]Jawaid A, Cheharon C H, Abdullah A. Tool wear characteristics in turning of titanium alloy Ti-6246 [J]. Journal of Materials Processing Technology.1999,92-93:329-334.
    [69]Venugopal K A, Paul S, Chattopadhyay A B. Growth of tool wear in turning of Ti-6Al-4V alloy under cryogenic cooling [J]. Wear.2007,262 (9-10):1071-1078.
    [70]Zhang G M, Yu C, Shi R, et al. Experimental study on the milling of thin parts of titanium alloy (TC4) [J]. Journal of Materials Processing Technology.2003,138 (1-3):489-493.
    [71]舒彪,何宁.无污染切削介质下钛合金铣削刀具磨损机理研究[J].机械科学与技术.2005,24(4):454-457.
    [72]Szutkowska M. Strengthening of hardmetal inserts for cutting tools through heat treatment and surface modifications (PVD, CVD coating) [J]. Journal of Materials Processing Technology.1999, 92-93:355-359.
    [73]Quinto D T. Technology perspective on CVD and PVD coated metal-cutting tools [J]. International
    Journal of Refractory Metals and Hard Materials.1996,14 (1-3):7-20.
    [74]Lim S C, Lim C Y H. Effective use of coated tools-the wear map approach [J]. Surface and Coatings Technology.2001,139(2-3):127-134.
    [75]郑伟涛.薄膜材料与薄膜技术[M].第2版.北京:化学工业出版社,2008:9-16.
    [76]胡传炘,宋幼慧.涂层技术原理及应用[M].北京:化学工业出版社,2000:15-37.
    [77]Nordin M, Larsson M. Deposition and characterization of multilayered PVD TiN/CrN coatings on cemented carbide [J]. Surface and Coatings Technology.1999,116-119:108-115.
    [78]Ducros C, Benevent V, Sanchette F. Deposition, characterization and machining performance of multilayer PVD coatings on cemented carbide cutting tools [J]. Surface and Coatings Technology. 2003,163-164:681-688.
    [79]Arumugam P U, Malshe A P, Batzer S A. Dry machining of aluminum-silicon alloy using polished CVD diamond-coated cutting tools inserts [J]. Surface and Coatings Technology.2006,200 (11): 3399-3403.
    [80]Deng J X, Liu J H, Zhao J L, et al. Wear mechanisms of PVD ZrN coated tools in machining [J]. International Journal of Refractory Metals and Hard Materials.2008,26 (3):164-172.
    [81]Deng J X, Liu J H, Zhao J L, et al. Friction and wear behaviors of the PVD ZrN coated carbide in sliding wear tests and in machining processes [J]. Wear.2008,264 (3-4):298-307.
    [82]邓建新,赵军.数控刀具材料选用手册[M].北京:机械工业出版社,2005:104-116.
    [83]Ezugwu EO, Wang Z M. Tool life and workpiece surface integrity evaluation when machining Ti6A14V with PVD coated tools [C]. Surface Modification Technologies, IOM.1997,10:414-426.
    [84]Nouari M, Ginting A. Wear characteristics and performance of multi-layer CVD-coated alloyed carbide tool in dry end milling of titanium alloy [J]. Surface and Coatings Technology.2006,200 (18-19):5563-5676.
    [85]Ginting A, Nouari M. Surface integrity of dry machined titanium alloys [J]. International Journal of Machine Tools and Manufacture.2009,49 (3-4):325-332.
    [86]张桂木,高霁,赵树国,等.钛合金BT20的立铣试验研究[J].航空制造技术.2002,(6):57-59.
    [87]Jawaid A, Sharif S, Koksal S. Evaluation of wear mechanisms of coated carbide tools when face milling titanium alloy [J]. Journal of Materials Processing Technology.2000,99 (1-3):266-274.
    [88]Sharif S, Rahim E A. Performance of coated- and uncoated-carbide tools when drilling titanium alloy-Ti-6A14V [J]. Journal of Materials Processing Technology.2007,185 (1-3):72-76.
    [89]Cheharon C H, Ginting A, Arshad H. Performance of alloyed uncoated and CVD-coated carbide tools in dry milling of titanium alloys Ti-6242S [J]. Journal of Materials Processing Technology. 2007,185 (1-3):77-82.
    [90]Su Y, He N, Li L, et al. An experimental investigation of effects of cooling/lubrication conditions on tool wear in high-speed end milling of Ti-6Al-4V [J]. Wear.2006,261 (7-8):760-766.
    [91]Deng J X, Ai X. Wear behavior and mechanisms of alumina based ceramic tools in machining of ferrous and non-ferrous alloys [J]. Tribology International.1997,30 (11):807-813.
    [92]Ai X, Zhao J, Huang C Z, et al. Development of an advanced ceramic tool material-functionally gradient cutting ceramics [J]. Materials Science and Engineering A.1998,248 (1-2):125-131.
    [93]邓建新,曹同坤,艾兴.Al2O3/TiC/CaF2白润滑陶瓷刀具切削过程中的减摩机理[J].机械工程学报.2006,42(7):109-113.
    [94]Deng J X, Cao T K, Liu L L. Self-lubricating behaviors of Al2O3/TiB2 ceramic tools in dry high-speed machining of hardened steel [J]. Journal of the European Ceramic Society.2005,25 (7): 1073-1079.
    [95]Senthil Kumar A, Raja Durai A, Sornakumar T. Wear behaviour of alumina based ceramic cutting tools on machining steels [J]. Tribology International.2006,39 (3):191-197.
    [96]刘杰华,任昭蓉.金属切削与刀具实用技术[M].北京:国防工业出版社,2006:193-200.
    [97]许香谷,肖诗纲.金属切削原理与刀具[M].重庆:重庆大学出版社,1992:135-151.
    [98]Bhaumik S K, Divakar C, Singh A K. Machining Ti-6A1-4V alloy with a wBN-cBN composite tool [J]. Materials and Design.1995,16 (4):221-226.
    [99]Zoya Z A, Krishnamurthy R. The performance of CBN tools in the machining of titanium alloys [J]. Journal of Materials Processing Technology.2000,100 (1-3):80-86.
    [100]Nabhani F. Wear mechanisms of ultra-hard cutting tools materials [J]. Journal of Materials Processing Technology.2001,115 (3):402-412.
    [101]Wang Z G, Rahman M, Wong Y S. Tool wear characteristics of binderless CBN tools used in high-speed milling of titanium alloys [J]. Wear.2005,258 (5-6):752-758.
    [102]Ezugwu E O, Da Silva R B, Bonney J, et al. Evaluation of the performance of CBN tools when turning Ti-6A1-4V alloy with high pressure coolant supplies [J]. International Journal of Machine Tools and Manufacture.2005,45 (9):1009-1014.
    [103]Nurul Amin A K M, Ahmad F I, Nor Khairusshima M K. Effectiveness of uncoated WC-Co and PCD inserts in end milling of titanium alloy-Ti-6Al-4V [J]. Journal of Materials Processing Technology.2007,192-193:147-158.
    [104]Ezugwu E O, Bonneya J, Da Silva R B, et al. Surface integrity of finished turned Ti-6A1-4V alloy with PCD tools using conventional and high pressure coolant supplies [J]. International Journal of Machine Tools and Manufacture.2007,47(6):884-891.
    [105]邓建新,丁泽良,冯益华.切削刀具与加工对象的匹配研究[J].工具技术.2001,35(10):6-9.
    [106]艾兴.高速切削加工技术[M].北京:国防工业出版社,2003:114-119.
    [107]郝士明.材料热力学[M].北京:化学工业出版社,2004:83-99.
    [108]马兹希拉特.合金扩散和热力学[M].赖和怡,刘国勋译.北京:冶金工业出版社,1984:42-67.
    [109]肖纪美.合金相与相变[M].第2版.北京:冶金工业出版社,2004:99-107.
    [110]Bocquet J L, Brebec G, Limoge Y. Diffusion in metals and alloys [J]. Physical Metallurgy.1996: 535-668.
    [111]Smirnov L I. Diffusion of hydrogen in metals at arbitrary concentration gradients [J]. International Journal of Hydrogen Energy.1999,24 (9):813-817.
    [112]周泽华.金属切削理论[M].北京:机械工业出版社,1992:121-143.
    [113]Wong T, Kim W, Kwon P. Experimental support for a model-based prediction of tool wear [J]. Wear.2004, (257):790-798.
    [114]张翥,王群骄,莫畏.钛的金属学和热处理[M].北京:冶金工业出版社,2009:1-63.
    [115]谭树松.有色金属材料学[M].北京:冶金工业出版社,1993:109-110.
    [116]虞觉奇,易文质,陈邦迪,等.二元合金状态图集[M].上海:上海科学技术出版社,1987:29-48.
    [117]长崎平林,诚三真.二元合金状态图集[M].刘安生译.北京:冶金工业出版社,2004:117-299.
    [118]Agrawal P M, Rice B M, Thompson D L. Predicting trends in rate parameters for self-diffusion in FCC metal surfaces [J]. Surface Science.2002,515 (1):21-35.
    [119]黄继华.金属及合金中的扩散[M].北京:冶金工业出版社,1996:18-58.
    [120]夏利芳,张振信.金属中的扩散[M].哈尔滨:哈尔滨工业大学出版社,1989:16-47.
    [121]戚正风.固态金属中的扩散与相变[M].北京:机械工业出版社,1998:56-61.
    [122]孙振岩,刘春明.合金中的扩散与相变[M].沈阳:东北大学出版社,2002:49-75.
    [123]Zhang S, Li J F, Deng J X, Li Y S. Investigation on diffusion wear during high-speed machining Ti-6Al-4V alloy with straight tungsten carbide tools [J]. International Journal of Advanced Manufacturing Technology.2009,44 (1-2):17-25.
    [124]徐瑞,荆天辅.材料热力学与动力学[M].哈尔滨:哈尔滨工业大学出版社,2003:78-109.
    [125]叶大轮,胡建华.实用无机物热力学数据手册[M].第2版.北京:冶金工业出版社,2002:48-1210.
    [126]Chen Y C, Zhang Y G, Chen C Q. General theory of interdiffusion growth in diffusion couples [J]. Materials Science and Engineering A.2004,368 (1-2):1-9.
    [127]Romankov S, Sha W, Ermakov E, et al. Characteriazation of interdiffusion growth of aluminized layer on Ti alloys [J]. Journal of Alloys and Compounds.2007,429 (1-2):143-155.
    [128]杜光辉,宋玉强,李世春.Ti-Cu固相扩散界面研究[J].热加工工艺.2007,36(3):5-7.
    [129]周世权,熊惟皓.Ti(C,N)/Ni扩散焊接界面的组织和性能[J].材料研究学报.2007,21(1):87-91.
    [130]Molinari A, Nouari M. Modeling of tool wear by diffusion in metal cutting [J]. Wear.2002,252 (1-2):135-149.
    [131]Jiang H, Rajiv S. A cobalt diffusion based model for predicting crater wear of carbide tools in machining titanium alloys [J]. Journal of engineering materials and technology.2005,127 (1): 136-144.
    [132]Nouari M, Molinari A. Experimental verification of a diffusion tool wear model using a 42CrMo4 steel with an uncoated cemented tungsten carbide at various cutting speeds. Wear.2005,259 (7-12): 1151-1159.
    [133]Deng J X, Li Y S, Song W L. Diffusion wear in dry cutting of Ti-6Al-4V with WC/Co carbide tools [J]. Wear.2008,265 (11-12):1776-1783.
    [134]Mamalis A G, Horvath M, Branis A S, et al. Finite element simulation of chip formation in orthogonal metal cutting [J]. Journal of Materials Processing Technology.2001,110(1):19-27.
    [135]Dearnley P A, Dahm K L, Cimenoglu H. The corrosion-wear behaviour of thermally oxidized CP-Ti and Ti-6A1-4V [J]. Wear.2004,256 (5):469-479.
    [136]陈日曜.金属切削原理[M].第2版.北京:机械工业出版社,1993:38-134.
    [137]El-Wardany T I, Mohammed E, Elbestawi M A. Cutting temperature of ceramic tools in high speed machining of difficult-to-cut materials [J]. International Journal of Machine Tools and Manufacture. 1996,36 (5):611-634.
    [138]Lin J, Liu C Y. Measurement of cutting tool temperature by an infrared pyrometer [J]. Measure Science Technology.2001, (12):1243-1249.
    [139]Seo S, Min O, Yang H. Constitutive equation for Ti-6Al-4V at high temperatures measured using the SHPB technique [J]. International Journal of Impact Engineering.2005,31 (6):735-754.
    [140]Karpat Y, Ozel T. Predictive analytical and thermal modeling of orthogonal cutting process-Part I: Predictions of tool forces, stresses, and temperature distributions [J]. Journal of Manufacturing Science and Engineering.2006,128 (2):435-445.
    [141]Persson U, Chandrasekarn H, Merstallinger A. Adhesion between some tool and work materials in fretting and relation to metal cutting [J]. Wear.2001,249 (3-4):293-301.
    [142]Baldock C, Harris P J, Piercy A R, et al. Experimental determination of the diffusion coefficient in two-dimensions in ferrous sulphate gels using the finite element method [J]. Australasian Physical and Engineering Science in Medicine.2001,24 (1):19-30.
    [143]Sokovic M, Kosec L, Dobrzanski L A. Diffusion across PVD Coated cermet tool/workpiece interface [J]. Journal of Materials Processing Technology.2004,157-158:427-433.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700