Ti(Cr,Al)SiC(O)N涂层及其表面改性硬质合金刀具性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金具有比强度高、耐高温和耐腐蚀等一系列优异特性,广泛用于航空航天、船舶、机械和生物医学工程等领域。但是,钛合金高温强度高、热导率低、弹性模量小、化学活性高且与其它金属摩擦系数大,导致钛合金切削加工相当困难。而且干切削过程产生大量切削热,切削温度高,刀具磨损严重,导致钛合金加工效率低下,刀具寿命短。根据钛合金切削加工特点,为了提高钛合金切削刀具的寿命,本文以Ti(Cr,Al)SiC(O)N涂层硬质合金刀具为研究对象,旨在探索适合钛合金切削的新型涂层材料,为今后涂层刀具材料的设计和选择提供参考。
     本文研究了利用等离子增强磁控溅射方法在硬质合金表面制备的Ti(Cr,Al)SiC(O)N涂层(TiSiCN、CrSiCN、CrAlSiCN、CrAlSiCON、TiAlSiCN、 TiAlSiCON)的力学性能及其热稳定性。通过对CrAlSiCON、TiAlSiCN、TiAlSiCON涂层和硬质合金基体在空气中进行600℃高温处理,研究了高温处理对涂层相结构、膜基结合力、硬度的影响,研究结果表明:硬质合金基体在600℃时氧化非常明显,氧化产物主要是由WC和Co氧化生成的WO3和COWO4,硬度急剧降低,而三种涂层在该温度下没有发生氧化,膜-基结合强度和硬度等性能保持不变。对TiSiCN、 CrSiCN、CrAlSiCN、CrAlSiCON、TiAlSiCN、TiAlSiCON涂层和基体在空气气氛中进行700℃高温处理,进一步研究涂层的抗氧化性、高温硬度、摩擦磨损性能,研究结果表明:基体氧化更为严重,表面出现一层约0.2mm厚的氧化层,表面硬度由45GPa降为2GPa。TiSiCN和CrSiCN涂层氧化分别生成TiO2和Cr2O3,对比TiAl基和CrAl基涂层,发现TiAl基涂层中Ti氧化生成Ti02,而CrAl基涂层中Cr元素没有被氧化,这说明CrAl基涂层中的A1元素明显提高了涂层的抗氧化性能。CrAl基涂层在700℃下仍具有较高的硬度。利用CrAlSiCN、CrAlSiCON、TiAlSiCN、TiAlSiCON涂层和Ti6A14V(Ti64)球在400℃下进行摩擦磨损试验,研究结果表明:400℃下涂层与Ti64对磨的摩擦系数高于常温下的摩擦系数,含氧涂层的摩擦系数高于不含氧涂层的摩擦系数,CrAlSiCON涂层在400℃下的耐磨性能最好。
     通过铣削钛合金评价了TiSiCN、CrSiCN、CrAlSiCN、CrAlSiCON、TiAlSiCN和TiAlSiCON涂层表面改性的硬质合金(K40UF)立铣刀具的切削性能,结果表明:TiSiCN和CrSiCN涂层刀具的铣削性能最好,Cr-基涂层刀具的铣削温度高于Ti-基涂层刀具的,TiAl-基和CrAl-基涂层的铣削温度低于Ti-基和Cr-基涂层刀具,这说明Al元素的加入可以降低涂层刀具的铣削温度。所用刀具加工钛合金时形成典型的锯齿状切屑,不同涂层刀具对切屑形态没有显著影响。
Titanium alloys are widely used in aerospace, marine, machinery and biomedical engineering because of their excellent properties, such as high specific strength, high temperature and corrosion resistance. But it is well known that the titanium alloys machining process is difficult due to the material's high-temperature strength, very low thermal conductivity, relatively low modulus of elasticity, chemical reactivity and high friction coefficient with other metals. And during dry cutting process, more cutting heat results in the higher cutting temperature and inereased tool wear which lead to low machining efficiency and short tool life existed in milling of titanium alloy. According to the characteristics of titanium alloys processing, in order to extend the service life of the tools for machining titanium alloys, the Ti(Cr,A1)SiC(O)N coatings are choosed as the study object in this paper so as to explore new coating materials for titanium alloy cutting and provide reference for the design and selection of tool coating material.
     In this paper, the mechanical and thermal stability of Ti(Cr,A1)SiC(O)N coatings (including TiSiCN、CrSiCN、CrAlSiCN、CrAlSiCCON、TiAlSiCN and TiAlSiCON) which were deposited on cemented carbide substrate using plasma enhanced magnetron sputtering method were evaluated. The CrAlSiCON, TiAlSiCN, TiAlSiCON coatings and cemented carbide substrate were undergone heat treatment at600℃during2h in air. The changes in structure, adhesion strength and hardness of the coatings and substrate vs. temperature have been analyzed using X-ray diffraction, scratch testing as well as hardness testing. The results indicated that the cemented carbide substrate was oxidized very obviously at600℃and the main oxidation products are WO3and COWO4generated by the WC and Co, and hardness drastically reduced. But all the above three coatings were not oxidation at600℃, and the adherence strength and hardness had not changed much. The TiSiCN, CrSiCN, CrAlSiCN, CrAlSiCON, TiAlSiCN, TiAlSiCON coatings and cemented carbide substrate were undergone heat treatment at700℃in air for2h in order to further investigate the coatings oxidation resistance, high temperature hardness and friction and wear behaviour. The results show:the substrate oxidation was more serious than at600℃and the formation of a homogeneous oxide layer in the substrate surface, approximately0.2mm thick, so the surface hardness was dropped from45GPa to2GPa. The TiSiCN and CrSiCN coating were slightly oxidized at700℃and the main oxidation products are TiO2and Cr2O3generated by the Ti and Cr. Compared with the CrAl-based and TiAl-based coatings, it can be found that TiAl-based coatings were oxidized at700℃and the main oxidation products are TiO2generated by the Ti but the Cr element in the CrAl-based coatings were not oxidation. It indicated that the Al element is significantly improved oxidation resistance of the CrAl-based coatings. The CrAl-based coatings still have a higher hardness at700℃. Friction and wear tests were carried out using pin-on-disc with Ti64balls at400℃; the CrAlSiC、CrAlSiCON、TiAlSiCN and TiAlSiCON coatings were used. The results show: The CrAlSiCN、CrAlSiCON、TiAlSiCN and TiAlSiCON coatings had a higher friction coefficient at400℃than at room temperature. And the oxygen-containing coatings friction coefficients were higher than the oxygen-free coatings. The wear resistance of CrAlSiCON coating was best at400℃.
     The cutting performance of the TiSiCN, CrSiCN, CrAlSiCN, CrAlSiCON, TiAlSiCN and TiAlSiCON coated K40UF cemented carbide end-mills were evaluated by milling Ti64alloy. The results showed that the TiSiCN and CrSiCN coated tools had a better cutting performance than other coated tools. The Cr based coatings had higher mlling temperature than the Ti based coatings. The TiAl-based and CrAl-based coatings had lower milling temperature than the Ti/Cr-based coatings. It indicated that the addition of A1element to Ti/Cr-based coatings can reduce milling temperature. The chip of cutting Ti64is the typical serrated chip. Different coated milling cutter had no significant effect on the morphology of chip.
引文
[1]Boyer R R, Briggs R D. The use of beta titanium alloys in the aerospace industry. Journal of Materials Engineering and Performance.2005,14(6):681-685.
    [2]Zhou Y G, Zeng W D, Yu H Q. An investigation of a new near-beta forging Proeess for titaniu alloys and its application in aviation compinents. Materials Science and Engineering A.2005,393:204-212.
    [3]Gurrappa I. Characterization of titanium alloy Ti-6A1-4V for chemical, marine and industrial applications. Materials Characterization.2003,51:131-139.
    [4]Makoto Y. An overview on the development of titanium alloys for non-aerospace application in Japan. Materials Science and Engineering A.1996,213:8-15.
    [5]H. Hong, A.T. Riga, J.M. Cahoon, C.G. Scott. Machinability of steels and titanium alloys under lubrication. Wear.1993,162:34-39.
    [6]Jun Qu, Peter J. Blau, Thomas R. Watkins, Odis B. Cavin, Nagraj S. Kulkarni. Friction and wear of titanium alloys sliding against metal, Polymer, and ceramic counterfaces. Wear. 2005,258(9):1348-1356.
    [7]E.O. Ezugwu, Z.M. Wang. Titanium alloys and their machinability a review. Journal of Materials Processing Technology.1997,68:262.
    [8]E.Q. Ezugwu, J.Bonney, Y.Yamane. An overview of the machinability of aeroengine alloys. Joural of Materials Processing Technology.2003,134:233-253.
    [9]王焱,王文理.先进刀具技术与航空零件切削加工.航空制造技术.2009,23:38-42.
    [10]胡兴军.刀具表面涂层技术进展综述.精密制造与自动化.2005,1:14-17.
    [11]刀具涂层工艺及涂层材料,中国刀具商务网http://www.cut35.com/info/6288. html, 2010,1
    [12]张喜燕,赵永庆,白晨光,钛合金及应用[M].北京:化学工业出版社,2005:287-302.
    [13]刘莹,曲周德,王本贤.钛合金TC4的研究开发与应用[J].兵器材料科学与工程.2005,28(5):47-50.
    [14]Gurrappa I, VenugoPala R D. Characterisation of titanium alloy, IMI-834 for corrosion resistance under different environmental conditions [J]. Journal of Alloys and Compounds, 2005,390(1-2):270-274.
    [15]Singh R, Khamba J S. Ultrasonic machining of titanium and its alloys:A review[J]. Joumal of Materials processing Technology.2006,173(2):125-135.
    [16]Hasealik A, Caydas U. Electrical discharge machining of titanium alloy (T1-6AI-4V) [J].Applied Surface Science.2007,253(22):9007-9016.
    [17]王振龙,迟关心,狄士春,等.钛合金深小孔的微细超声电火花加工技术[J].兵工学报.2000,21(4):346-349.
    [18]Mark Fitzsimmons,Vinod K.Sarin. Development of CVD WC-Co coatings. Surface and Coatings Technology.2001,137:158-163.
    [19]韩荣第,于启勋主编.难加工材料切削加工.北京:机械工业出版社,1996.
    [20]李友生,邓建新,石磊.高速切削加工钛合金的刀具材料.制造技术与机床.2007,8:24-27.
    [21]艾兴.高速切削加工技术[M].国防工业出版社,2003
    [22]张春江.钛合金切削加工技术[M].西安:西北工业大学出版社,1986:1-25.
    [23]苌浩,何宁,满忠雷.TC4的铣削加工中铣削力和刀具磨损研究[J].航空精密制造技术.2003,3(39):30-33.
    [24]张宁.高速钢磁控溅射离子镀TiN涂层的性能研究[J].材料热处理技术.2009,38(16):104-106.
    [25]Komanduri R, Reed WR. Evaluation of carbide grades and a new cutting geometry for machining Titanium alloys[J]. Wear.1983,92(1):113-123.
    [26]危卫华,徐九华,傅玉灿,等置氢钛合金TC4的切削加工性研究[J].南京航空航天大学学报.2009,41(5):633-638.
    [27]许鸿昊,左敦稳,朱笑笑等.拉伸高速铣削对TC4钛合金疲劳性能的影响[J].南京航空航天大学学报.2005,40(2):260-264.
    [28]Ezugwu E O. Improvements in the machining of aero-engine alloys using self-propelled rotary tooling technique [J]. Journal of Materials Proeessing Teehnology. 2007,185(1-3):60-71.
    [29]Lei S T, Liu W J. High-speed machining of titanium alloys using the driven rotary tool[J]. International Journal of Machine Tools and Manufaeture.2002,42(6):653-661.
    [30]赵威,何宁,李亮等.氮气油雾介质下Ti-6AI-4V钛合金高速铣削试验研究[J].南京航空航天大学学报.2006,38(5):634-635.
    [31]Ribeiro M V, Moreira M R V, Ferreira J R. Optimization of titanium alloy (6AI-4V) machining[J]. Journal of Materials Processing Technology.2003,143-144:458-463.
    [32]舒彪,何宁.无污染切削介质下钛合金铣削刀具磨损机理研究[J].机械科学与技术.2005,24(4):454-457.
    [33]Szutkowska M. Strengthening of hardmetal inserts for cutting tools through heat treatment and surface modifications (PVD, CVD coating)[J]. Journal of Materials Processing Technology.1999,92-93:355-359.
    [34]Quinto D T. Technology Perspective on CVD and PVD coated metal-cutting tools[J]. International Journal of Refractory Metals and Hard Materials.1996,14(1-3):7-20.
    [35]Ezugwu E O, Wang Z M. Tool life and workpiece surface integrity evaluation when machining Ti6A14V with PVD coated tools[C]. Surface Modification Technologies, IOM. 1997,10:414-426.
    [36]Nouari M, Ginting A. Wear characteristics and performance of multi-layer CVD--coated alloyed arbide tool in dry end milling of titanium alloy [J]. Surface and Coatings Teehnology.2006,200(18-19):5563-5676.
    [37]Ginting A, Nouari M. Surface integrity of dry machined titanium alloys[J].International Journal of Machine Tools and Manufaeture.2009,49(3-4):325-332.
    [38]张桂木,高雾,赵树国等.钛合金BT20的立铣试验研究[J].航空制造技术.2002,(6):57-59.
    [39]Jawaid A, Sharif S, Koksal S. Evaluation of wear mechanisms of coated carbide tools when face milling titanium alloy [J]. Journal of Materials Processing Teehnology.2000, 99(1-3):266-274.
    [40]Sharif S, Rahim E A. Performance of coated-and uncoated-carbide tools when drilling titanium alloy-Ti-6A14V[J]. Journal of Materials Proeessing Technology.2007, 185(1-3):72-76.
    [41]Chen R, Tu JP, Liu DG, Mai YJ, Gu CD. Microstructure, mechanical and tribological properties of TiCN nanocomposite films deposited by DC magnetron sputtering. Surf Coat Technol.2011,205(52):28-34.
    [42]M.Nouari, A.Ginting.Wear characteristics and performance of multi-layer CVD-coated alloyed carbide tool in dry end milling of titanium alloy. Surface & Coatings Technology. 2006,200:5663-5676.
    [43]牟涛.高速铣削钛合金Ti6A14V的刀具磨损研究.山东大学硕士学位论文,2009.
    [44]石磊.钛合金切削加工中刀具与工件性能匹配的研究.山东大学硕士学位论文,2007.
    [45]T. Kitagawa, A. Kubo, K. Maekawa.Temperature and wear of cutting tools in high-speed machining of Incone1718 and Ti-6A1-6V-2Sn. Wear.1997,202:142-148.
    [46]Deng Jianxin, LiYousheng, SongWenlong. Diffusion wear in dry cutting of Ti-6A1-4V with WC/Co carbide tools. Wear.2008,265:1776-1783.
    [47]H. Ichimura, A. Kawana, J. Mater. Res.1994,9:151.
    [48]P.H. Mayrhofer, H. Willmann, C. Mitterer, Surf. Coat. Technol.2001,146-147:222.
    [49]Jung Wook Kim, Kwang Ho Kim, D.B. Lee, J.J. Moore. Study on high-temperature oxidation behaviors of Cr-Si-N films. Surface & Coatings Technology.2006,200: 6702-6705.
    [50]余春燕,王社斌,尹小定等.CrAIN薄膜高温抗氧化性的研究[J].稀有金属材料与工程.2009,38(6):1015-1018.
    [51]M. Brizuela, A. Garcia-Luis, I. Braceras,et al. Magnetron sputtering of Cr(Al)N coatings Mechanical andtribological study[J].Surface & Coatings Technology.2005,200: 192-197.
    [52]Yin-Yu Chang, Chi-Pang Chang, Da-Yung Wang,et al.High temperature oxidation resistance of CrAlSiN coatings synthesized by a cathodic arc deposition process [J] Journal of Alloys and Compounds.2008,461:336-341.
    [53]T. Polcar, N.M.G. Parreira, R. Novak. Friction and wear behaviour of CrN coating at temperatures up to 500 ℃. Surface & Coatings Technology.2007,201:5228-5235.
    [54]T. Polcar, L. Cvrcek, P. Siroky', R. Nova'k. Tribological characteristics of CrCN coatings at elevated temperature. Vacuum.2005,80:113-116.
    [55]E. Ertuerk. O. Knotek. W. Bergmer. H.-G. Prengel. H.-J. Heuvel. H.G. Dederichs. C. Stoessel. Ti(C,N) coatings using the arc process. Surf. Coating Technol.1991,46:39-46.
    [56]Y.S. Chen. Y.L. Sun. F.M. Zhang. H.C. Mou. Proceeding of SPIE-The International Society for Optical Engineering. Published by International Society for Optical Engineering. Bellingham. WA. USA.1991,1519 (1):56.
    [57]F.J. Teeter. Ceramic Coating. ASME. New York 44 (1993) 87.
    [58]E. Bergmann. H. Kaufmann. R Schmid. J. Vogel. Ion-plated titanium carbonitride films. Surf. Coating Technol.1990,42 (3):237-251.
    [59]E. Vancoille. J.P. Celis. J.R Roos. Tribological and structural characterization of a physical vapour deposited TiC/Ti(C,N)/TiN multilayer. Tribology Int.1993,26(2): 115-119.
    [60]C. Zhao. H. Pengo S. Li. Acta Metall. Sinica Ser. B:Process Metallurgy Miscellaneous. 1993,6B(4):266.
    [61]Li Shizhi.The application of hard coatings produced by plasma-assisted chemical vapour deposition.Surface and Coatings Technology.1992,43-44:1007-1014
    [62]S. Veprek, H. D. Mannling, P. Karvankova. The issue of the reproducibility of deposition of superhard nanocomposites with hardness of>50GPa. Surface and Coatings Technology.2006,200(12-13):3876-3885
    [63]S. Veprek, R.F. Zhang, M.G.J. Superhard nanocomposites:Origin of hardness enhancement, properties and applications. Surface and Coatings Technology.2010, 184(12-13):1898-1906
    [64]A. Flink, T. Larsson, J. Sjolen, L. Karlsson, L. Hultman. Influence of Si on the microstructure of arc evaporated (Ti,Si)N thin films; evidence for cubic solid solutions and their thermal stability. Surface & Coatings Technology.2005,200:1535-1542.
    [65]Jun Bo Choi, Kurn Cho, Mi-Hye Lee, Kwang Ho Kim. Effects of Si content and free Si on oxidation behavior of Ti-Si-N coating layers. Thin Solid Films.2004,447-448:365-370.
    [66]魏荣华.等离子增强磁控溅射Ti-Si-C-N基纳米复合膜层耐冲蚀性能研究.中国表面工程.2009,22(1):1-10.
    [67]Ronghua Wei. Plasma enhanced magnetron sputter deposition of Ti-Si-C-N based nanocomposite coatings. Surface & Coatings Technology.2008,203:538-544
    [68]Ronghua Wei, Edward Langa, James Arps, et al. Erosion Resistance of Thick Nitride and Carbonitride Coatings Deposited using Plasma Enhanced Magnetron Sputtering. Plasma Processes and Polymer.2007,4:693-699
    [69]F. Vaz, Rebouta, M. Andritschky, M. F. da Silva, J. C. Soares. Oxidation resistance of (Ti, Al, Si)N coatings in air. Surface and Coatings Technology 98 (1998) 912-917.
    [70]S.H. Yao, Y.L. Su. The tribological potential of CrN and Cr(C,N) deposited by multi-arc PVD process. Wear.1997,212:85-94.
    [71]B. Warcholinski, A. Gilewicz, Z. Kuklinski, P. Myslinski. Hard CrCN/CrN multilayer coatings for tribological applications. Surface & Coatings Technology.2010,204: 2289-2293.
    [72]In-Wook Park, Dong Shik Kang, John J. Moore, Sik Chol Kwon, Jong Joo Rha, Kwang Ho Kim. Microstructures, mechanical properties, and tribological behaviors of Cr-Al-N, Cr-Si-N, and Cr-Al-Si-N coatings by a hybrid coating system. Surface & Coatings Technology.2007,201:5223-5227.
    [73]Yin-Yu Chang, Chia-Yuan Hsiao. High temperature oxidation resistance of multicomponent Cr-Ti-Al-Si-N coatings. Surface & Coatings Technology.2009, 204:992-996.
    [74]李灿明.等离子增强磁控溅射沉积新型纳米复合涂层.合肥工业大学硕士学位论文,2011.
    [75]周连在译,日本钛协会.钛材料及其应用.北京:冶金工业出版社,2008.
    [76]S. J. Bull. Failure mode maps in the thin scratch adhesion test. Tribology International. 1997,30:491-498
    [77]S.J. Bull, E.G Berasetegui. An overview of the potential of quantitative coating adhesion measurement by scratch testing. Tribology International.2006,39:99-114
    [78]Jun Bo Choi, Kurn Cho, Mi-Hye Lee, Kwang Ho Kim. Effects of Si content and free Si on oxidation behavior of Ti-Si-N coating layers. Thin Solid Films.2004,447-448: 365-370.
    [79]Karimi A, Morstein M, Cselle T. Influence of oxygen content on structure and properties of multi-element AlCrSiON oxynitride thin films. Surf Coat Technol.2010,204 (27) 17-22.
    [80]李嫱.钛合金切削刀具CrAIN与Ti(Cr,A1)SiC(O)N涂层表面改性研究.西南交通大学硕士论文.2012:40-43.
    [81]Ya-jun Zheng, Yong-xiang Leng, Xin Xin, Zhao-ying Xu, Fan-qing Jiang, Ronghua Wei, Nan Huang. Evaluation of mechanical properties of Ti(Cr)SiC(O)N coated cemented carbide tools. Vacuum.2013,90:50-58.
    [82]Komanduri R, Hou Z B. On thermoplastic shear instability in the machining of a titanium alloy(Ti-6A1-4V). Metallurgical and materials transactions.2002, (33):2995-3010.
    [83]Gente A, Hoffnleister H W. Chip formation in machining Ti6A14V at extremely high cutting speeds. Annals of CIRP.2001, (50):49-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700