航空发动机叶片疲劳寿命和可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
叶片是航空发动机的主要组成部分,是发动机的关键转动部件之一,担负着能量转化的重任。常见的导致叶片失效的因素有低循环疲劳、振动、屈曲、蠕变等。随着现代航空发动机推重比的不断提高,叶片的设计应力水平大幅提高,低循环疲劳失效逐渐成为叶片最主要的失效形式之一,多发生在叶片根部两侧气流进出口处等应力集中较严重的部位。
     本文通过理论分析与试验研究相结合的研究方法,就叶片疲劳可靠性的分析方法与可靠性模型的建立进行了研究,主要内容如下:
     1.对目前工程中广泛应用的疲劳寿命估算方法和可靠性分析方法进行了系统评述,从中找到了适用于本研究中航空发动机压气机叶片疲劳寿命和可靠性研究的方法。
     2.根据国家标准对叶片材料钛合金TC4的疲劳试验进行了设计,通过材料疲劳试验获得了包括S-N曲线、σ?ε曲线在内的材料力学性能指标,为后续的疲劳寿命估算和疲劳可靠性分析打下基础。
     3.建立了叶片的有限元模型,并进行了特定工况下的模型瞬态分析。通过分析应力响应的结果确定了疲劳危险部位,同时得到了叶片的载荷历程,为疲劳寿命估算做准备。
     4.结合材料疲劳试验和有限元分析得到的结果,采用名义应力法和Miner线性损伤累积准则,联合疲劳分析软件对叶片进行全寿命分析,得到了叶片的疲劳损伤云图和寿命分布,以此找出了失效将会发生的部位,并与叶片实际失效情况进行比较,结果十分吻合。
     5.利用应力-强度干涉模型对叶片的可靠性进行分析,给出叶片的可靠度。叶片是航空发动机中的安全关键件,它对整个装置的可靠性有决定性影响,因此研究航空发动机叶片的疲劳寿命和可靠性有着重要的研究意义和工程应用价值。
Aviation engine blade is a major component of the engine and one of the key rotating components, which is charged with the important task of energy conversion.
     Common factors that lead to blade failure include low cycle fatigue, vibration, buckling, creeping and so on. With the improvement of the modern aviation engine Thrust-Weight Ratio, the design leaves a substantial increase in stress levels, while low-cycle fatigue failure roulette gradually become one of the most important failure mode. Low-cycle fatigue failure mostly occurred in the department where stress concentrated such as the two sides of the blade root where airflow passes in and out.
     With a combination of theoretical analysis and experimental study methods, here in this paper we studied the blade fatigue reliability analysis methods and the reliability as follows:
     1. A systematic review over the current widely used methods in estimating the fatigue life and reliability analysis, in order to find out applicable research methods for this text.
     2. In accordance with national standards we designed the blade material TC4 titanium alloy fatigue test and through this test we get a series of Mechanical properties of the materials, including the S-N curve, theσ?εcurve which lay the foundation for the future fatigue life estimate and reliability analysis of fatigue.
     3. Established the finite element model of the blade, and conduct the transient analysis on specific conditions. By analyzing the results of the stress response we defined the dangerous fatigue parts, and get the blade course load at the same time, which make preparations for the estimating of fatigue life.
     4. Joint with the results of fatigue test and finite element analysis, using Nominal Stress Method and Miner’s Linear Damage Accumulation criteria, and utilizing the fatigue analysis software we made the life-wide analysis of the blade and got Fatigue damage nephogram and age distribution. On this account we identified the department where failure may occur and defined it match the actual result after comparison.
     5. Analysis the reliability in the light of Stress-Intensity Interference Model and define the reliability of the blade.
     Blade is also a key point for the aero-engine safety. It has a decisive impact on the reliability of the entire device. Therefore the study on aero-engine blade fatigue life and reliability has important study significance and great engineering application values.
引文
[1]曾天翔,飞机事故及其原因统计分析,航空标准化与质量,1998,6:37~43
    [2]李其汉,王延荣,王建军,航空发动机叶片高循环疲劳失效研究,航空发动机,2003,9(29):16~18
    [3] M.I. Mazhar,S.Kara,H. Kaebernick,Remaining life estimation of used components in consumer products,Journal of Operations Management,2007,25(6):1184-1193
    [4] M.M.I. Hammoudaa,R.A. Pashaa,A.S. Fayedb,Modelling of cracking sites/development in axial dovetail joints of aero-engine compressor discs. International Journal of Fatigue,2007,29(1):30-48
    [5] Lucjan Witek, Failure analysis of turbine disc of an aero engine Engineering Failure Analysis,2006,13(1):9-17
    [6] H. Andersson,An implicit formulation of the Bodner–Partom constitutive equations [J]. Computers & Structures,2003,81(13):1405-1414
    [7] Zheng-Ming Huang,Cyclic response of metal matrix composite laminates subjected to thermomechanical fatigue loads. International Journal of Fatigue,2002, 24(2-4):463-475
    [8] Xu Chen,Jie Song,Kwang Soo Kim,Low cycle fatigue life prediction of 63Sn–37Pb solder under proportional and non-proportional loading. International Journal of Fatigue,2006,28(7):757-766
    [9] S P McKenna,M R Hill,M L Hull,A single loading direction for fatigue life prediction and testing of handlebars for off-road bicycles. International Journal of Fatigue,2002,24(11):1149-1157
    [10]李超,赵永翔等,基于局部应变的疲劳寿命计算方法,机械设计与制造,2003,6
    [11]姚磊江,童小燕,吕胜利,金属低周疲劳的能量耗散与热发射,机械科学与技术,2003,5(22)
    [12]邓小禾,赵永红,航空发动机压气机叶片疲劳寿命的研究,新疆工学院学报,2000,3(21)
    [13] Y. X. Zhao,A methodology for strain-based fatigue reliability analysis,Reliability Engineering and System Safety,2000,70(2):205-213
    [14] C.R.Williams,Y.L.Lee,J.T.Rilly,A practical method for statistical analysis of strain–life fatigue data,International Journal of Fatigue,2003,25(5):427-436
    [15] Dan M. Frangopol,Kurt Maute,Life-cycle reliability-based optimization of civil and aerospace structures,Computers & Structures,2003,81(7):397-410
    [16] A.S. Nowak,M.M. Szerszen,Reliability and optimization of structural systems,Proceedings of the Ninth IFIP WG 7.5 Working Conference on Reliability and Optimization of Structural Systems,2000
    [17] G.I. Schu?ller,P.D. Spanos,Monte Carlo simulation,Proceedings of the International Conference on Monte Carlo Simulation,2000
    [18] J. Crocker,U. D. Kumar. Age-related maintenance versus reliability centred maintenance: a case study on aero-engines,Reliability Engineering and System Safety,2000,67(2):113-118
    [19]岳珠峰,于庆民,温志勋等,镍基单晶涡轮叶片结构强度设计,北京:科学出版社,2008,94~103
    [20]《中国航空材料手册》编辑委员会,中国航空材料手册,北京:中国标准,2004
    [21]许鸿昊,拉伸装夹高速铣削钛合金的疲劳特性研究:[博士学位论文],南京,南京航空航天大学,2008
    [22]何晓,岳俊,沈保罗等,氢对Ti-4Al-2V钛合金疲劳寿命的影响,核动力工程,2003,24(4):297~301
    [23] Gerhard Biallas,Mark Essert,Hans Jürgen Maier. Influence of environment on fatiguemechanisms in high-temperature titanium alloy IMI834,International Journal of Fatigue,2005,27(10~12),1485~1493
    [24] J. Lindemann,L. Wagner. Mean stress sensitivity in fatigue ofα, (α+β) andβtitaniumalloys,Materials Science and Engineering A,1997,234~236(30):1118~1121
    [25]姚卫星,结构疲劳寿命分析,北京:国防工业出版社,2003
    [26]赵少汴,抗疲劳设计,北京:机械工业出版社,1994
    [27]王彦伟,罗继伟,叶军,陈立平,基于有限元的疲劳分析方法及实践,机械设计与制造,2008,1
    [28]李舜酩,机械疲劳与可靠性设计,北京:科学出版社,2006,9
    [29]何秀然,谢寿生,航空发动机载荷谱雨流计数法的改进算法,航空发动机,2005,31(3):47~49
    [30]李永新,隋海,航空发动机飞行载荷实时雨流计数模型及程序设计,航空动力学报,1992,7(2):139~143
    [31]李娜,涡轮增压器压气机叶片静态和动态特性研究及优化设计,硕士学位论文:大连交通大学,2007
    [32]孙强,汪波,柴桥等,固支状态对航空发动机压气机叶片自振频率的影响,空军工程大学学报(自然科学版),2003,4(4):8~10
    [33]李春旺,孙强,尹宝俊等,某型航空发动机压气机叶片气动负荷的近似计算,空军工程大学党报(自然科学版),5(4),2004:1~3
    [34]钱文学,某型航空发动机低压压气机轮盘疲劳可靠性分析:[博士学们论文],沈阳,东北大学,2006
    [35]谢里阳,林文强,线性累计损伤的概率准则,机械强度,1993,15(3):41~44
    [36] Kececioglu.D, Fatigue prevention and reliability,Proc.ASME,1978,285~309
    [37] Carter ADS,Mechanical reliability,2nd Ed. London,Macmillan Education,1986,102~103
    [38] Gao Z T,Fei B J,Fu H M,etc,Two dimensional stress-strength interference model forreliability-based design,Coherence proceedings of ICM-6,Kyoto,1991
    [39]熊峻江,黄新宇,高镇同等.稳态循环载荷下结构疲劳可靠性分析技术,强度与环境,1996,(4):16~20
    [40]吕海波,姚卫星,元件疲劳可靠性估算的剩余强度模型,航空学报,2000,21(1):74~77
    [41] Broutman L J,Sahu S,A new theory to predict cumulative fatigue damage in fibre-glass reinforced plastics,Composite Materials,Testing and Design,ASTM STP497,1972,170~188
    [42] Yang J N,Jones D L, Load sequence Fatigue of Fibrous Composite Materials on the fatigue unnotched composite materials,ASTM STP7231981,213~232
    [43] Hashin Z,Cumulative damage theory for composite materials,residual life and residual strength methods,Composites Science and Technology,1985,23:1~19
    [44] Zhao Z W,Haldar A,Breen Jr, F L,Fatigue-reliability evaluation of steel bridges,Journal of Structural Engineering,ASCE,1994,120(5):1608~1623
    [45] Wirsching PH,Fatigue Relialfility for offshore structures,Journal of Structural Engineering,ASCE,1984,110(10):2340~2356
    [46]董聪,杨庆雄,结构系统疲劳寿命可靠性分析理论与算法,航空学报,1993,14(5):247~253
    [47]董聪,何庆芝,自治型随机疲劳累积损伤可靠性分析模型,机械强度,1995,17(1):6~8
    [48]郝立春,姚卫星.疲劳裂纹形成寿命预测方法综述,力学与实践,1996,18(4):9~15
    [49]胡毓仁,陈伯真,海洋平台结构系统疲劳可靠性分析的一阶二次矩方法,中国造船,1994,4:88~102
    [50]丁克勤,柳春图,重要性抽样法在管节点疲劳可靠性分析中的应用,力学学报,1996,28(3):359~362

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700