CFD在机械通风的华北型连栋塑料温室的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对北京地区无植物条件下采用湿帘风机降温系统的华北型连栋塑料温室进行了实验研究,在实验研究的基础上,采用CFD方法建立无植物条件下采用湿帘风机降温系统的华北型连栋塑料温室的CFD理论模型,应用CFD模型模拟了不同湿帘高度和安装高度情况下华北型连栋塑料温室流场和温度场的分布情况,并与实验测试结果进行对比分析。本文还利用所建立的CFD模型对华北型连栋塑料温室在华北地区各地的使用进行了研究。分析了温室长度,出口风速和湿帘安装高度对华北地区各地华北型连栋塑料温室机械通风的影响。
     针对实验温室在不同湿帘高度和安装高度情况下的温室环境进行了实地测量,分析了华北型连栋塑料温室在不同实验方案下的夏季通风降温效果。试验结果表明:采用湿帘风机降温系统的华北型连栋塑料温室在我国华北地区的炎热季节,能够有效地降低温室室内的空气温度,在实验条件下,可以使华北型连栋塑料温室内平均空气温度比室外温度降低5.62℃。实验结果还表明,在相同实验条件下,增加入口湿帘面积,可以有效地增加温室的可控距离;提高湿帘安装高度温室可控距离增加不明显。
     在实验研究的基础上,本文利用CFD方法建立了华北型连栋塑料温室实物大小的三维CFD模型,采用稳态和标准k-ε湍流模型对实验温室在不同湿帘高度和安装高度情况下的温室环境进行了CFD模拟,预测了实验温室内部的流场和温度场的分布情况。并将计算结果与实验测量结果进行了比较,实验值和计算值吻合的比较好,由此验证了选用的CFD软件对华北型连栋塑料温室进行数值模拟的可行性和有效性。
     并利用所建立的华北型连栋塑料温室的CFD模型,对华北地区各主要地区气候条件下,不同温室长度、湿帘高度、湿帘安装高度的华北型连栋塑料温室夏季通风降温情况进行了CFD研究。给出了华北型连栋塑料温室在华北地区各主要地区适宜采用的温室长度、湿帘高度、湿帘安装高度。
The cooling effects of mechanical ventilation of Huaber-type multispan plastic greenhouse without plant are experimentally studied in summer. Under the experimental conditions,A three dimensional CFD model for mechanically ventilated Huaber-type multispan plastic greenhouse is established. And the 3-D CFD model is used to forecast the velocity and temperature distributions in a mechanically ventilated Huaber-type multispan plastic greenhouse, the predictions were checked against the measurements inside the experimental glasshouse and CFD was considered practicable. The 3-D CFD model is developed to simulate the cooling effects of mechanically ventilated Huaber-type multispan plastic greenhouse in Huabei area. Subsequently, CFD was used to investigate the influence of the length of the greenhouse, exit air velocity and cooling pad position on the internal airflow pattern in the same house.
    Under the experimental conditions, the average indoor air temperature is 5.62# lower than that of without mechanical ventilation, the largest air temperature difference is 10-12#.The result show the decreasing of entry air velocity and the increasing of cooling pad position have a advantage in the greenhouse cooling.
    Under the experimental conditions,A three dimensional CFD model for mechanically ventilated Huaber-type multispan plastic greenhouse is established.The model was steady state,the standard k- model was used to simulate turbulence.Then use the 3-D CFD model to forecast the the internal airflow pattern with different sizes and position of the cooling pad. the predictions were checked against the measurements inside the experimental glasshouse and CFD was considered practicable.
    The Applications of computational fluid dynamics in mechanically ventilated glasshouse research are studied with the checked CFD model. Different greenhouse length, cooling pad sizes and position are taken in account. The controllable distance of the Huaber-type multispan plastic greenhouse in Huabei area is presented.
引文
[1] Reichrath S, Davies T W. Applications of computational fluid dynamics in glasshouse research. Agribuilding, 2001.91~111
    [2] Boulard T, Kittas C, Roy J C. Convective and Ventilation Transfers in Greenhouses, Part 2: Determination of the Distributed Greenhouse Climate. Biosystems Engineering, 2002, 83 (2): 129~147
    [3] Businger J A. The influence of window openings on the ventilation of greenhouses, 1954
    [4] Sase S, Takakura T, Nara M. Wind tunnel testing on airflow and temperature distribution if a naturally ventilated greenhouse. Acta Horticulturae, 1984, 174:329~336
    [5] Okushima L, Sase S, Nara M. A support system for natural ventilation design of greenhouses based on computational aerodynamics. Acta Horticulturae, 1989, 284:129~136
    [6] Richards P J, Hoxey R P. Appropriate boundary conditions for computational wind engineering model using the k-ε. turbulence model. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 46&47:145~153
    [7] Bailey B J, Harral B B, Fernandez J E. Air circulation in greenhouses. Contract report PC 47 for the Horticultural Development Council, East Malling, UK, 1994
    [8] Short T H. Dynamic model of naturally ventilated poly houses. In Grower Talks Magazine (Summer), 1996
    [9] Mistriotis A, Arcidiacono C, Picuno P, et al. Computational analysis of ventilation in greenhouses at zero- and low-wind-speeds. Agricultural and Forest Meteorology, 1997, 88:121~135
    [10] Mistriotis A, Bot G P A, Picuno P, et al. Analysis of the efficiency of greenhouse ventilation using computational fluid dynamics. Agricultural and Forest Meteorology, 1997b, 85: 217~228
    [11] Mistriotis A, Jong T, Wagemans M J M, et al. Computational fluid dynamics (CFD) study as a tool for the analysis of ventilation and indoor microclimate in agricultural buildings. Netherlands Journal of Agricultural Science, 1997c, 45: 81~96
    [12] Mistriotis A, Picuno P, Bot G P A, et al. Computational study of the natural ventilation driven by buoyancy forces. In Proceedings of the 3rd International Workshop on Mathematical and Control Applications in Agriculture and Horticulture, 1997d, 110: 67~72
    [13] Boulard T, Menenses J F, Mermier M, et al. The mechanisms involved in the natural ventilation of greenhouses. Agricultural and Forest Meteorology, 1997a, 79:61
    [14] Boulard T, Papadakis G, Kittas C, et al. Air flow and associated sensible heat exchanges in a naturally ventilated greenhouse. Agricultural and Forest Meteorology, 1997b, 88:111~119
    [15] Boulard T, Roy J C, LAmrani M A, et al. Characterising and modelling the air flow and temperature profiles in a closed greenhouse in durnial conditions. IFAC Mathematical and Control
    
    Applications in Agriculture and Horticulture, 1997c, 37~42
    [16] Haxaire R, Roy J C, Boulard T, et al. Etude numerique et experimentale de la ventilation par convection naturelle dans une serre. In Acres du Congres Annuel de la SFT, 1998a, 109
    [17] Haxaire R, Roy J C, Boulard T, et al. Greenhouse natural ventilation by buoyancy forces. In EPIC'98/11 Proceedings of the 2nd European Conference on Energy Performance and Indoor Climate in Buildings and 3rd International Conference on Indoor Air Quality, Ventilation and Energy Conservation in Buildings, France, 1998, 522~527
    [18] Karcia M, Short T H, Stowell R R. A CFD evaluation of naturally ventilated, multi-span, sawtooth greenhouses. Transactions of the ASAE, 1998, 41(3): 833~836
    [19] Short T H. Aerodynamic design improves ventilation. In Grower Talks Magazine, 1998, 7: 90~98
    [20] Lee I, Short T H. A CFD model of volumetric flow rates for a naturally ventilated, multi-span greenhouse. In Joseph S, Michigan. Presented at the 91st Annual International Meeting of ASAE. Orlando. Florida, USA: ASAE Paper No. 987011, USA: ASAE, 1998a, 12~16
    [21] Lee I, Short T H. Predicted effects of internal horizontal screens on natural ventilation of a multi-span greenhouse. In Joseph S, Michigan. Presented at the 91st Annual International Meeting of ASAE. Orlando, Florida, USA: ASAE Paper No. 987014. USA: ASAE. 1998b, 12~16
    [22] Boulard T, Haxaire R, Lamrani M A, et al. Characterization and modelling of the air fluxes induced by natural ventilation in agreenhouse. Journal of Agricultural Engineering Research, 1999, 74: 135~144
    [23] Short T H, Lee I. Fluid dynamic studies of naturally ventilated greenhouse designs. In The Ohio Florists' Association Bulletin Number 835. Svensson, U. and K. H(?)iggkvist. 1990. A two-equation turbulence model for canopy flows. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 35: 201~211
    [24] Lee I, Short T H. Computational fluid dynamic study for structural design of naturally ventilated multi-span greenhouses. In Joseph S, Michigan. Presented at the 91st Annual International Meeting of ASAE. Orlando, Florida, USA: ASAE Paper No. 987014. USA: ASAE. 1999, 18~21
    [25] Haxaire R, Boulard T, Mermier M. Greenhouse natural ventilation by wind forces. In Proceedings of the International Conference and British-Israeli Workshop on Greenhouse Techniques towards the 3rd Millennium, 1999, 534 (8): 31~40
    [26] Lee I, Short T H. Two-dimensional numerical simulation of natural ventilation in a multi-span greenhouse. Transactions of the ASAE, 2000, 43 (3 : 745~753
    [27] Haxaire R, Boulard T, Mermier M . Greenhouse natural ventilation by wind forces. Acta Horticulturae, 2000, 534: 31~40
    [28] Lee I, Okushima L, Ikegushi A, et al. Prediction of natural ventilation of multi-span greenhouses using CFD techniques and its verification with wind tunnel test. In Joseph S, Michigan. Presented at the 93rd Annual International Meeting of ASAE.Milwaukee, Wisconsin, USA: ASAE Paper No. 005003. USA: ASAE. 2000, 9~12
    
    
    [29] Shklyar A, Arbel A. Greenhouse turbulence flow numerical simulation. In Proceedings of the International Conference and British-Israeli Workshop on Greenhouse Techniques towards the 3rd Millennium, 2000, 534 (8): 49~55
    [30] Reichrath S, Ferioli F, Davies T W. A simple computational fluid dynamics model of a tomato glasshouse. In Proceedings of the International Conference and British-Israeli Workshop on Greenhouse Techniques towards the 3rd Millennium, 2000, 534 (8): 197~204
    [31] Reichrath S, Davies T W. Computational fluid dynamics simulations and validation of the pressure distribution on the roof of a commercial multi-span Venlo-type glasshouse. In Proceedings of the 1st Workshop on Management, Identification and Control of Agriculture Buildings, MICAB, UTAD, Vila Real, Portugal, January 26. 2001
    [32] Reichrath S, Davies T W. Analysis of the internal flow in a multi-span glasshouse. In Proceedings of the 1st Workshop on Management, Identification and Control of Agriculture Buildings, MICAB, UTAD, Vila Real, Portugal, January 26. 2001
    [33] Huawei S, Harold K, Richard R, et al. Three-Dimensional Numerical Simulation of Mechanical Ventilation in a High-Rise(?) Hog Building (HRHB). ASAE Paper, 014040, 2001
    [34] Lee I B, Sase S, Okushima L, et al. The accuracy of computional simulation for naturally ventilated multi-span greenhouse. Chicago. Ilinois, USA:ASAE Annual meeting paper, No. 024012, 2002
    [35] Lee I, Park W, Yu B, et al. Optimumdesign of forced ventilation system of piglet house using computer simulation. ASAE Paper, 024109
    [36] Brugger M, Montero J, Baeza E, et al. Computational Fluid Dynamic Modeling to Improve the Design of the Spanish Parral Style Greenhouse. 2003 ASAE Annual Meeting, 2003, Paper No. 034046
    [37] 童莉.机械通风的华北型连栋温室内温度和速度场的数值模拟研究:[硕士学位论文].北京:北京化工大学,2003
    [38] 李永欣.Venlo型温室自然通风降温的实验研究与CFD模拟:[博士学位论文].北京:中国农业大学,2004
    [39] 张天柱,徐泳,黄之栋,等.高密度迭层笼养蛋鸡舍内气流场的数值模拟.农业工程学报,1999,15(增刊):38~43
    [40] 张天柱,徐泳,黄之栋,等.高密度迭层笼养蛋鸡舍内气流场的数值模拟.农业工程学报,1999,15(增刊):44~48
    [41] 陶文铨.数值传热学.西安交通大学出版社,2001
    [42] 徐云,李欣峰,肖田元,等.计算流体力学在清扫车仿真分析中的应用研究.系统仿真学报,2004,16(2):270~273
    [43] 张天柱.华北型连栋塑料温室.设施园艺,1999,5:9
    [44] 潘强,黄之栋,马承伟,等.华北型连栋塑料温室节能对策与实践.农业工程学报,1999,15(2):155~159
    [45] 马承伟,黄之栋,穆丽君,等.连栋温室地中热交换系统贮热加温的实验.农业工程学
    
    报,1999,15(增刊):160~164
    [46] 张天柱.湿帘风机降温系统在温室中的应用.信息市场,1999,6:40
    [47] 张涵信,沈孟育.计算流体力学—差分方法的原理和应用.北京:国防工业出版社,2003
    [48] Aderson J. Computational fluid dynamics-the basics with application. McGraw-Hill Companies Inc, 1995
    [49] Chen Q. Comparison of different k-εmodels for indoor air flow computations.Numer HeatTransfer, Part A, 1995, 28:353~369
    [50] Kim S W, Chen C P. A multiple-time-scale turbulence model based on variable partitioning of the turbulent kinetic energy spectrum. Numer Heat Tranfer, Part B, 1989, 16:193~211
    [51] Rodi W. Experience with two-layer models combining the k-ε model with a one-equation model near the wall. AIAA, 1991, 91~0216
    [52] Yakhot V, Orzag S A, Thangam S, et al. Development of turbulence models for shear flows by a double expansion technique. Phys Fluids A, 1992, 4(2): 1510~1520
    [53] Jaw S Y, Chen C J. Present status of k-ε models and their applications. In: Chen C J, Shih C, Lienau J, kung R J. eds. Natural convection-fundamenttals and applications. Washington D C: Hemipshere, 1985, 258~300
    [54] 陈作斌.计算流体力学及应用.北京:国防工业出版社,2003
    [55] 陶文铨.计算传热学的最新进展.西安:西安交通大学出版社,2000
    [56] 帕坦卡著,张政译.传热与流体的数值计算.北京:科学出版社,1984
    [57] 黄之栋,周军,丛国英,等.华北型连栋塑料温室工程简介.设施园艺,4,1999
    [58] 李树海.华北型连栋温室热环境模型:[硕士学位论文].北京:中国农业大学,2003
    [59] 李保明.现代温室技术.中国-以色列国际农业培训中心培训教材,1998
    [60] 赵云.强制通风温室中温度分布的实验研究.中国农机化,2003,4:16~18
    [61] 陈端生.中国节能型日光温室建筑与环境研究进展.农业工程学报,1994,10(1):123~129
    [62] 周长吉,王松涛,陈端生,等.论温室工程标准制订中的几个问题.农业工程学报,2002,18(4):189~192
    [63] 张家诚,林之光.中国气候.上海:上海科学技术出版社,1985
    [64] 黄之栋,潘强,马承伟,等.华北型连栋塑料温室结构与环境调控研究.北京农业科学,1999,增刊:14~19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700