菜地土壤温室气体氧化亚氮排放及其控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化亚氮(N2O)是一种重要的温室气体,它既有产生温室效应的作用,又可以破坏臭氧层。现有研究表明农业生态系统是产生N2O的主要来源。目前,关于粮食作物如水稻、小麦等生态系统中N20排放的研究较多,而关于蔬菜生产系统中N2O排放的研究较少,尤其是华中地区尚鲜见报导。因此,本文在总结国内外产生N2O的主要来源及其影响因素的研究基础上,通过室内模拟试验、原状土柱试验和大田试验,以武汉市城郊典型菜地土壤(黄棕壤)为研究对象,以小白菜、辣椒、苋菜、菠菜、萝卜和莴苣为供试蔬菜,深入探讨氮肥施用对武汉城郊菜地土壤N2O排放的影响,揭示菜地系统土壤N2O排放规律及其与环境因子如土壤水分和温度的关系。同时,在新西兰牧草地系统施用硝化抑制剂双氰胺(DCD)显著减少土壤N2O排放的基础上,研究了DCD施用至菜地系统对N2O排放的减排效果,总结提出了武汉城郊菜地控制土壤N2O排放的主要方法和措施,为蔬菜的可持续生产和土壤N2O减排提供了科学依据。主要研究结果如下:
     1.采用室内培养试验和原状土柱试验研究了不同施氮水平对武汉市城郊区菜地系统土壤N2O排放的影响。室内培养试验结果表明:施氮显著提高土壤N2O排放速率和排放总量。N2O排放随着施氮量的增加而增加,N0、N1和N2处理土壤N2O排放总量分别是0.2、6.41、10.40 mg kg-1土。土柱试验研究结果表明:土壤N2O排放通量、N2O排放总量和N2O排放系数均随着施氮水平的增加而增加,土壤N2O平均年排放总量分别为0.8 kg N ha-1 (N0)、1.68 kg N ha-1 (N1)、5.44 kg N ha-1 (N2)和13.51 kg N ha-1 (N3),各施氮处理土壤N2O排放系数年平均值为0.36%(N1)、0.54%(N2)和1.21%(N3)。此外,高施氮水平(N2和N3)下土壤N2O排放通量与土壤硝态氮含量以和铵态氮含量呈显著线性关系,而在低施氮水平(N1)和未施氮处理时,土壤N2O排放通量与土壤中无机态氮含量之间无显著线性关系。同时,土壤N2O排放总量与不同施氮量间呈显著的指数函数关系。大田试验验证了土柱试验研究结果,其研究结果与土柱试验一致。
     2.采用原状土柱试验和大田试验研究了种植不同种类蔬菜土壤N20排放的差异。原状土柱试验结果表明:土壤N2O平均日排放量大小排序依次为:苋菜>辣椒>萝卜>小白菜>莴苣>菠菜;除N3处理,同一施氮水平下,连续两年同一时间种植同种蔬菜(辣椒和苋菜)土壤N2O平均日排放量相似。大田试验结果表明种植辣椒期间土壤N2O平均日排放量最大,其排放量范围为2.29~55.40 g ha-1d-1,而种植菠菜期间土壤N2O平均日排放量最小,排放范围为1.43~7.86 g ha-1d-1;土壤N2O平均日排放量大小顺序依次为辣椒>萝卜>小白菜>菠菜。
     3.采用室内培养试验和原状土柱试验研究了土壤水分对土壤N2O排放的影响。结果表明:土壤水分由WFPS 35%提高至WFPS 85%时,土壤N2O排放总量随着土壤水分的提高而增加,而当土壤水分为WFPS 110%时,土壤N2O排放总量反而下降。N2O排放总量最大是WFPS 85%,最小的是WFPS 35%。排放系数变化范围是0.02~3.11%(N1)和0.02~2.25%(N2)。此外,原状土柱试验结果也表明,土壤N20高排放通量集中在降雨量大的4月份至9月份,占总排放量的77%,且未施氮处理,土壤N2O排放通量与土壤水分呈极显著线性相关关系。
     4.采用室内培养试验和原状土柱试验研究了土壤温度对N2O排放的影响。室内培养试验结果表明:同一施氮水平下,且当土壤水分变化较小时,土壤N2O日排放变化主要受温度的影响,士壤N2O释放速率随土壤温度的升高而增加,随着温度的降低而减小,在温度最高时达到排放峰。同一施氮水平下,当土壤水分变化较大时,N2O释放速率峰值出现在适宜的水分且温度较高时,说明土壤N2O释放速率受土壤温度和水分共同影响。原状土柱试验结果表明,土壤温度影响N2O排放季节变化规律,表现为N2O高排放通量集中在4月份至9月份,而在温度较低的冬季,各施氮处理N20的排放量都较小(<64.5μg m-2h-1),且当温度低于5℃时,N20排放通量几乎接近于0。未施氮处理下土壤N20排放通量与土壤温度呈极显著线性关系。
     5.本文采用原状土柱试验研究了种植蔬菜地与裸地N2O排放差异。结果表明,裸地土壤N2O排放量远大于种植蔬菜地土壤,裸地土壤N2O平均排放通量为193μgm-2h-1,种植蔬菜后土壤N2O平均排放通量减少至60μg m-2h-1。同时,低施氮量(T1,500 kg N ha-1)下裸地N2O排放量比高施氮量(T2,750 kg N ha-1)种植蔬菜时大,即2007年10月至2008年9月试验期间,T1处理下裸地总N2O-N排放量为9.54 kg ha-1,而T2处理下总N2O-N排放量仅为4.21 kg ha-1。此外,未种植作物时裸地土壤N2O排放系数远大于种植蔬菜时,T1种植蔬菜时为0.39%,而未种植蔬菜时裸地土壤为1.76%。
     6.采用原状土柱试验和大田试验研究了氮肥施用对蔬菜产量的影响及其与土壤N2O排放量的关系。试验结果表明蔬菜产量随着氮肥用量的增加先上升再下降,氮肥利用率随着施氮量的增加而降低,氮肥利用率与氮肥用量呈显著的指数函数相关关系。相反,各季蔬菜土壤N2O排放总量却随施氮量的增加而增加。因此说明适宜的氮肥施用量不仅可以保证蔬菜高产量,还会减少土壤N20排放,减轻氮肥施用对环境的影响。
     7.采用土柱试验研究施用硝化抑制剂双氰胺(DCD)对减少牧草地系统土壤N2O排放的影响。结果表明:施用DCD在夏季和冬季均显著减少土壤N2O排放。夏季N2O排放总量为7.8 kg N2O-N ha-1(氮肥施用量:1000 kg N ha-1),而冬季比夏季排放量高为12.3kg N2O-N ha-1。而当施入DCD后,夏季N2O排放总量则减少至4.8kg N2O-N ha-1,冬季则减少至3.9 kg N2O-N ha-1,相当于DCD减少了40%(夏季)和69%(冬季)N2O排放。因此说明,新西兰牧草地系统中N2O在冬季的排放远高于夏季排放,同时,DCD在冬季的减排效果也远高于夏季。
     8.采用原状土柱试验研究施用硝化抑制剂DCD对菜地土壤N2O排放的影响。结果表明:施用DCD显著降低菜地系统土壤N2O排放通量和N2O排放总量,施氮处理下施用DCD减少了49.33%(小白菜)和50.9%(辣椒)的土壤N2O排放;未施氮处理时,土壤N2O排放总量较低,但施用DCD依然减少了33.5%(小白菜)和33.4%(辣椒)N2O排放。同时,DCD降低了土壤N2O排放系数,小白菜未施用DCD时土壤N2O排放系数(EF)为0.15%,施DCD时则减少到0.07%,辣椒未施用DCD时土壤N2O排放系数为0.99%,施入DCD则减少到0.52%。由此说明,DCD是减少土壤N2O排放的一项有效措施。
Nitrous oxide (N2O) is an important greenhouse gas, and it can result in greenhouse effect and destruct the ozone layer. Up to now, some researches show that application of nitrogen fertilizer to agricultural system is the major source of N2O in the atmosphere. In China, many researches have been reported on N2O emissions from cereal fields, but not much studies has been done on N2O emissions from vegetable fields, especially in Central China. Therefore, based on the summary of the major sources and factors of N2O emission from soil, indoor incubation, undisturbed lysimeter and field experiments were conducted to study the N2O emission from the Wuhan suburb vegetable soils. The tested soil was Alfisols (yellow-brown soil) and sampled from Wuhan suburb. The vegetables of pepper (Capsicum annuum L.), amaranth (Amaranthus mangostanus L.), radish (Raphanus sativus L.), spinach (Spinacia oleracea L.), lettuce (Lactuca sativa L.) and Chinese cabbage (Brassica Chinensis L.) were planted. The objective of this study was to reveal the effects of nitrogen fertilization on N2O emission from vegetable system, and the relationships between N2O and soil moisture, soil temperature, as well as the mitigation impacts of dicyandiamide (DCD) in reducing N2O emission from grazed grassland in New Zealand and vegetable system in Wuhan suburb, in order to provide the measures of controlling N2O emission in Wuhan suburb vegetable system, and a scientific basis for the sustainable production of vegetables. The main results were as follows.
     1. Indoor incubation and undisturbed soil monolith lysimeter experiments were conducted to study the effects of nitrogen fertilizer application rates on N2O emission from vegetable soil. Indoor incubation experiment showed that nitrogen fertilization significantly increased N2O emission flux and total N2O emission. The N2O emission increased with the increasing of nitrogen application rate. Total N2O emission from three nitrogen treatments (N0, N1 and N2) were 0.2,6.41,10.40 mg kg-1 soil, respectively. Lysimeter experiment also revealed that nitrogen fertilization significantly increased N2O emission and emission factor (EF) from vegetable system. The average annul total N2O emission were 0.8 kg N ha-1 of N0,1.68 kg N ha-1 of N1,5.44 kg N ha-1 of N2 and 13.51 kg N ha-1 of N3, and the average emission factor of three nitrogen treatments (N1, N2, N3) were 0.36%,0.54% and 1.21%, respectively. In addition, N2O emission from high nitrogen treatments (N2 and N3) had a significant liner relationship with the contents of soil nitrate nitrogen and ammonium nitrogen, but they had no relationships under low level of nitrogen application rates (N0 and N1). Total N2O emission had an exponential relationship with nitrogen fertilizer application rates. The filed trial of nitrogen fertilization verified the above results.
     2. Undisturbed soil monolith lysimeter and field experiments were conducted to study the N2O emission from different kinds of vegetables. The results of lysimeter experiment showed that the average of daily N2O emission ranked in the order of amaranth, pepper, radish, Chinese cabbage, lettuce and spinach. Except N3 treatment, the average of daily N2O emission from the same vegetables (amaranth and pepper) that planted in two years was similar. The results of field experiment showed that the highest average of daily N2O emission was pepper, which varied from 2.29~55.40 g ha-1d-1, while spinach had the lowest emission, which ranged from 1.43~7.86 g ha-1d-1. The average of daily N2O emission ranked in the order of pepper, radish, Chinese cabbage and spinach.
     3. Indoor incubation and undisturbed soil monolith lysimeter experiments were conducted to study the effects of soil moisture on N2O emission. The results of incubation experiment revealed that the total N2O emission increased by soil moisture when soil moisture varied from WFPS 35% to WFPS 85%, but the total N2O emission decreased when soil moisture increased to WFPS 110%. The highest total N2O emission occurred when soil moisture was WFPS 85%, while the lowest one occurred when soil moisture was WFPS 35%. Emission factor varied from 0.02~3.11%(N1) and 0.02-2.25%(N2). In addition, the results from lysimeter experiment showed that the higher N2O emission occurred between April and September when most of rainfall occurred, which accounted for 77% of total N2O emission. Meanwhile, there was a liner relationship between N2O emission and soil moisture in the treatment without nitrogen fertilizer application.
     4. Indoor incubation and undisturbed soil monolith lysimeter experiments were conducted to study the effects of soil temperature on N2O emission. Incubation experiment showed that N2O daily emission increased by the increase of soil temperature and the peak emission occurred at the highest temperature when soil moisture was relatively stable. However, when soil moisture changed a lot in one day, the peak emission of N2O occurred at appropriate soil moisture and relatively high soil temperature, which meant that both soil moisture and temperature affected the daily change of N2O emission in this vegetable system. Lysimeter experiment revealed that the seasonal variation of N2O emission was mainly influenced by soil temperature, and the high emissions of N2O occurred between April and September, corresponding to the warm and wet soil condition. N2O emissions were very low (<64.5μg m-2 h-1) during the late winter to early spring due to the low soil temperature, and the daily N2O emission was around background level when soil temperature was less than 5℃. Meanwhile, there was a liner relationship between N2O emission and soil temperature in no nitrogen applied treatment.
     5. Undisturbed soil monolith lysimeter was used to investigate the difference of nitrous oxide (N2O) emission from the bare soil with N fertilizer application and the soil with vegetable planted. Results showed that N2O emission from the bare soil exceed those from the soil with vegetable planted. The average N2O emission flux from the bare soil was 193μg m-2 h-1, while it decreased to 60μg m-2 h-1 with the vegetables planted. Meanwhile, total N2O emission from the bare soil with lower nitrogen fertilizer applied (T1,500 kg N ha-1) (9.54 kg ha-1) was greater than that from the soil with higher nitrogen fertilizer applied (T2,750 kg N ha-1) (4.21 kg ha-1) during the experimental period (October 2007-September 2008). In addition, N2O emission factor from the bare soil (1.76%) was more than that from the soil with vegetable planted (0.39%).
     6. Undisturbed soil monolith lysimeter and field experiments were used to investigate the effects of nitrogen fertilizer on vegetable yield and its relationship with N2O emission. The results showed that the yield of vegetables first increased then decreased by the elevated nitrogen fertilizer rates. But, nitrogen use efficiency decreased by the increasing nitrogen application rates. Nitrogen use efficiency had an exponential relationship with nitrogen fertilizer application rates. In contrast, total N2O emission increased by the elevated nitrogen application rates. The results suggested that there is an opportunity to reduce N fertilizer application rate in this vegetable production system, though which can reduce N2O emissions.
     7. Undisturbed soil monolith lysimeter experiment was used to study the effectiveness of DCD in reducing N2O emissions under winter and summer seasons in grazed grassland in New Zealand. Results showed that DCD significant decreased N2O emission both in summer and winter seasons. Total N2O-N emissions from urine-N applied at 1000 kg N ha-1 were 7.8 kg N2O-N ha-1 in the summer season and it was much lower than that emitted during the winter season (12.3 kg N2O-N ha-1). The application of DCD reduced summer N2O-N emissions to 4.8 kg N2O-N ha-1 in summer and 3.9 kg N2O-N ha-1 in winter, representing 40% and 69% reductions, respectively. The results demonstrated that N2O emissions from animal urine-N in grazed pastures were much higher in the winter season than that in the summer season, and DCD was more effective in reducing N2O emissions in the high emitting winter season.
     8. Undisturbed soil monolith lysimeter was used to investigate the effectiveness of DCD in reducing N2O emissions in vegetable system. Results showed that DCD significantly decreased total N2O emission in vegetable system. With nitrogen fertilizer applied, DCD reduced 49.3%,50.9% total N2O emission of cabbage and pepper, respectively. And in without nitrogen applied treatment, DCD also reduced 33.5%,33.4% total N2O emission. In addition, DCD decreased N2O emission factor, the emission factor decreased from 0.15% (without DCD) to 0.07% (with DCD) of cabbage, and 0.99% (without DCD) to 0.52%(with DCD) of pepper. These results demonstrated the potential of using nitrification inhibitors to mitigate N2O emissions both in grazed pasture soils and in vegetable system.
引文
1. 白红英和张一平.西北地区旱田耕层土壤N2O排放特征的研究.农业环境科学学报,2003,22(5):561-564
    2. 蔡开地.茎用莴苣氮磷钾肥最优回归试验初报.植物营养与肥料学报,2003,9(1):126-128
    3. 陈清和张福锁.蔬菜养分资源综合管理理论与实践.北京:中国农业大学出版社,2006
    4. 陈文新.土壤和环境微生物学.北京:农业出版社,1990
    5. 陈玉芬和伍时照.广州地区晚造稻田氧化亚氮排放量与施肥灌溉关系的研究.华南农业大学学报,1999,20(2):80-84
    6. 丁洪,王跃思,项虹艳,等.菜田氮素反硝化损失与N20排放的定量评价.园艺学报,2004,31(6):762-766
    7. 丁洪和蔡贵信.华北平原不同作物-潮土系统中N2O排放量的测定.农业环境保护,2001b,20(1):7-9
    8. 丁洪和蔡贵信.华北平原几种主要类型土壤的硝化及反硝化活性.农业环境保护,2001a,20(6):390-393
    9. 丁洪和王跃思.东北黑土区不同作物系统氮肥反硝化损失与N2O排放量.农业环境科学学报,2004,23(2):323-326
    10.丁一汇,任国玉,石广玉,等.气候变化国家评估报告(Ⅰ):中国气候变化的历史和未来趋势.气候变化研究进展,2006,2(1):3-8
    11.董红敏,李玉娥,陶秀萍,等.中国农业源温室气体排放与减排技术对策.农业工程学报,2008,24(10):269-273
    12.董玉红,欧阳竹,李运生,等.肥料施用及环境因子对农田土壤C02和N20排放的影响.农业环境科学学报,2005,24(5):913-918
    13.董云社和陈佐忠.内蒙古典型草地CO2, N2O, CH4通量的同时观测及其日变化.科学通报,2000,45(3):318-322
    14.杜睿,吕达仁,王庚辰,等.温度对内蒙古典型草原土壤N2O排放的影响.自然科学进展,2003b,13(1):64-68
    15.杜睿,周宇光,王庚辰,等.土壤水分对温带典型草地N20排放过程的影响.自然科学进展,2003a,13(9):939-945
    16.杜睿.温度和水分对草甸草原土壤氧化亚氮产生速率的调控.应用生态学报,2006,17(11):2170-2174
    17.范晓晖和朱兆良.我国几种农田土壤硝化势的研究.土壤通报,2002,33(2):124-125
    18.封克,王子波,王小治,等.土壤pH对硝酸根还原过程中N2O产生的影响.土壤学报,2004,41(1):81-86
    19.高祥照和马文奇.我国施肥中存在问题的分析.土壤通报,2001,32(6):258-261
    20.侯爱新,陈冠雄,Cleemput O V.不同种类氮肥对土壤释放N2O的影响.应用生态学报,1998,9(2):176-180
    21.黄斌和陈冠雄.长效碳酸氢铵对土壤硝化-反硝化过程和NO与N2O排放的影响.应用生态学报,2000,11(1):73-78
    22.黄化刚,张锡洲,李廷轩,等.典型设施栽培地区养分平衡及其环境风险.农业环境科学学报,2007,26(2):676-682
    23.黄丽华,沈根祥,顾海蓉,等.肥水管理方式对蔬菜田N2O释放影响的模拟研究.农业环境科学学报,2009,28(6):1319-1324
    24.黄耀.地气系统碳氮交换-从实验到模型.北京:气象出版社,2003
    25.黄益宗,冯宗炜,王效科,等.硝化抑制剂在农业上应用的研究进展.土壤通报,2002,33(4):310-315
    26.焦晓燕,王立革,张东玲,等.山西省日光节能温室蔬菜施肥现状、存在问题及建议.山西农业科学,2010,38(4):37-41
    27.焦燕,黄耀,宗良纲,等.氮肥水平对不同土壤N2O排放的影响.环境科学,2008,29(8):2094-2098
    28.金雪霞,范晓晖,蔡贵信,等.菜地土壤N2O排放及其氮素反硝化损失.农业环境科学学报,2004,23(5):861-865
    29.李战国.樱桃番茄在滴灌栽培时氮肥的合理施用量研究.长江蔬菜,2008,(B08):42-44
    30.梁东丽,方日尧,李生秀,等.硝、铵态氮肥对旱地土壤氧化亚氮排放的影响.干旱地区农业研究,2007,25(1):67-72
    31.梁东丽.菜地不同施氮量下N2O逸出量的研究.西北农林科技大学学报,2002b,30(2):73-77
    32.梁东丽.干湿交替对旱地土壤N2O气态损失的影响.干旱地区农业研究,2002a,20(2):28-31
    33.梁东丽.黄土性土壤剖面中N2O排放的研究初报.土壤学报,2002c,39(6):802-809
    34.梁巍,张颖,岳进,等.长效氮肥施用对黑土水旱田CH4和N2O排放的影响.生态学杂志,2004,23(3):44-48
    35.刘学军,巨晓棠和张福锁.基施尿素对土壤剖面中无机氮动态的影响.中国农业大学学报,2001,6(5):63-68
    36.雒新萍,白红英,路莉,等.黄绵土N2O排放的温度效应及其动力学特征.生态学报,2009,29(3):1226-1233
    37.马文奇,毛达如和张福锁.山东省蔬菜大棚养分积累状况.磷肥与复肥,2000,15(3):65-67
    38.闵炬和施卫明.不同施氮量对太湖地区大棚蔬菜产量、氮肥利用率及品质的影响.植物营养与肥料学报,2009,15(1):151r157
    39.潘志勇,吴文良,刘光栋,等.不同秸秆还田模式与氮肥施用量对土壤N20排放的影响.土壤肥料,2004,(5):6-8
    40.齐玉春和董云社.土壤氧化亚氮产生、排放及其影响因素.地理学报,1999,54(6):534-542
    41.沙海宁,孙权,李建设,等.不同施氮量对设施番茄生长与产量的影响及最佳用量.西北农业学报,2010,19(3):104-108
    42.史奕,徐星凯,周礼恺,等.抑制剂及其组合对尿素15N在小麦-土壤系统中的行为和归宿的影响.应用生态学报,1998,9(2):168-170
    43.孙旭霞,尹丽红和薛玉花.设施蔬菜施肥存在的问题及对策.西北园艺:蔬菜,2007:8-9
    44.田光明,何云峰和李勇先.水肥管理对稻田土壤甲烷和氧化亚氮排放的影响.土壤与环境,2002,11(3):294-298
    45.王洪君,王为东,卢金伟,等.湖滨带温室气体氧化亚氮(N20)排放研究.生态环境,2006,15(2):270-275
    46.王煌平,何盈,张青,等.硝化抑制剂及其组合对小白菜产量、品质的影响与土壤残留分析.福建农业学报,2009,24(6):580-585
    47.王效科和李长生.中国农业土壤N20排放量估算.环境科学学报,2000,20(4):483-488
    48.王跃思.大气中痕量化学成分的分析方法研究及实际应用.[博士学位论文].北京:中国科学院大气物理研究所,1998
    49.伍少福,吴良欢和石其伟.硝化抑制剂对降低蔬菜硝酸盐积累的影响及其影响因素的研究进展.土壤通报,2006,37(6):1236-1242
    50.武汉统计局.武汉统计年鉴.北京:中国统计出版社,2009
    51.武文明,杨光明和沙丽清.氮肥对西双版纳地区稻田N2O排放通量的影响.农业环境科学学报,2008,27(5):1876-1881
    52.项虹艳,朱波,王玉英,等.氮肥对紫色土夏玉米N2O排放和反硝化损失的影响.浙江大学学报:农业与生命科学版,2007,33(5):574-583
    53.肖冬梅,王淼,姬兰柱,等.长白山阔叶红松林土壤氮化亚氮和甲烷的通量研究.应用生态学报,2004,15(10):1855-1859
    54.肖厚军和阎献芳.贵阳市主要蔬菜硝酸盐含量状况与氮磷钾养分的关系.农业环境保护,2001,20(006):449-451
    55.谢军飞和李玉娥.土壤温度对北京旱地农田N2O排放的影响.中国农业气象,2005,26(1):7-10
    56.邢长平和沈承德.N2O、CO2温室气体与土壤DNDC模型.热带亚热带土壤科学,1998,7(1):58-63
    57.熊正琴,邢光熹,施书莲,等.轮作制度对水稻生长季节稻田氧化亚氮排放的影响.应用生态学报,2003,14(10):1761-1764
    58.熊正琴和邢光熹.太湖地区湖水与河水中溶解N2O及其排放.环境科学,2002,23(6):26-30
    59.徐华和鹤田治雄.土壤水分状况和质地对稻田N20排放的影响.土壤学报,2000a,37(4):499-505
    60.徐华和鹤田治雄.土壤质地对小麦和棉花田N2O排放的影响.农业环境保护,2000b,19(1):1-3
    61.徐慧和张秀君.自然状态下树木排放N20的研究.环境科学,2001,22(5):7-11
    62.徐文彬和洪业汤.贵州省旱田土壤N2O释放及其环境影响因素.环境科学,2000,21(1):7-11
    63.徐文彬和刘维屏.温度对焊田土壤N2O排放的影响研究.土壤学报,2002,39(1):1-8
    64.许超,吴良欢,张立民,等.含硝化抑制剂DMPP氮肥对小白菜硝酸盐累积和营养品质的影响.植物营养与肥料学报,2005,11(1):137-139
    65.许映祥和周志宏.大棚番茄徒长原因与防治技术.上海蔬菜,2008,(6):86-86
    66.颜晓元和施书莲.水分状况对水田土壤N2O排放的影响.土壤学报,2000,37(4):482-489
    67.姚志生,郑循华,周再兴,等.太湖地区冬小麦田与蔬菜地N20排放对比观测研究.气候与环境研究,2006,11(6):691-701
    68.叶欣,李俊,王迎红,等.华北平原典型农田土壤氧化亚氮的排放特征.农业环境科学学报,2005,24(6):1186-1191
    69.于克伟,陈冠雄,杨思河,等.几种旱地农作物在农田N2O释放中的作用及环境因素的影响.应用生态学报,1995,6(4):387-391
    70.于亚军,朱波和荆光军.成都平原土壤-蔬菜系统N20排放特征.中国环境科学,2008,28(4):313-318
    71.余光辉,张杨珠和万大娟.几种硝化抑制剂对土壤和小白菜硝酸盐含量及产量的影响.应用生态学报,2006,17(2):247-250
    72.袁新民,李晓林和张福琐.蔬菜地土壤的硝态氮累积及影响因素.见:袁新民主编,平衡施肥与可持续优质蔬菜生产.北京:中国农业出版社,2000,288-292
    73.张大克.蔬菜产量氮肥效应预测的理论模型.生物数学学报,1998,13(1):118-123
    74.张福锁,崔振岭,王激清,等.中国土壤和植物养分管理现状与改进策略.植物学通报,2007,24(6):687-694
    75.张小洪,袁红梅和蒋文举.油菜地CO2、N2O排放及其影响因素.生态与农村环境学报,2007,23(3):5-8
    76.张秀君,徐慧和陈冠雄.长白山阔叶红松林树木N20排放及总量初步估算.生态学杂志,2004,23(5):232-235
    77.张中杰,朱波,江长胜,等.川中丘陵区旱地小麦生态系统CO2、N2O和CH4排放特征.生态学杂志,2005,24(2):131-135
    78.赵长盛.武汉城郊菜地土壤氮素的转化与淋失研究[博士学位论文].武汉:华中农业大学图书馆,2009
    79.郑靖,王重阳,王跃思,等.氮肥对潮棕壤稻田N2O排放和土壤无机氮素的影响.农业系统科学与综合研究,2006,22(2):139-142
    80.郑循华,王明星,王跃思,等.华东稻田CH4和N2O排放.大气科学,1997,21(2):231-237
    81.郑循华和金继生.稻麦轮作生态系统中土壤湿度对N20产生与排放的影响.应用生态学报,1996,7(3):273-279
    82.郑循华和金继生.华东稻麦轮作生态系统的N20排放研究.应用生态学报,1997,8(5):495-499
    83.郑循华和王明星.温度对农田N2O产生与排放的影响.环境科学,1997,18(5):1-5
    84.中国统计局.中国统计年鉴.北京:中国统计出版社,2009
    85.朱兆良.推荐氮肥适宜施用量的方法论刍议.植物营养与肥料学报,2006,12(1):1-4
    86.邹建文,秦艳梅,刘树伟.不同水分管理方式下水稻生长季N2O排放量估算:模型建立.环境科学,2009,30(2):313-321
    87. Adviento-Borbe M A, Haddix M L, Binder D L, et al. Soil greenhouse gas fluxes and global warming potential in four high-yielding maize systems. Glob Change Biol, 2007,13 (9):1972-1988
    88. AGO. Australian Greenhouse Office (AGO),2006. National Greenhouse Gas Inventory 2004. Australian Government, Department of the Environment and Heritage, Australian Greenhouse Office, Canberra, Australia,2006,
    89. Akiyama H, Tsuruta H and Watanabe T. N2O and NO emissions from soils after the application of different chemical fertilizers. Chemosphere-Glob Change Sci,2000,2 (3-4):313-320
    90. Akiyama H, Yan X Y and Yagl K. Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: meta-analysis. Glob Change Biol,2010,16 (6):1837-1846
    91. Asing J, Saggar S, Singh J, et al. Assessment of nitrogen losses from urea and an organic manure with and without nitrification inhibitor, dicyandiamide, applied to lettuce under glasshouse conditions. AustJSoil Res,2008,46 (7):535-541
    92. Aulakh M S, Doran J W, Walters D T, et al. Legume residue and soil water effects on denitrification in soils of different textures. Soil Biol Biochem,1991,23 (12): 1161-1167
    93. Bateman E J and Baggs E M. Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol Fertil Soils,2005,41 (6):379-388
    94. Bhandral R, Bittman S, Kowalenko C G, et al. Emissions of nitrous oxide after application of dairy slurry on bare soil and perennial grass in a maritime climate. Can J Soil Sci,2008,88 (4):517-527
    95. Bolton Jr H, Wildung R E and Smith J L. Nitrogen mineralization potentials of shrub-steppe soils with different disturbance histories. Soil Sci Soc Am J,1990,54 (3):887
    96. Bouwman A F. Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere. In:Bouwman AF (ed) Soils and the greenhouse effect,1990:61-127, John Wiley & Sons, Chichester,UK
    97. Bouwman A F. Direct emission of nitrous oxide from agricultural soils. Nutr Cycl Agroecosyst,1996,46 (1):53-70
    98. Bouwman A F, Boumans L J M and Batjes N H. Emissions of N2O and NO from fertilized fields:Summary of available measurement data. Glob Biogeochem Cycl, 2002,16(4):1058, doi:10.1029/2001GB001811
    99. Bouwman A F, Van der Hoek K W and Olivier J. Uncertainties in the global source distribution of nitrous oxide. J Geophys Res-Atmos,1995,100 (D2):2785-2800
    100.Bradshaw J, Davis D, Grodzinsky G, et al. Observed distributions of nitrogen oxides in the remote free troposphere from the NASA global tropospheric experiment programs. Rev Geophys,2000,38 (1):61-116
    101.Brasseur G P, Orlando J J and Tyndall G S. Atmospheric chemistry and global change. Oxford University Press, New York,1999
    102.Breuer L, Papen H and Butterbach-Bahl K. N2O emission from tropical forest soils of Australia. J Geophys Res,2000,105 (D21):26353-26367
    103.Brown J, Hinkel K M and Nelson F E. The circumpolar active layer monitoring (CALM) program:research designs and initial results. Polar Geog,2000,24 (3): 166-258
    104. Buresh R J and Austin E R. Direct measurement of dinitrogen and nitrous oxide flux in flooded rice fields. Soil Sci Soc Am J,1988,52 (3):681-688
    105. Cai Z, Laughlin R J and Stevens R J. Nitrous oxide and dinitrogen emissions from soil under different water regimes and straw amendment. Chemosphere,2001,42 (2): 113-121
    106. Cameron K C, Smith N P, McLay C D A, et al. Lysimeters without edge flow:an improved design and sampling procedure. Soil Sci Soc Am J,1992,56 (5): 1625-1628
    107. Cao B, He F Y, Xu Q M, et al. Denitrification losses and N2O emissions from nitrogen fertilizer applied to a vegetable field. Pedosphere,2006,16 (3):390-397
    108.Cassman K G, Dobermann A, Walters D T, et al. Meeting cereal demand while protecting natural resources and improving environmental quality. Ann Rev Environ Resour,2003,28 (1):315-358
    109. Chen D, Suter H C, Islam A, et al. Influence of nitrification inhibitors on nitrification and test nitrous oxide (N2O) emission from a clay loam soil fertilized with urea. Soil Biol Biochem,2010,42 (4):660-664
    110. Chen Q, Zhang X S, Zhang H Y, et al. Evaluation of current fertilizer practice and soil fertility in vegetable production in the Beijing region. Nutr Cycl Agroecosyst, 2004,69(1):51-58
    111.Ciarlo E, Conti M, Bartoloni N, et al. The effect of moisture on nitrous oxide emissions from soil and the N2O/(N2O+N2) ratio under laboratory conditions. Biol Fertil Soils,2007,43 (6):675-681
    112. Clayton H, McTaggart I P, Parker J, et al. Nitrous oxide emissions from fertilised grassland:a two-year study of the effects of N fertiliser form and environmental conditions. Biol Fertil Soils,1997,25:252-260
    113. Cole C, Duxbury J, Freney J, et al. Global estimates of potential mitigation of greenhouse gas emissions by agriculture. Nutr Cycl Agroecosyst,1997,49 (1): 221-228
    114.Conen F, Dobbie K E and Smith K A. Predicting N2O emissions from agricultural land through related soil parameters. Glob Change Biol,2000,6 (4):417-426
    115. Conrad R. Metabolism of nitric oxide in soil and soil microorganisms and regulation of flux into the atmosphere. In:Whitman W B (ed), Microbial production and consumption of greenhouse gases:methane, nitrogen oxides and halomethanes, ASM Press,1996:167-203
    116.Cui Z L, Zhang F S, Dou Z X, et al. Regional Evaluation of Critical Nitrogen Concentrations in Winter Wheat Production of the North China Plain. Agron J,2009, 101 (1):159-166
    117. Davidson E A. Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. In:Whitman W B (ed), Microbial production and consumption of greenhouse gases: methane, nitrogen oxides and halomethanes, ASM Press,1991:219-235
    118. De Klein C A M and Eckard R J. Targeted technologies for nitrous oxide abatement from animal agriculture. Aust J Exp Agric,2008,48 (2):14-20
    119.De Klein C A M, Smith L C and Monaghan R M. Restricted autumn grazing to reduce nitrous oxide emissions from dairy pastures in Southland, New Zealand. Agric Ecosyst Environ,2006,112 (2-3):192-199
    120. Di H and Cameron K. Reducing environmental impacts of agriculture by using a fine particle suspension nitrification inhibitor to decrease nitrate leaching from grazed pastures. Agric Ecosyst Environ,2005,109 (3-4):202-212
    121. Di H J and Cameron K C. Nitrate leaching in temperate agroecosystems:sources, factors and mitigating strategies. Nutr Cycl Agroecosyst,2002a,64 (3):237-256
    122. Di H J and Cameron K C. The use of a nitrification inhibitor, dicyandiamide (DCD), to decrease nitrate leaching and nitrous oxide emissions in a simulated grazed and irrigated grassland. Soil Use Manag,2002b,18 (4):395-403
    123. Di H J and Cameron K C. Mitigation of nitrous oxide emissions in spray-irrigated grazed grassland by treating the soil with dicyandiamide, a nitrification inhibitor. Soil Use Manag,2003,19 (4):284-290
    124. Di H J and Cameron K C. Effects of temperature and application rate of a nitrification inhibitor, dicyandiamide (DCD), on nitrification rate and microbial biomass in a grazed pasture soil. Aust J Soil Res,2004,42 (8):927-932
    125. Di H J and Cameron K C. Nitrous oxide emissions from two dairy pasture soils as affected by different rates of a fine particle suspension nitrification inhibitor, dicyandiamide. Biol Fertil Soils,2006,42 (6):472-480
    126.Di H J and Cameron K C. Nitrate leaching losses and pasture yields as affected by different rates of animal urine nitrogen returns and application of a nitrification inhibitor-a lysimeter study. Nutr Cycl Agroecosyst,2007,79 (3):281-290
    127.Di H J, Cameron K C, Hendry T, et al. Nitrate leaching and pasture production from different nitrogen sources on a shallow stoney soil under flood-irrigated dairy pasture. Aust J Soil Res,2002,40 (2):317-334
    128. Di H J, Cameron K C, Moore S, et al. Contributions to nitrogen leaching and pasture uptake by autumn-applied dairy effluent and ammonium fertilizer labeled with 15N isotope. Plant Soil,1999,210 (2):189-198
    129. Di H J, Cameron K C and Sherlock R R. Comparison of the effectiveness of a nitrification inhibitor, dicyandiamide, in reducing nitrous oxide emissions in four different soils under different climatic and management conditions. Soil Use Manag, 2007,23 (1):1-9
    130. Ding W X, Cai Y, Cai Z C, et al. Nitrous oxide emissions from an intensively cultivated maize-wheat rotation soil in the North China Plain.Sci Total Environ, 2007,373 (2-3):501-511
    131. Ding W X, Yu H Y and Cai Z C. Impact of urease and nitrification inhibitors on nitrous oxide emissions from fluvo-aquic soil in the North China Plain. Biol Fertil Soils,2010:1-9
    132. Dittert K, Bol R, King R, et al. Use of a novel nitrification inhibitor to reduce nitrous oxide emission from 15N-labelled dairy slurry injected into soil. Rapid Commun Mass Spectrom,2001,15 (15):1291-1296
    133.Dobbie K E, McTaggart I P and Smith K A. Nitrous oxide emissions from intensive agricultural systems:variations between crops and seasons, key driving variables, and mean emission factors. J Geophs Res-Atmos,1999,104 (D21):26891-26899
    134.Dobbie K E and Smith K A. The effects of temperature, water-filled pore space and land use on N2O emissions from an imperfectly drained gleysol. Eur J Soil Sci,2001, 52 (4):667-673
    135.Dobbie K E and Smith K A. Nitrous oxide emission factors for agriculture soils in Great Britain:the impact of soil water filled pore spore space and other controlling variables. Glob Change Biol,2003,9:204-218
    136. Duggin J A, Voigt G K and Bormann F H. Autotrophic and heterotrophic nitrification in response to clear-cutting northern hardwood forest. Soil Biol Biochem,1991,23 (8):779-787
    137.Eichner M. Nitrous oxide emissions from fertilized soils:summary of available data. J Environ Qual,1990,19 (2):272
    138. Ellis S, Howe M T, Goulding K W T, et al. Carbon and nitrogen dynamics in a grassland soil with varying pH:effect of pH on the denitrification potential and dynamics of the reduction enzymes. Soil Biol Biochem,1998,30 (3):359-367
    139. Fang S X and Mu Y J. Air/surface exchange of nitric oxide between two typical vegetable lands and the atmosphere in the Yangtze Delta, China. Atmos Environ, 2006,40 (33):6329-6337
    140. FAO. FAOSTAT (http://www.fao.org/corp/statistics/en/),2008
    141. Firestone M K and Davidson E A. Microbiological basis of NO and N2O production and consumption in soil. Exchange of trace gases between terrestrial ecosystems and the atmosphere,1989:7-21
    142. Flessa H, Ruser R, Schilling R, et al. N2O and CH4 fluxes in potato fields:automated measurement, management effects and temporal variation. Geoderma,2002,105 (3-4):307-325
    143.Granli T and Bckman O C. Nitrous oxide from agriculture. Norwegian Journal of Agricultural Sciences (Norway),1994,12:7-128
    144. Gregorich E G, Rochette P, VandenBygaart A J, et al. Greenhouse gas contributions of agricultural soils and potential mitigation practices in Eastern Canada. Soil Tillage Res,2005,83 (1):53-72
    145. Haynes R J and Williams P H. Nutrient cycling and soil fertility in the grazed pasture ecosystem. Adv Agron,1993,49:119-199
    146. He F F, Jiang R F, Chen Q, et al. Nitrous oxide emissions from an intensively managed greenhouse vegetable cropping system in Northern China. Environ Pollut, 2009,157:1666-1672
    147. Heffer P. Assessment of fertilizer use by crop at the global level:2006/07-2007/08. International Fertilizer Industry Association, Paris, France,2009: http://sustainablecropnutrition.net/ifacontent/download/7204/113684/version/8/file/A gCom.09.28+-+FUBC+assessment+at+the+global+level+(2006+%2B+2007).pdf
    148. Hewitt A E. New Zealand soil classification.2nd ed. Lincoln, Canterbury, New Zealand, Manaaki Whenua Press.1998,
    149. Hoben J, Gehl R, Millar N, et al. Nonlinear nitrous oxide (N2O) response to nitrogen fertilizer in on-farm corn crops of the US Midwest. Global Change Biology,2011, 17:1140-1152, doi:10.1111/j.1365-2486.2010.02349.x
    150. Hou A, Akiyama H, Nakajima Y, et al. Effects of urea form and soil moisture on N2O and NO emissions from Japanese Andosols. Chemosphere-Glob Change Sci,2000,2 (3-4):321-327
    151. Hou A X and Tsuruta H. Nitrous oxide and nitric oxide fluxes from an upland field in Japan:effect of urea type, placement, and crop residues. Nutr Cycl Agroecosyst,2003, 65 (2):191-200
    152. Huang S, Pant H and Lu J. Effects of water regimes on nitrous oxide emission from soils. Ecol Engine,2007,31 (1):9-15
    153. Huang Y and Tang Y H. An estimate of greenhouse gas (N2O and CO2) mitigation potential under various scenarios of nitrogen use efficiency in Chinese croplands. Glob Change Biol,2010,16 (11):2958-2970
    154. Hutchinson G L and Mosier A R. Improved soil cover method for field measurement of nitrous oxide fluxes. Soil Sci Soc Am J,1981,45 (2):311-316
    155.Huttunen J T, Juutinen S, Alm J, et al. Nitrous oxide flux to the atmosphere from the littoral zone of a boreal lake. J Geophys Res,2003,108 (D14):4421, doi:10.1029 /2002JD002989
    156.IPCC (1995). Climate change 1995:the science of climate change. Contribution of Working Group 1 to the Second Assessment of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
    157.IPCC. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories.Volume3, Section 4.5, Agriculture IPCC/OECD/IEA. Bracknell:IPCC. 1997,
    158. IPCC. Climate Change 2001:the Scientific Basis. Chap 4. Atmospheric Chemistry and Greenhouse Gases. Bracknell:IPCC.2001,
    159. IPCC, Ed. Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.2007
    160.Isermann K. Agriculture's share in the emission of trace gases affecting the climate and some cause-oriented proposals for sufficiently reducing this share. Environ Pollut,1994,83 (1-2):95-111
    161. Jarvis S C, Scholefield D and Pain B (1995). Nitrogen cycling in grazing systems. In: Nitrogen fertilization in the environment.(Ed. Bacon P E), Marcel Dekker Inc. New York,381-419
    162. Ju X T, Liu X J, Zhang F S, et al. Nitrogen fertilization, soil nitrate accumulation, and policy recommendations in several agricultural regions of China. AMBIO:J Human Environ,2004,33 (6):300-305
    163. Ju X T, Xing G X, Chen X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc National Acad Sci,2009, 106 (9):3041-3046
    164. Kaiser E A, Kohrs K, Kiicke M, et al. Nitrous oxide release from arable soil: importance of N-fertilization, crops and temporal variation. Soil Biol Biochem,1998, 30 (12):1553-1563
    165. Kalbitz K, Solinger S, Park J H, et al. Controls on the dynamics of dissolved organic matter in soils:a review. Soil Sci,2000,165 (4):277-304
    166.Kelliher F M, Clough T J, Clark H, et al. The temperature dependence of dicyandiamide (DCD) degradation in soils:A data synthesis. Soil Biol Biochem,2008, 40 (7):1878-1882
    167.Kelliher F M, Ledgard S F, Clark H, et al. Revised Nitrous Oxide Emissions from New Zealand Agricultural Soils:1990-2001. Report prepared for the Ministry of Agriculture & Forestry. Landcare Research, Lincoln, New Zealand,2003,
    168. Kelly K B, Phillips F A and Baigent R. Impact of dicyandiamide application on nitrous oxide emissions from urine patches in northern Victoria, Australia. AustJExp Agric,2008,48 (2):156-159
    169.Kroeze C, Mosier A and Bouwman L. Closing the global N2O budget:A retrospective analysis 1500-1994. Glob Biogeochem Cycl,1999,13 (1):1-8
    170. Kusa K, Sawamoto T and Hatano R. Nitrous oxide emissions for 6 years from a gray lowland soil cultivated with onions in Hokkaido, Japan. Nutr Cycl Agroecosyst,2002, 63 (2):239-247
    171. Li X G, Zhang G B, Xu H, et al. Effect of timing of joint application of hydroquinone and dicyandiamide on nitrous oxide emission from irrigated lowland rice paddy field. Chemosphere,2009,75 (10):1417-1422
    172. Liu X J, Mosier A R, Halvorson A D, et al. Dinitrogen and N2O emissions in arable soils:effect of tillage, N source and soil moisture. Soil Biol Biochem,2007,39 (9): 2362-2370
    173. Liu X J, Mosier A R, Halvorson A D, et al. The impact of nitrogen placement and tillage on NO, N2O, CH4 and CO2 fluxes from a clay loam soil. Plant Soil,2006,280 (1):177-188
    174. Lopez-Fernandez S, Diez J A, Hernaiz P, et al. Effects of fertiliser type and the presence or absence of plants on nitrous oxide emissions from irrigated soils. Nutr Cycl Agroecosyst,2007,78 (3):279-289
    175. Lu Y Y, Huang Y, Zou J W, et al. An inventory of N2O emissions from agriculture in China using precipitation-rectified emission factor and background emission. Chemosphere,2006,65 (11):1915-1924
    176. Luo J, de Klein C A M, Ledgard S F, et al. Management options to reduce nitrous oxide emissions from intensively grazed pastures:A review. Agric Ecosyst Environ, 2009,136:282-291
    177. Luo J, Ledgard S F, de Klein C A M, et al. Effects of dairy farming intensification on nitrous oxide emissions. Plant Soil,2008,309 (1):227-237
    178. Luo J, Ledgard S F and Lindsey S B. Nitrous oxide emissions from application of urea on New Zealand pasture. N Z J Agric Res,2007,50 (1):1-11
    179. Luo J, Tillman R W and Ball P R. Nitrogen loss through denitrification in a soil under pasture in New Zealand. Soil Biol Biochem,2000,32 (4):497-509
    180. Ma W, Schautz A, Fishback L, et al. Assessing the potential of ammonia oxidizing bacteria to produce nitrous oxide in soils of a high arctic lowland ecosystem on Devon Island, Canada. Soil Biol Biochem,2007,39 (8):2001-2013
    181. Maag M and Vinther F. Nitrous oxide emission by nitrification and denitrification in different soil types and at different soil moisture contents and temperatures. Appl Soil Ecol,1996,4(1):5-14
    182. Mahendrappa M K and Smith R L. Some effects of moisture on denitrification in acid and alkaline soils. Soil Sci Soc Am J,1966,31 (2):212-215
    183.Mathieu O, Henault C, Leveque J, et al. Quantifying the contribution of nitrification and denitrification to the nitrous oxide flux using 15N tracers. Environ Pollut,2006, 144 (3):933-940
    184. McKenney D J, Shuttleworth K F, Vriesacker J R, et al. Production and loss of nitric oxide from denitrification in anaerobic Brookston clay. Appl Environ Microbiol, 1982,43 (3):534
    185.McSwiney C P and Robertson G P. Nonlinear response of N2O flux to incremental fertilizer addition in a continuous maize (Zea mays L.) cropping system. Glob Change Biol,2005,11 (10):1712-1719
    186. Merino P, Menendez S, Pinto M, et al.3,4-Dimethylpyrazole phosphate reduces nitrous oxide emissions from grassland after slurry application. Soil Use Manag, 2006,21 (1):53-57
    187.MfE. New Zealand's Greenhouse Gas Inventory 1990-2006:the National Inventory Report and Common Reporting Format, July 2007. Ministry for the Environment, Wellington, New Zealand. Also online:http://www.mfe.govt.nz/publications/climate /nz-greenhouse-gas-inventory-apr08/.2008
    188. Millar N, Robertson G P, Grace P R, et al. Nitrogen fertilizer management for nitrous oxide (N2O) mitigation in intensive corn (Maize) production:an emissions reduction protocol for US Midwest agriculture. Mitigation and Adaptation Strategies for Global Change,2010,15 (2):185-204
    189.Mkhabela M, Gordon R, Burton D, et al. Ammonia and nitrous oxide emissions from two acidic soils of Nova Scotia fertilised with liquid hog manure mixed with or without dicyandiamide. Chemosphere,2006a,65 (8):1381-1387
    190.Mkhabela M S, Gordon R, Burton D, et al. Ammonia and nitrous oxide emissions from two acidic soils of Nova Scotia fertilised with liquid hog manure mixed with or without dicyandiamide. Chemosphere,2006b,65 (8):1381-1387
    191.Mogge B, Kaiser E A and Munch J C. Nitrous oxide emissions and denitrification N-losses from agricultural soils in the Bornh ved Lake region:influence of organic fertilizers and land-use. Soil Biol Biochem,1999,31 (9):1245-1252
    192.Monteny G, Bannink A and Chadwick D. Greenhouse gas abatement strategies for animal husbandry. Agric Ecosyst Environ,2006,112 (2-3):163-170
    193.Montzka S A, Fraser P J and Butler J H. Controlled substances and other source gases. In:Scientific assessment of ozone depletion:2002.. World Meteorological Organization, Geneva,2003:1.1-1.83
    194.Mosier A and Kroeze C. Potential impact on the global atmospheric N2O budget of the increased nitrogen input required to meet future global food demands. Chemosphere-Glob Change Sci,2000,2 (3-4):465-473
    195.Mosier A, Kroeze C, Nevison C, et al. Closing the global N2O budget:nitrous oxide emissions through the agricultural nitrogen cycle. Nutr Cycl Agroecosyst,1998a,52 (2):225-248
    196. Mosier A R, Duxbury J M, Freney J R, et al. Assessing and mitigating N2O emissions from agricultural soils. Clim Change,1998b,40 (1):7-38
    197.Mummey D L, Smith J L and Bluhm G. Assessment of alternative soil management practices on N2O emissions from US agriculture. Agric Ecosyst Environ,1998,70 (1): 79-87
    198. Nevison C, Butler J H and Elkins J. Global distribution of N2O and the ΔN2O-AOU yield in the subsurface ocean. Glob Biogeochem Cycl,2003,17 (4):1119, doi:10. 1029/2003GB002068
    199.Nevison C D, Lueker T J and Weiss R F. Quantifying the nitrous oxide source from coastal upwelling. Global Biogeochem Cycl,2004,18 (1):GB1018, doi:10.1029/ 2003GB002110
    200.O'Halloran I P, Von Bertoldi A P and Peterson S. Spatial variability of barley (Hordeum vulgare) and corn (Zea mays L.) yields, yield response to fertilizer N and soil N test levels. Can J Soil Sci,2004,84 (3):307-316
    201.Oenema O, Wrage N, Velthof G L, et al. Trends in global nitrous oxide emissions from animal production systems. Nutr Cycl Agroecosyst,2005,72 (1):51-65
    202. Petersen S O. Nitrous oxide emissions from manure and inorganic fertilizers applied to spring barley. J Environ Qual,1999,28 (5):1610-1618
    203.Pihlatie M, Syv salo E, Simojoki A, et al. Contribution of nitrification and denitrification to N2O production in peat, clay and loamy sand soils under different soil moisture conditions. Nutr Cycl in Agroecosyst,2004,70 (2):135-141
    204. Qiu W H, Di H J, Cameron K C, et al. Nitrous oxide emissions from animal urine as affected by season and a nitrification inhibitor dicyandiamide. J Soils Sediments, 2010,10 (7):1229-1235
    205. Ramaswamy V, Boucher O, Haigh J, et al. (2001). Radiative forcing of climate change.In:Climate Change 2001:The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Houghton, J.T., et al. (eds.)), Cambridge University Press, New York, NY, United States (US).349-416.
    206.Ravishankara A R, Daniel J S and Portmann R W. Nitrous Oxide (N2O):The Dominant Ozone-Depleting Substance Emitted in the 21st Century. Science,2009, 326 (5949):123-125
    207. Robertson G P and Vitousek P M. Nitrogen in Agriculture:Balancing the Cost of an Essential Resource. Ann Rev Environ Resour,2009,34:97-125
    208.Rudaz A, W lti E, Kyburz G, et al. Temporal variation in N2O and N2 fluxes from a permanent pasture in Switzerland in relation to management, soil water content and soil temperature. Agric Ecosyst Environ,1999,73 (1):83-91
    209.Ruser R, Flessa H, Schilling R, et al. Soil compaction and fertilization effects on nitrous oxide and methane fluxes in potato fields. Soil Sci Soc Am J,1998,62: 1587-1595
    210.Ryden J C and Lund L J. Nature and extent of directly measured denitrification losses from some irrigated vegetable crop production units. Soil Sci Soc Am J,1980, 44 (3):505
    211. Saggar S, Andrew R M, Tate K R, et al. Modelling nitrous oxide emissions from dairy-grazed pastures. Nutr Cycl Agroecosyst,2004,68 (3):243-255
    212. Saggar S, Hedley C B, Giltrap D L, et al. Measured and modelled estimates of nitrous oxide emission and methane consumption from a sheep-grazed pasture. Agric Ecosyst Environ,2007,122 (3):357-365
    213.Schindlbacher A, Zechmeister-Boltenstern S and Butterbach-Bahl K. Effects of soil moisture and temperature on NO, NO2, and N2O emissions from European forest soils. J Geophys Res-Atmospheres,2004,109:D17302, doi:10.1029/2004JD004590
    214.Sehy U, Ruser R and Munch J C. Nitrous oxide fluxes from maize fields: relationship to yield, site-specific fertilization, and soil conditions. Agric Ecosyst Environ,2003,99 (1-3):97-111
    215. Silva R G, Cameron K C, Di H J, et al. A lysimeter study of the impact of cow urine, dairy shed effluent and nitrogen fertilizer on drainage water quality. Aust J Soil Res, 1999,37:357-369
    216. Smith K, Thomson P, Clayton H, et al. Effects of temperature, water content and nitrogen fertilisation on emissions of nitrous oxide by soils. Atmos Environ,1998,32 (19):3301-3309
    217. Smith K A. Greenhouse gas fluxes between land surfaces and the atmosphere. Prog Phys Geog,1990,14 (3):349-372
    218. Smith K A and Conen F. Impacts of land management on fluxes of trace greenhouse gases. Soil Use Manag,2004,20:255-263
    219. Smith K A, McTaggart I P and Tsuruta H. Emissions of N2O and NO associated with nitrogen fertilization in intensive agriculture, and the potential for mitigation. Soil Use Manag,1997,13 (s4):296-304
    220. Smith L C, de Klein C A M and Catto W D. Effect of dicyandiamide applied in a granular form on nitrous oxide emissions from a grazed dairy pasture in Southland, New Zealand. N Z J Agric Res,2008,51 (4):387-396
    221. Smith P, Martino D, Cai Z, et al. Agriculture in Climate Change 2007:Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, Paris,2007
    222. Snyder C S and Bruulsema T W. Nutrient use efficiency and effectiveness in North America:indices of agronomic and environmental benefit. International Plant Nutrition Institute. Reference,2007
    223. Stehfest E and Bouwman L. N2O and NO emission from agricultural fields and soils under natural vegetation:summarizing available measurement data and modeling of global annual emissions. Nutr Cycl Agroecosyst,2006,74 (3):207-228
    224. Stevens R J, Laughlin R J and Malone J P. Soil pH affects the processes reducing nitrate to nitrous oxide and di-nitrogen. Soil Biol Biochem,1998,30 (8-9):1119-1126
    225. Stevenson F J and Cole M A. Cycles of soil:carbon, nitrogen, phosphorus, sulfur, micronutrients. John Wiley & Sons Inc.1986,
    226. Syakila A and Kroeze C. The global nitrous oxide budget revisited. Greenhouse Gas Meas Manag,2011,1 (1):17-26
    227.Tenuta M and Beauchamp E G. Nitrous oxide production from granular nitrogen fertilizers applied to a silt loam soil. Can J Soil Sci,2003,83 (5):521-532
    228.Tilman D, Cassman K G, Matson P A, et al. Agricultural sustainability and intensive production practices. Nature,2002,418 (6898):671-677
    229. Velthof G L, Oenema O, Postma R, et al. Effects of type and amount of applied nitrogen fertilizer on nitrous oxide fluxes from intensively managed grassland. Nutr Cycl Agroecosyst,1997,46 (3):257-267
    230. Velthof G L, Van Beusichem M L and Oenema O. Mitigation of nitrous oxide emission from dairy farming systems. Environ Pollut,1998,102 (1S1):173-178
    231. Velthof G L, Van Groenigen J W, Gebauer G, et al. Temporal stability of spatial patterns of nitrous oxide fluxes from sloping grassland. J Environ Qual,2000,29 (5): 1397-1407
    232. Wang Y, Xue M, Zheng X, et al. Effects of environmental factors on N2O emission from and CH4 uptake by the typical grasslands in the Inner Mongolia. Chemosphere, 2005,58 (2):205-215
    233. Watson R T, Meira Filho L G, Sanhueza E, et al. Greenhouse gases:sources and sinks. Climate Change 1992:The Supplementary Report to the IPCC Scientific Assessment, 1992:25-46
    234. Weier K L and Gilliam J W. Effect of Acidity on Denitrifcation and Nitrous Oxide Evolution from Atlantic Coastal Plain Soils. Soil Sci Soc Am J,1986,50 (5): 1202-1205
    235. Well R, Kurganova I, Lopes de Gerenyu V, et al. Isotopomer signatures of soil-emitted N2O under different moisture conditions-A microcosm study with arable loess soil. Soil Biol Biochem,2006,38 (9):2923-2933
    236. Williams E J, Hutchinson G L and Fehsenfeld F C. NOx and N2O emissions from soil. Glob Biogeochem Cycl,1992,6 (4):351-388
    237.Xiong Z Q, Xie Y X, Xing G X, et al. Measurements of nitrous oxide emissions from vegetable production in China. Atmos Environ,2006,40 (12):2225-2234
    238. Xu X, Boeckx P, Van Cleemput O, et al. Urease and nitrification inhibitors to reduce emissions of CH4 and N2O in rice production. Nutr Cycl Agroecosyst,2002a,64 (1): 203-211
    239. Xu X, Boeckx P, Wang Y, et al. Nitrous oxide and methane emissions during rice growth and through rice plants:effect of dicyandiamide and hydroquinone. Biol Fertil Soils,2002b,36 (1):53-58
    240. Xu X K, Boeckx P, Van Cleemput O, et al. Urease and nitrification inhibitors to reduce emissions of CH4 and N2O in rice production. Nutr Cycl Agroecosyst,2002c, 64(1):203-211
    241.Xu X K, Zhou L K, Van Cleemput O, et al. Fate of urea-15N in a soil-wheat system as influenced by urease inhibitor hydroquinone and nitrification inhibitor dicyandiamide. Plant Soil,2000,220 (1):261-270
    242. Yamulki S, Harrison R M, Goulding K W T, et al. N2O, NO and NO2 fluxes from a grassland:effect of soil pH. Soil Biol Biochem,1997,29 (8):1199-1208
    243.Zaman M, Saggar S, Blennerhassett J D, et al. Effect of urease and nitrification inhibitors on N transformation, gaseous emissions of ammonia and nitrous oxide, pasture yield and N uptake in grazed pasture system. Soil Biol Biochem,2009,41: 1270-1280
    244.Zerulla W, Barth T, Dressel J, et al.3,4-Dimethylpyrazole phosphate (DMPP)-a new nitrification inhibitor for agriculture and horticulture. Biol Fertil Soils,2001,34 (2): 79-84
    245. Zhang H H, He P J and Shao L M. Ammonia volatilization, N2O and CO2 emissions from landfill leachate-irrigated soils. Waste Manag,2010,30 (1):119-124
    246. Zheng X, Wang M, Wang Y, et al. Impacts of soil moisture on nitrous oxide emission from croplands:a case study on the rice-based agro-ecosystem in Southeast China. Chemosphere-Glob Change Sci,2000,2 (2):207-224
    247. Zheng X H, Fu C B, Xu X K, et al. The Asian nitrogen cycle case study. AMBIO:J Human Environ,2002,31 (2):79-87
    248. Zheng X H, Han S H, Huang Y, et al. Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from Chinese croplands. Glob Biogeochem Cycles,2004,18 (2):GB2018, doi:10.1029/2003GB002167
    249. Zhu Z L and Chen D L. Nitrogen fertilizer use in China-Contributions to food production, impacts on the environment and best management strategies. Nutr Cycl Agroecosyst,2002,63 (2-3):117-127
    250. Zhu Z L, Xiong Z Q and Xing G X. Impacts of population growth and economic development on the nitrogen cycle in Asia. Sci China Ser C-Life Sci,2005,48: 729-737
    251. Zou J, Lu Y and Huang Y. Estimates of synthetic fertilizer N-induced direct nitrous oxide emission from Chinese croplands during 1980-2000. Environ Pollut,2010,158 (2):631-635
    252. Zou J W, Huang Y, Lu Y Y, et al. Direct emission factor for N2O from rice-winter wheat rotation systems in southeast China. Atmos Environ,2005,39 (26):4755-4765
    253.Zou J W, Huang Y, Qin Y M, et al. Changes in fertilizer-induced direct N2O emissions from paddy fields during rice-growing season in China between 1950s and 1990s. Glob Change Biol,2009,15 (1):229-242

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700