红壤旱地和稻田土壤磷素微生物转化及其有效性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国南方红壤由于富含高岭石和铁锰氧化物等对磷有极强的专性吸附力的可变电荷矿物,以致土壤磷素有效性和磷肥作物利用率很低。土壤微生物是土壤营养元素(C、N、P、S等)转化和循环过程中的主要驱动力,探讨红壤土壤磷素转化主要功能微生物种群及其磷素转化和活化机理,对深入探讨促进红壤土壤磷素微生物转化和提高土壤磷素作物有效性具有重要的理论意义。
     本研究选择位于湖南桃源的红壤旱地和稻田田间定位试验土壤,在室内模拟培养条件下,研究了添加稻草以及细菌抑制剂(四环素和链霉素硫酸盐)或真菌抑制剂(放线菌酮)的旱地和淹水稻田土壤细菌和真菌的动态变化,探讨了土壤真菌和细菌对红壤不同利用类型土壤磷的固持效果,及其在土壤磷素转化中的作用,旨在阐明红壤旱地和淹水稻田土壤磷素转化的主要功能微生物群落及其对磷素有效性的作用机理。主要研究结果如下:
     (1)45 d培养试验结果表明,旱地土壤在培养的6d~45d期间,旱地土壤中添加稻草处理细菌和真菌数量比对照分别增加271.4%~518.8%和2900%~3608%,添加稻草+真菌抑制剂和添加稻草+细菌抑制剂处理比添加稻草处理土壤细菌数量分别增加34.1%~81.4%和下降14.3%~43.5%。添加稻草+细菌抑制剂处理土壤真菌增加17.1%~37.6%。淹水稻田土壤在培养的6d~45 d期间,添加稻草处理土壤细菌数量比对照处理增加115.3%~362.2%,而真菌数量下降5.8%~27.8%;添加稻草+细菌抑制剂处理土壤细菌数量比添加稻草处理下降39.0%~76.2%。
     (2)45 d培养试验结果表明,在0~45 d培养期间,添加稻草能使红壤旱地土壤微生物量碳和磷分别增加187.5%~193.1%和135.8%~148.7%,土壤速效磷增加27.5%~32.9%。施稻草能明显增加淹水稻田土壤微生物量碳含量,而微生物磷含量在培养过程中变化较大,但能增加淹水稻田土壤速效磷16.0%~21.2%。
     (3)45 d培养试验结束时(第45大),添加稻草的旱地土壤Fe-P和AI-P含量及固定态无机磷总量均显著增加,活性有机磷(LOP)、中活性有机磷(MLOP)、中度稳定性有机磷(MSOP)含量和有机磷总量也显著增加。添加稻草的稻田土壤Fe-P含量显著增加,Ca-P含量显著降低,土壤LOP含量和有机磷总量显著增加。因此,添加稻草能有效提高红壤旱地和稻田磷素的作物有效性。
     (4)培养试验结果表明,真菌和细菌均参与红壤旱地和稻田土壤磷素的固持过程,但旱地中可能真菌占主要作用,而淹水稻田中起作用的可能主要是细菌。
Most of the phosphorus (P) in the red soils were usually associated with kaolinite, the oxides and hydrous oxides of iron (Fe) and aluminum (Al), so that the validity of soil phosphorus and the utilizing efficiency of phosphate fertilizer are very low. Soil microorganisms play an important role in the transformation of soil organic matter and soil nutrients (such as C, N, P, S, ect.). Researches on the mechanisms of soil phosphorus transformation and the functional microorganisms which involving in the soil phosphorus transformation can provide a theory reference for the effective usage and management of phosphorus in red soils. To know better the mechanisms in which organic amendment induced the microbial transformation of P in upland and paddy red soils, responses of culturable microbial diversity and changes in the microbial biomass C (MB-C) and P (MB-P), Olsen-P, adsorbed inorganic and organic P fractions were investigated using a series of long-term field trials in Hunan, China. The main results were summarized as follows:
     i)The data obtained from a 45-day incubation experiment showed that, compared with the treatment of control, the amount of culturable bacteria and fungi in the soil amended with rice straw were increased by 271.4%~518.8% and 2900%~3608% respectively, during the incubation period of upland soil, the treatment of both rice straw and fungal inhibitor (actidione) increased the amount of culturable bacteria by 34.1%~81.4% compared to the rice straw. In the treatments of rice straw and bacterial inhibitors (tetracycline and streptomycin sulphate), the amount of culturable bacteria decreased by 14.3%~43.48% compared to the rice straw, however, the amount of culturable fungi increased by17.1%~37.6%. During the incubation period of the flooded paddy soil, the amount of culturable bacteria increased by 115.3%~362.2% in the treatment of rice straw application, whereas the amount of culturable fungi decreased by 5.8%~27.8%, compared to the control (without rice straw amendment). The amount of culturable bacteria decreased by 39.0%~76.2% in the treatment of rice straw and bacterial inhibitors compared to the treatment with rice straw only.
     ii) Throughout the 45-day incubation period, the addition of rice straw significantly increased the amounts of MB-C and MB-P by 187.5%~193.1% and 135.8%~148.7%, respectively, in the upland soil, and increased the amounts of Olsen-P by 27.5%~32.9%. Whereas in paddy soil, the addition of rice straw increased the amounts of MB-C, and MB-P often changed in the incubation period, but also increased the amounts of Olsen-P by 16.0%~21.2%.
     iii) At the end of 45-day incubation period, the treatment of rice straw increased the amounts of Fe- and Al-bound P and total inorganophosphorus significantly in upland soil, and increased the amounts of LOP, MLOP, MSOP and total organophosphorus. The treatment of rice straw increased the amounts of Fe-bound P, LOP and total organo- phosphorus in paddy soil, and decreased the mount of Ca-bound P.
     iv) Moreover, both of the fungal and bacterial groups taken part in the microbial transformation of P in upland and paddy red soils, but the fungal group made a relatively larger contribution in upland soil, and in paddy soil the role may be played by the bacteria..
引文
[1]Blazier M A, Patterson W B, Hotard S L, et al. Straw harvesting, fertilization, and fertilizer type alter soil micro-biological and physical properties in a loblolly pine plantation in the mid-south USA[J]. Biol Fertil Soils,2008,45:145~153
    [2]He J Z, Zheng Y, Chen C R, et al. Microbial composition and diversity of an upland red soil under long-term fertilization treatments as revealed by culture-dependent and culture-independent approaches[J]. J Soils Sediments,2008,8:349~358
    [3]秦燕燕,李金花,王刚,等.添加豆科植物对弃耕地土壤微生物多样性的影响[J].兰州大学学报(自然科学版),2009,45(3):55~60
    [4]王敬国.植物营养的土壤化学[M].北京:中国农业出版社,1996,68~75
    [5]王伯仁,李冬初,黄晶.红壤长期肥料定位试验中土壤磷素肥力的演变[J].水土保持学报,2008,22(5):96~101.
    [6]Wu J, Huang M, Xiao H A, et al. Dynamics in microbial immobilization and trans-formations of phosphorus in highly weathered subtropical soil following organic amendments[J]. Plant and Soil,2007,290:333~342
    [7]丁龙君,肖和艾,吴金水,等.选择性抑菌剂对添加稻草红壤旱土团聚体磷素微生物转化的影响[J].应用生态学报,2010,21(7):1759~1765
    [8]Brookes P C, Powlson D S, Jenkinson D S. Phosphorus in soil microbial biomass[J]. Soil Biology and Bio-chemistry,1984,16:169~175
    [9]Hilda R, Reynaldo F. Phosphate solubilizing bacteria and their role in plant growth promotion[J]. Bio-technology Advance,1999,19:319~359
    [10]Illmer P, Barbato A, Schinner F, et al. Solubilization of hardly-soluble AlPO4 with P-solubilizing microorganisms[J]. Soil Biology and Biochemistry,1995,27:265~270
    [11]He Z L, Zhu J. Transformation kinetics and potential availability of specifically-sorbed phosphate in soils[J]. Nutrient Cycling in Agroecosystems,1998,51:209~215
    [12]彭志红,李明德,蔡立湘,等.稻草及稻草循环利用后的废弃物还田效益研究[J].生态环境学报,2009,18(2):683~687
    [13]姜丽娜,敬岩,符建荣,等.有机肥提升高产稻田生产力及土壤生物活性作用研究[J].土壤通报,2010,41(4):892~896
    [14]Yan D Z, Wang D J, Yang L Z. Long-term effect of chemical fertilizer, straw, and manure on labile organic matter fractions in a paddy soil[J]. Biol Fertil Soils,2007,44: 93~101
    [15]柴晓芳,郑伟,刘金和.施用不同有机肥对大豆根际土壤微生物数量的影响[J].磷肥与复肥,2009,24(1):86
    [16]王振跃,施艳,李洪连.玉米秸秆还田配施生防放线菌S024对麦田土壤微生物及小麦纹枯病的影响[J].生态学杂志,2011,30(2):311~314
    [17]Manicil L M, Caputo F, Babini V. Effect of green manure on Pythium spp. population and microbial communities in intensive cropping systems[J]. Plant and Soil,2004,263: 133~142
    [18]蒙炎成,唐其展,刘忠,等.几种糖业有机物料对蔗田土壤微生物数量的影响[J].西南农业学报,2009,22(2):389~392
    [19]黄继川,彭智平,于俊红,等.施用玉米秸秆堆肥对盆栽芥菜土壤酶活性和微生物的影响[J].植物营养与肥料学报,2010,16(2):348~353
    [20]陈梅生,尹睿,林先贵,等.长期施有机肥与缺素施肥对潮土微生物活性的影响[J].土壤,2009,41(6):957~961
    [21]王库,何东方.有机肥对旱地红壤供磷效应的研究[J].土壤肥料,2001,5:19~22
    [22]Franzluebbers A, Stuedemann J. Bermudagrass management in the southern piedmont USA[J]. Soil Science Society of America Journal,2002,66(1):291~298
    [23]Sharpley A, McDowell R, Kleinman P. Amounts, forms and solubility of phosphorus in soils receiving manure[J]. Soil Science Society of America,2004,68(6):2048~2057
    [24]Jager P, Claassens A. Long-term phosphorus desorption kinetics of an acid sand clay soil from south Africa[J]. Communications in Soil Science and Plant Analysis,2005,36:309 ~319
    [25]黄敏,肖和艾,黄巧云,等.有机物料对水旱轮作红壤磷素微生物转化的影响[J].土壤学报,2004,41(4):584~589
    [26]刘恩科,梅旭荣,赵秉强,等.长期不同施肥制度对土壤微生物生物量碳、氮、磷的影响[J].中国农业大学学报,2009,14(3):63~68
    [27]李东坡,武志杰,陈利军,等.长期培肥黑土微生物量磷动态变化及影响因素[J].应用生态学报,2004,15(10):1897~1902
    [28]王晔青,韩晓日,马玲玲,等.长期不同施肥对棕壤微生物量磷及其周转的影响[J].植物营养与肥料学报,2008,14(2):322~327
    [29]刘守龙,肖和艾,童成立,等.亚热带稻田土壤微生物生物量碳、氮、磷状况及其对施肥的反应特点[J].农业现代化研究,2003,24(4):278~282
    [30]安志装,介晓磊,李有田,等.不同水分和添加物料对石灰性土壤无机磷形态转化的影响[J].植物营养与肥料学报,2002,8(1):58~64
    [31]秦鱼生,涂仕华,孙锡发,等.长期定位施肥对碱性紫色土磷素迁移与累积的影响[J].植物营养与肥料学报,2008,14(5):880~885
    [32]王婷婷,王俊,赵牧秋,等.有机肥对设施菜地土壤磷素累积及有效性的影响[J].农业环境科学学报,2009,28(1):95~100
    [33]王伯仁,李冬初,黄晶.红壤长期肥料定位试验中土壤磷素肥力的演变[J].水土保持学报,2008,22(5):96~101
    [34]陈国潮,何振立,黄昌勇.菜茶果园红壤微生物量磷与土壤磷以及磷作物有效性之间的关系研究[J].土壤学报,2001,38(1):75~80
    [35]尹逊霄,华珞,张振贤,等.土壤中磷素的有效性及其循环转化机制研究[J].首都师范大学学报(自然科学版),2005,26(3):95~101
    [36]蒋柏藩.石灰性土壤无机磷有效性的研究[J].土壤,1992,24:61~64
    [37]Chang S C, Jackson M L. Fractionation of soil phosphorus in soils[J]. Soil Science,1957, 84:133~144
    [38]Peterson G W, Corey R B. A modify Chang-Jackson procedure for routine fractionation of inorganic soil phosphates[J]. Soil Science Society of America Journal,1966,30:563 ~565
    [39]顾益初,蒋柏藩.石灰性土壤无机磷的测定方法.土壤,1990,22(3):101~102
    [40]沈仁芳,蒋柏藩.石灰性土壤无机磷形态分布及其有效性[J].土壤学报,1992,29(1):80-86
    [41]蒋柏藩.石灰性土壤无机磷有效性的研究[J].土壤,1992,24:61~64
    [42]冯固,杨茂秋,白灯莎.用32P示踪研究石灰性土壤中磷素的形态及其有效性的变化[J].土壤学报,1996,33(3):301~306
    [43]吕家珑,刘文革,王旭东,等.长期施肥对土壤无机磷形态组成的影响[J].西北农业大学学报,1995,23(3):51~54
    [44]陈欣,宇万太,沈善敏.磷肥低量施用制度下土壤磷库的发展变化Ⅱ:土壤有效磷及无机磷组成[J].土壤学报,1997,34(1):81~88
    [45]刘建玲,张福锁.小麦一玉米轮作长期肥料定位试验中土壤磷库的变化Ⅰ.磷肥产量效应及土壤总磷库,无机磷库的变化[J].应用生态学报,2000,11(3):360~364
    [46]鲍士旦主编.土壤农化分析(第三版)[M].北京:中国农业出版社,2000,76~78,90~91,268~270
    [47]成瑞喜,贾平.中酸性土壤无机磷形态及生物有效性[J].热带亚热带十壤科学,1998,7(1):6~10
    [48]黄运湘,张扬珠,邹应斌,等.湖南省双季稻田土壤无机磷形态的分级研究[J].湖南农业大学学报,1998,24(2):90~94
    [49]Kumar V, Gilkes R J, Bollang M D A. Phosphate fertilizer placement and tillage system on phosphorus distribution in soil[J]. Communications in Soil Science and Plant Analysis, 1992,23(13-14):1461~1477
    [50]吴金水,肖和艾,陈桂秋,等.旱地土壤微生物磷测定方法研究[J].土壤学报,2003,40(1):77~78
    [51]Bowman R A, Cole C V. An exploratory method for fractionation of organic phosphorus from grassland soils[J]. Soil Science,1978,125:95~101
    [52]Hedley M J, Stewart J W B, Chauhan B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations[J]. Soil Science Society of America Journal,1982,46:970~976
    [53]Tiessen H, Stewart J W B, Moir J Q. Changes in organic and inorganic phosphorus composition of two grassland soils and their particle size fractions during 40-90 years of cultivation[J]. Journal of Soil Science,1983,34:815~823
    [54]Ivanoff D B, Reddy K R, Robinson S. Chemical fractionation organic phosphorus in selected histosols[J]. Soil Science,1998,163(1):36~45
    [55]贺铁,李世俊Bowman-Cole土壤有机磷分级方法的探讨[J].土壤学报,1987,24(2):151~159
    [56]熊恒多,李世俊,范业宽.酸性土壤有机磷分级法的探讨[J].土壤学报,1993,30(4):390~399
    [57]Fan Y K, Li S J. Fractionation of moderately and highly stable organic phosphorus in acid soil[J]. Pedosphere,1998,8(3):261~266
    [58]胡晓玲,尹淑霞,刘华开,等.石灰性土壤中稳性和高稳性有机磷有效性分组法的探讨[J].安徽农业科学.2002,30(5):667~669,675
    [59]胡晓玲,尹淑霞,范业宽.石灰性土壤活性和中度活性有机磷的有效性分组方法研究[J].安徽农业科学.2001,29(5):629~631
    [60]冯跃华,张杨珠.土壤有机磷分级研究进展[J].湖南农业大学学报(自然科学版),2002,28(3):259~264
    [61]李和生,王林权,赵春生.小麦根际磷酸酶活性与有机磷之关系[J].西北农业大学学报,1997,25(2):47~50
    [62]曹翠玉,张亚丽,沈其荣,等.有机肥料对黄潮土有效磷库的影响[J].土壤,1998,30(5):235~238
    [63]张亚丽,沈其荣,曹翠玉.有机肥料对土壤有机磷组分及生物有效性的影响[J].南京农业大学学报,1998,21(3):59~63
    [64]尹金来,沈其荣,周春霖,等.猪粪和磷肥对石灰性土壤有机磷组分及有效性的影响[J].土壤学报,2001,38(3):295~300
    [65]赵小蓉,林启美.微生物解磷的研究进展们土壤肥料[J].2001,(3):7~11
    [66]Mendoza R E, Paganie A. Influence of phosphorus nutrition on mycorrhizal growth response and morphology of mycorrhizae in Lantus tenui[J]. Journal of Plant Nutrition, 1997,20(6):625~639
    [67]李淑敏,李隆,张福锁.丛枝菌根真菌和根瘤菌对蚕豆吸收磷和氮的促进作用[J].中国农业大学学报,2004,9(1):11~15
    [68]Illmer P, Barbato A, Schinner F, et al. Solubilization of hardly-soluble AlPO4 with P-solubilizing micro-organisms[J]. Soil Biology and Biochemistry,1995,27:265~270
    [69]Kucey R M N, Janzen H H, Langgett M E. Microbially mediated increases in plant-available phosphorus[J]. Advances in Agonomy,1989,42:199~228
    [70]Perez E, Sulbaran M, Ball M M, et al. Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region[J]. Soil Biology and Bio-chemistry,2007,39:932~946
    [71]钟传青,黄为一.不同种类解磷微生物的溶磷效果及其磷酸酶活性的变化[J].土壤学报,2005,42(2):286~294
    [72]Asea P E A, Kucey R M, Sterart J W B. Inorganic phosphate-solubization by two Penicillium species in solution culture and soil[J]. Soil Biology and Biochemistry,1988, 20(4):459~464
    [73]宋炜,袁丽娜,肖琳,等.太湖沉积物中解磷细菌分布及其与碱性磷酸酶活性的关系[J].环境科学,2007,28(10):2355~2360
    [74]Edwards K A, McCulloch J, Kershaw G P, et al. Soil microbial and nutrient dynamics in a wet Arctic sedge meadow in late winter and early spring[J]. Soil Biology and Biochemistry,2006,38:2843~2851
    [75]李志伟,崔力拓,耿世刚,等.影响土壤磷素解吸的环境因素研究[J].中国水土保持SWCC,2007,6:33~34
    [76]Feng K, Lu H M, Sheng H J, et al. Effect of organic ligands on biological availability of inorganic phosphorus in soil[J]. Pedosphere,2004,14(1):96~101
    [77]Chen Y P, Rekha P D, Arun A B, et al. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities[J]. Applied Soil Ecology,2006, 34(1):33~41
    [78]Hameeda B, Harish K R Y, Rupela O P, et al. Effect of carbon substrates on rock phosphate solubilization by bacteria from composts and macrofauna[J]. Current Micro-biology,2006,53:298~302
    [79]Kim Y H, Bae B, Choung Y K. Optimization of biological phosphorus removal from contaminated sediment with phosphate-solubilizing microorganisms[J]. Journal of Bioscience and Bioengineering,2005,99(1):23~29
    [80]Illmer P, Schinner F. Solubilization of inorganic calcium phosphates-solubilization mechanisms[J]. Soil Biology and Biochemistry,1995,27(3):257~263
    [81]James E C, Kuiay C. Production of citric an d oxaiic acids and solubilization of calcium phosphate by Penicilfium biaii[J]. Appl Environ Micro,1992,58(5):1451~1458
    [82]Lin T F, Huang H I, Shen F T, et al. The protons of gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC-A174[J]. Bioresource Technology,2006,97:957~960
    [83]Cheng G C, He Z L, Wang Y J. Impact of pH on microbial biomass carbon and microbial biomass phosphorus in red soils[J]. Pedosphere,2004,14 (2):171~176
    [84]孙彩霞,陈利军,武志杰.Bt杀虫晶体蛋白的土壤残留及其对土壤磷酸酶活性的影响[J].土壤学报,2004,41(5):761~765
    [85]Vaughan D. The degradation of nucleie acids by Cytophaga johnsonii[J]. Journal Applied Bacteriology,1970,33:380~389
    [86]Greaves M P. The hydrolysis of phosphates by Aerobacter acrogene[J]. Biochimica Biophysica Acta,1967,132:412~418
    [87]Tao G C, Tian S J, Cai M Y, et al. Phosphate-solubilizing and-mineralizing abilities of bacteria isolated from soils[J]. Pedosphere,2008,18(4):515~523
    [88]Yadav R S, Tarafdar J C. Phytase and phosphatase producing fungi in acid and semi-acid soil and their efficiency in hydrolyzing different organic P compounds[J]. Soil Biology and Biochemistry,2003,35:1~7
    [89]林启美,赵小蓉,孙焱鑫,等.四种不同生态系统的土壤解磷细菌的数量及种群分布[J].土壤与环境,2000,9(1):34~37
    [90]黄伟,黄欠如,胡锋,等.红壤溶磷菌的筛选及溶磷能力的比较[J].生态与农村环境学报,2006,22(3):37~40
    [91]万璐,康丽华,廖宝文,等.红树林根际解磷菌分离、培养及解磷能力的研究[J]. 林业科学研究,2004,17(1):89~94
    [92]肖和艾,龚惠群,谭云峰.江南丘陵红壤中解磷菌株的筛选试验初报[J].农业现代化研究,1994,15(6):369~371
    [93]赵小蓉,林启美,孙焱鑫,等.细菌解磷能力测定方法的研究[J].微生物学通报,2001,28(1):1~4
    [94]谢林花,吕家珑,张一平.长期不同施肥对石灰性土壤微生物磷及磷酸酶的影响[J].生态学杂志,2004,23(4):65~68
    [95]辛桢凯,龚文琪,胡纯,等.溶磷微生物的选育及除磷研究[J].武汉理工大学学报,2011,31(1):121~124
    [96]吴金水,林启美,黄巧云,肖和艾.土壤微生物生物量测定方法及其应用[M].气象出版社,2006
    [97]Zhu H H, Wu J, Huang D Y, et al. Improving fertility and productivity of a highly-weathered upland soil in subtropical China by incorporating rice straw[J]. Plant and Soil,2010,331:427~437
    [98]Rottmanna N, Dyckmans J, Joergensen R G. Microbial use and decomposition of maize leaf straw incubated in packed soil columns at different depths[J]. European Journal of Soil Biology,2010,46:27~33
    [99]Bossuyt H, Denef K, Six J, et al. Influence of microbial populations and residue quality on aggregate stability[J]. Applied Soil Ecology,2001,16:195~208
    [100]Doran J W. Microbial changes associated with reduced management with reduced tillage[J]. Soil Science Society of America Journal,1980,44:518~524
    [101]许仁良,王建峰,张国良,等.秸秆、有机肥及氮肥配合使用对水稻土微生物和有机质含量的影响[J].生态学报,2010,30(13):3584~3590
    [102]盛荣,肖和艾,丁龙君,等.施肥对红壤旱地和稻田土壤可培养微生物和微生物生物量磷的影响[J].农业现代化研究,2010,31(5):626~629
    [103]谭周进,李倩,陈冬林,等.稻草还田对晚稻土微生物及酶活性的影响[J].生态学报,2006,26(10):3385~3392
    [104]Shaw K. Studies on nitrogen and carbon transformation in soil[D]. London:University of London,1958
    [105]中国科学院南京土壤研究所编,土壤理化分析[M].上海:科学技术出版社,1978
    [106]Colinas C, Ingham E, Molina R. Population responses of target and non-target forest soil organisms to selected biocides[J]. Soil Biology and Biochemistry,1994,26(1):41~ 47
    [107]林启美.选择性呼吸抑制技术在土壤细菌和真菌生物量测定中的应用[J].生态学报,1999,19(6):921~926
    [108]He J Z, Zheng Y, Chen R C, et al. Microbial composition and diversity of an upland red soil under long-term fertilization treatments as revealed by culture-dependent and culture-independent approaches[J]. J Soils Sediments,2008,8:349~358
    [109]王英.淹水和旱作稻田土壤中微生物群落多样性的研究[D].南京:南京农业大学,2006.
    [110]刘岳燕,姚槐应,黄昌勇.水分条件对水稻土微生物群落多样性及活性的影响[J].土壤学报,2006,43(5):828~834
    [111]裴雪霞,周卫,梁国庆,等.长期施肥对黄棕壤性水稻土生物学特性的影响[J].中国农业科学,2010,43(20):4198~4206
    [112]de Vries F T, Hoffland E, van Eekeren N, et al. Fungal/bacterial ratios in grasslands with contrasting nitrogen manage-ment[J]. Soil Biology and Biochemistry,2006,38(8):2092 ~2103
    [113]Letkeman L P, Tiessen H, Campbell C A. Phosphorus transformations and redistribution during pedogenesis of western Canadian soils[J]. Geoderma,1996,71(3-4):201~218
    [114]Nwoke O C, Vanlauwe B, Diels J, et al. Assessment of labile phosphorus fractions and adsorption characteristics in relation to soil properties of West African savanna soils[J]. Agriculture, Ecosystems and Environment,2003,100(2-3):285~294
    [115]Wu J, Joergensen R G, Pommerening B, et al. Measurement of soil microbial biomass by fumigation-extraction-an automated procedure[J]. Soil Biology and Biochemistry, 1990,22(8):1167~1169
    [116]Brookes P C, Powlson D S, Jenkinson D S. Measurement of microbial biomass phosphorus in soil[J]. Soil Biology and Biochemistry,1982,14(4):319~329
    [117]Murphy J, Riley J P. A modified single solution method for the determination of phosphate in natural waters[J]. Analytica Chimica Acta,1962,27:31~36
    [118]马星竹,武志杰,陈利军,等.长期施肥对黑土、棕壤微生物量的影响[J].土壤通报,2011,42(1):60~64
    [119]Mamilov A S, Dilly O M. Microbial characteristics during the initial stages of litter decomposition in forest and adjacent cropland soil[J]. Ecological Engineering,2007, 31:147~153
    [120]章永松,林咸永,罗安程,等.有机肥(物)对土壤中磷的活化作用及机理研究Ⅰ有机肥(物)对土壤不同形态无机磷的活化作用[J].植物营养与肥料学报,1998,4(2):145-150
    [121]Sparling G P, Milne J D G, Vincent K W. Effect of soil moisture regime on the microbial contribution to Olsen phosphorus values[J]. New Zealand Journal of Agricultural Research,1987,30:79~84

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700