长期施肥对黄土旱塬小麦产量及土壤CO_2和N_2O排放的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化肥和有机肥料的施用可促进作物对养分以及水分的吸收,提高土壤肥力,增加作物产量。但是不合理的施用方式或肥料的过量施用,增加了土壤CO_2和N_2O温室气体的排放,对肥料施用后温室气体排放的研究,有助于了解温室气体的排放量及其排放规律,为合理施肥提供科学依据。本研究以长武农业生态试验站的长期定位试验为基础,研究了长期施肥对小麦产量、养分吸收特性、CO_2排放、N_2O排放、土壤养分以及土壤水分的影响。试验结果表明:
     1.在不同降水年型下,合理施肥能大幅增加小麦产量。NPM配施在干旱年、常态年、丰水年分别增产281.74 %、258.89 %、300.0 %,单施M在干旱年、常态年、丰水年分别增产172.43 %、211.11 %、262.22 %。有机肥在促进作物养分吸收量方面的作用显著,NPM配施植株氮、磷、钾的养分平均吸收量最高,在丰水年单施M小麦籽粒吸氮量、吸磷量、吸钾量分别较NP配施提高了84.94 %、84.74 %、40.55 %。
     2. NPM配施和单施M的土壤有机质含量较不施肥分别增加了56.03 %和51.86 %,有机肥的施用显著增加了土壤有机质含量,NPM配施和单施M的全氮含量无明显差异。NPM配施的全磷和速效磷含量最高,较单施M分别增加了16.25 %和92.69 %,单施M的速效钾含量最高,较NPM配施增加了14.54 %。土壤全氮含量与有机质含量存在极显著的正相关关系,土壤有机质含量与土壤速效磷和速效钾含量均存在显著的正相关关系。不施肥与单施N土壤贮水量最高,在0-80cm土层各处理贮水量变异系数为31 %,随深度的增加贮水量的变异系数减小,NPM配施的水分利用效率最高,较NP配施和单施M分别提高了21.23 %和14.14 %,单施M的水分利用效率是不施肥的1.85倍,是单施N的1.37倍。
     3.不同施肥措施的土壤耕层有机碳累积量随年份的增加呈不同的变化趋势,2009年较试验初始时NPM配施的土壤耕层有机碳累积量增加了81.88 %,增加幅度最大,NP配施和单施N耕层有机碳累积量随年份的增长无明显的变化趋势,NPM配施和单施M耕层有机碳累积量随年份的增长明显增加,有机肥在促进土壤耕层有机碳累积量增加方面的作用显著。
     4.土壤CO_2排放具有一定的季节性,冬小麦越冬期土壤CO_2排放通量最低,均处于10 mg CO_2-C·m~(-2)·h~(~(-1))以下的较弱呼吸状况,返青期的土壤CO_2排放通量最高,在16.24~33.90 mg CO_2-C·m~(-2)·h~(~(-1))之间,其中M处理土壤CO_2排放通量最高,为33.90 mgCO_2-C·m~(-2)·h~(-1)。单施N与不施肥的土壤CO_2年排放总量差异不显著,单施M和NPM配施时土壤CO_2年排放总量分别为2301 kg CO_2-C·hm~(-2)和2211 kg CO_2-C·hm~(-2),较不施肥分别增加了52.78 %和48.47 %。
     5. N_2O排放通量在施肥后的0~20天表现出较大差异,肥料的施用对N_2O排放的影响随时间增加而减弱。在萌芽期和出苗期,NPM配施、NP配施和单施N的N_2O排放量远高于其它时期,而单施M和不施肥的N_2O排放量在整个生育期差异不大。NPM配施的N_2O年排放总量,与NP配施和单施N相比分别增加了17.09 %和33.63 %,单施M的N_2O年排放总量为0.21 kg N_2O-N·hm~(-2),与不施肥相比N_2O年排放总量差异不大,仅增加了10.67 %。NPM配施N_2O排放系数最高,为0.35 %,NP配施、单施N的N_2O排放系数分别为0.28 %、0.22 %,均基本处于正常的N_2O排放系数范围之间。
     6. NPM配施与单施M提高了土壤CO_2排放量与土壤各养分含量,NP配施较不施肥土壤CO_2排放量增加,土壤速效钾含量降低,单施N较不施肥降低了土壤CO_2排放量,也降低了土壤全磷及土壤速效养分含量。
     NPM配施与NP配施提高了土壤N_2O排放量与土壤各养分含量,单施M的土壤N_2O排放量较不施肥无明显差异,土壤养分含量大幅增加,单施N较不施肥明显增加了土壤N_2O排放,在增加土壤养分方面的作用不显著。
Applying of chemical fertilizer and manure can promote the absorption for crop to nutrient and water from soil, and improve soil fertility and crop yield. But unreasonable fertilization method or excessive application of fertilizer increase the emission of CO_2 and N_2O from soil, studying on the emission of greenhouse gas after fertilization is useful to understand the emission amount and emission regularity, and these can provide scientific basis for rational fertilization. Based on the long-term fertilization experiment at the Changwu Agro-ecological experimental station, the objective of this work was to study the effect of fertilization on wheat yield, nutrient uptake characters, CO_2 emission, N_2O emission, soil fertility and water.
     The results showed that:
     1. Under different precipitation years, rational fertilization can increase the yield greatly. In drought annual, normal annual and wet annual, fertilizer M increased the yield by 172.43 %, 211.11 % and 262.22 % separately; N, P and M applied together increased production remarkably, in drought annual, normal annual and wet annual, fertilizer NPM increased the yield by 281.74 %、258.89 %、300.00 % separately. The application of organic fertilizer can promote the nutrient absorption significantly, the average of N, P, K uptake were highest in NPM treatment, in wet annual, the N, P, K uptake of wheat seed with M fertilizer are 84.94 %, 84.74 %, 40.55 % higher than NP treatment.
     2. Soil organic matter in M and NPM treatment were 56.03 % and 51.86 % higher than unfertilized plot, the application of organic fertilizer can promote soil organic matter significantly, and there were no significant difference of total N between M and NPM treatment. Total P and available P in NPM treatment were the highest, they were 16.25 % and 92.69 % higher compared to M treatment, available K of M treatment was the highest and 14.54 % higher than NPM treatment. There was obviously positive correlation between total N and organic matter, soil available P and available K were significantly positively correlated with soil organic matter.
     Soil water storage in unfertilized and N treatment were higher than others, coefficient of variation of soil water storage in 0~80 soil layer was 31 % in different treatments, coefficient of variation of soil water storage was decreasing with the increasing depth, water use efficiency of NPM treatment was the highest, it was 21.23 % and 14.14 % higher compared to NP and M treatment, water use efficiency of M treatment was 1.85 times than unfertilized treatment, and 1.37 times than N treatment.
     3. Soil organic carbon accumulation with year increasing had different variation trend under different fertilizations, in 2009 the soil organic carbon accumulation of NPM treatment was increased by 81.88 % compared to 1984 when the experiment began, the increasing extent of soil organic carbon accumulatiaon in NPM treatment was the largest. With year increasing, the variation trend of soil organic carbon accumulation in NP and N treatment were not obvious, soil organic carbon accumulation in NPM and M treatment had an obvious rising trend, the application of organic fertilizer can increase soil organic accumulation significantly.
     4. There were seasonal variability of fluxes of CO_2 emission, under different fertilizer application conditions, the fluxes of CO_2 emission were the lowest in over-wintering stage, and they were below 10 mg CO_2-C·m~(-2)·h~(-1), the fluxes of CO_2 emission in regreen stage was the highest and they were between 0.96 and 117.94 mg CO_2-C·m~(-2)·h~(-1), in regreen stage the fluxes of CO_2 emission of M treatment was the highest, and it was 33.90 mg CO_2-C·m~(-2)·h~(-1). The difference of annual emission of CO_2 between unfertilized and N treatment was not significantly, annual emission of CO_2 of NPM and M treatment were 2301 kg CO_2-C·hm~(-2) and 2211 kg CO_2-C·hm~(-2), and they were 52.78 % and 48.47 % higher than unfertilized treatment.
     5. There greater differences in the flux of N_2O emission after fertilization 1 to 20 days, the effect of fertilizer on N_2O emission decreased with the increase of time. The amount of N_2O emission in germination and seeding stage were higher than other stages, the amount of N_2O emission of unfertilized and M treatment had not significant difference in the whole growth stage. Compared to NP and M treatment, the annual emission of N_2O of NPM treatment was increased by 17.09 % and 33.63 % separately, the annual emission of N_2O in M treatment was 0.21 kg N_2O-N·hm~(-2), and it was 10.67 % higher than unfertilized treatment. Discharge coefficient of N_2O of NPM treatment was 0.35%, and it was the highest, the discharge coefficient of N_2O of NP and M treatment were 0.28% and 0.22%, all of these were within the normal range of discharge coefficient of N_2O.
     6. The emission of CO_2 and soil nutrient in NPM and M treatment were increased, the emission of CO_2 in NP treatment was increased, available K in NP treatment was decreased, and the emission of CO_2, total P and available nutrient in N treatment were all decreased. The emission of N_2O and soil nutrient in NPM and NP treatment were increased, the difference of emission of N_2O between M and unfertilized treatment was not significantly, soil nutrient in treatment was greatly increased, the emission of N_2O was greatly increased compared to unfertilized treatment, the effect of N treatment on increasing soil nutrient was not significantly.
引文
B ala S V, Maheswari M. 1992. Compensatory growth responses during reproductive phase of cowbea after relief of water stress. J Agron Crop Sci, 168: 58~90
    Baker JM, Ochsner TE, Venterea RT, et al. 2007. Tillage and soil carbon sequestration: What do we really know? A g ricu ltu re, Ecosystems and Environment, 118: 1~5
    Bauhus J, Pare D, Cote L. 1998. Effects of tree species, stand age and soil type on soil microbial biomass and its activity in a southern boreal forest. Soil Biology and Biochemistry, 1077~1089
    Bouwman A F. 1995. ComPilation of a global inventory of emissions of nitrous oxide. Wageningen, 57~76
    Bouwman A F. 1990. Exehange of Greenhouse Gases between Terrestrial Ecosystems and the atmosphere IN: Bouwman,A.F (ED). Soil and Greenhouse Effeet. Wileyandsons.Chiekster, NewYork, 61~127
    Bremner J M , Robbins S G.. 1980. Seasoned variability in emission of nitrous oxide from soil.Geophysical Research letter, 7(9): 641~644
    Colboura P. 1992. Denitrification and N_20 Production in pasture soil influence of nittogen supply and moisture. Agric Ecosystems Environ, 39: 267~278
    Cole C V. 1995. Climate change 1995-Impacts, Adaptations and mitigation of climate chang: scientific-technical analyses. Cambridge univ. press, Cambridge, 745 ~771.
    Delgado J A , Mosier A R. 1999. Mitigation altematives to decrease nitrous oxides emissions and urea-nitrogen loss and their effect on methane flux. J Environ Qual, 25(6): 1105~1111
    Dmitri C, Jorgen O. 2007. Soil tillage enhanced CO_2 and N_2O emissions from loamy sand soil under spring barley. Soil&Tillage Research, 97: 5~18
    Ellert B H, Bettany J R. 1995. Calculation of organic matter and nutrients stored in soils under contrasting management regimes.Canadian Journal of Soil Science, 75: 529~538
    Fang C, Moncrieff J B. 2001. The dependence of soil CO_2 efflux on temperature. Soil Biology and Biochemistry, 33: 155~165
    Garcia R R, Baggs E M. 2007. N_2O emission from soil following combined application of fertilizer-N and ground weed residues .Plant Soil, 299(1/2): 263~274
    Hao M D, Fan J, Wei X R, et al. 2005. Effect of fertilization on soil fertility and wheat yield of dryland in the Loess Plateau. Pedosphere, 15(2): 189~195
    Hartwig N L. 2002. Ammon HU 50th Anniversary invited article cover crops and living mulches. Weed Sci, 50: 688~699
    Hedley M J, Stewart J W B, Chauhan B S.Soil Sci.Soc.Am.J., 1982, 46: 970~976
    Ilstedt U, A Nordgren, A Malmer. 2000. Optimum soil water for soil respiration before and after amendment with gluese in humid tropical acrisols and a boreal morlayer. Soil Biol Bioehem, 32: 1591~1599.
    IPCC. 1992. Estimated source and sink of nitrous oxide. Cambridge: Cambridge University Press: 344~349
    IPCC.1997. Revised 1996 IPCC Guidelines for National Green-house Gas Inventories: ReferenceManual.Paris, France: OECD.1~40
    Kelting D L, Burger J A, Edoards G S. 1998. Estimating root respiration, microbial respiration in the rhizosphere and root free soil respiration in forest soils. Soil Biology and Biochemistry, 30(7): 961~968.
    Kisselle K W, Garrett C J, Fu S, et al. 2001. Budgets for root-derived C and litter-derived C: comparison between conventional tillage and no tillage soil. Soil Biology and Biochemistry, 33: 1067~1075
    Lal R, Griffin M, Apt J, et al. 2004. Managing soil carbon. Science, (304):393
    Lal R. 1997. Residue management,conservation tillage and its restoration for mitigating greenhouse effect by CO_2 enriehment, soil&Tillage Researeh, 43: 81~107
    Liu X Z,Wan S Q, Su B, et al. 2002. Response of soil CO_2 efflux to water manipulation in a tall grass prairie ecosystem. Plant and Soil, 240: 212~223
    Lloyd D. Microbial Proeesses and the cycling of atmosPheric trace gases. 1995. Trends in Ecology and Evolution, 10: 476~478
    Lloyd J, Taylor J A. 1994. On the temperature dependence of soil respiration. Functional Ecology, 8: 315~323
    Lundegardh H. 1927. Carbon dioxide evolution and crop growth. Soil S cience, 23:417~453
    Luo. 2001. Acclimatization of soil respiration to warming in a tall grass prairie. Nature, 413: 622~625 Mallik AU, D Hu. 1997. Soil respiration following site preparation treatments in boreal mixed wood forest. Forest Ecology and Managemengt. 97: 265~275
    McCarty G W, Lyssenko N N, Starr J L. 1998. Short-term changes in soil carbon and nitrogen pools during tillage management transition.Soil Science S ociety of America Journal, 62: 1564~1571
    Mercik S, Nemeth K. 1985. Effect of 60-years N, P, K and Ca fertilizer on EUF-nutrient fraction in the soil and yields of rye and potato crops. Plant Soil, 1:151~159
    Mkhabela M S, Madani A, Gordon R. 2008. Gaseous and leaching nitrogen losses from no-tillage and conventional tillage systems following surface application of cattle manure. Soil&Tillage Research, 98: 187~199
    Murphy DV, G P Sparling, L R P Fillery, et al. 1998. Mineralization of soil organic nitrogen and microbial respiration after simulated summer rainfall events in an agricultural soil. Auslralian Journal of Soil Research. 36: 231~246
    Patra D. 1990. Seasonal changes of soil microbial in an arable and grassland soll which have been under unifoITII man agement for many years. Soil Biol Biochem. 22(6): 739~742
    Raich J W, Wtufekcioglu A. 2000. Vegetation and soil respiration: Correlations and Controls. Biogeochemistry, 48: 71~90
    Raieh J W, Potter C S. 1995. Global Pattems of carbon dioxide emissions from soil. Global Boigeoehemistry Cyeles, 9: 23~36
    Reicosky D C, Dugas W A, Torbert H A. 1997. Tillage induced soil carbon dioxide loss from different cropping systems. Soil and Tillage Research, 41: 105~118.
    Repnevskaya M A. 1967. Liberation of CO_2 from soil in the pine stands of the Kola Peninsula. Soil Science, 68: 1067~1072.
    Robertson G P, Paul E A, Harwood R. 2000. Greenhouse gases in intensive agriculture: Contributions of individual gases to the radio active forcing of the atmosphere. Science, 289(5486): 1922~1925.\
    Rodhn H A. 1990, A comparison of the contribution of various gases to the greenhous effect. Seience, 248:1217~1219
    Russell A E, Laird D A, Parkin T B, et al. 2005. Impact of nitrogenfertilization and cropping system on carbon sequestration inMidwestern Mollisols. Soil Science Society of America Journal, 69:413~422.
    Scalajrn LA, Bolongezi D, Pereira GT. 2006. Short-term soil CO_2 emission after conventional and reduced tillage of a no-till sugarcane area in southern Brazil. Soil and Tillage Research, 91: 244~248.
    Sexstone A J, Parkin T B, Tiedje J M. 1985. Temporal response of soil denitrification rates and irrigation. Soil Sci. 49: 99~103.
    Singh J S, Gupta S R. 1977. Plant decomposition and soil resp iration interrestrial ecosystem s[J].The B otan ica l R eview, 43: 449~528.
    Skopp J, M D Jawson, J W Doran. 1990. Steady-state aerobic microbial activity as a function of soil water content. Soil Sci., 54: 1619~625.
    Thompson J A, Chase D J. 1992. Effect of limited irrigation on growth of asemi-darf wheat in southern New South Wales. Aust J Exper Agric, 32:725~730.
    Van’t Hoff J H. 1884. Etudes De Dynamicque Chemique. Amsterdam: Frederik Muller&Co Wang C J, Pan G X, Smith P, et al. 2009. Topsoil organic carbon dynamics under different fertilization schemes in China’s croplands:an analysis with long-term agroecosystem experiments. Agric, Ecosys&Environ
    Wang Y S, Hu Y Q, Ji B M, et al. 2003. An investigation on the relationship between emission up take of greenhouse gases and environmental factors in sem iarid grassland. Advances in Atmospheric Sciences, 20(1):119~127.
    Weier K L, Doran J W, Power J F, et al. 1993. Denitrification and the dinitroge/nitrous oxide ratio as affected by soil water,available carbon,and nitrate. Soil science soe Amer. 57: 66~72
    Weier.K L, Gilliam J M. 1986. Effect of acidity on denitrification and nitrous oxide evolution from atlantic coastal plain soils. Soil Sci.Soc.Am.J, 50: 1202~1205.
    Wolf I R. 2000. Different pathways of formation of N_2O, N_2 and NO inblack earth soil. Soil Boil.Biochem, 32: 229~239.
    Woodwell. 1978. The biota and the world carbon budget. Science, 199: 141~146
    Wu T Y, Schoenau J J, Li F M, et al. 2004. Influence of cultivation and fertilization on total organic carbon and carbon fractions in soils from the Loess Plateau of China. Soil and Tillage Research, 77: 59~68.
    Zhang T Q, Mackenzie A F. 1997. Plant and Soil, 192: 133~139
    蔡艳,丁维新,蔡祖聪. 2006.土壤-玉米系统中土壤呼吸强度及各组分贡献.生态学报, 26(12): 4273~4280.
    曹莹菲,刘庆芳,刘克,张敏,余荣亚,贺萌萌,杨学云,吕家珑. 2010.长期不同施肥对塿土碳氮含量的影响.干旱地区农业研究, 28(2): 187~190
    陈敖敦格日乐. 2008.施肥与耕作方式对农田土壤呼吸的影响. [硕士学位论文].呼和浩特:内蒙古农业大学
    陈磊,郝明德,张少民,高长青. 2007.黄土高原旱地施肥对小麦与苜蓿土壤水分养分含量的影响.\
    草地学报, 15(4): 371~375
    陈述悦. 2004.华北平原典型农田土壤呼吸的研究. [硕士毕业论文].北京:北京林业大学
    陈卫卫,张友民,王毅勇,赵志春,顾江新. 2007.三江平原稻田N_2O通量特征.农业环境科学学报, 1(26): 364~368.
    戴万宏,王益权,黄耀,刘军,赵磊. 2004.农田生态系统土壤CO_2释放研究.西北农林科技大学学报(自然科学版), 32(12): 1~7
    丁洪,蔡贵信,王跃思,陈德立. 2003.玉米-潮土系统中氮肥硝化反硝化损失与N_2O排放[J].农业环境科学学报, 22(5): 557~560
    董玉红,欧阳竹,李运生,张磊. 2005.肥料施用及环境因子对农田土壤CO_2和N_2O排放的影响.农业环境科学学报, 24(5): 913~918
    董玉红,欧阳竹,李运生,李鹏,张磊. 2007.不同施肥方式对农田土壤CO_2和N_2O排放的影响.中国土壤与肥料, (4):34-39.
    樊军,郝明德,党廷辉. 2000.旱地长期定位施肥对冬麦水分利用的影响研究.土壤, (6): 315~322
    封克,殷士学. 1995.影响氧化亚氮形成与排放的土壤因素.土壤学进展, 23(6): 35~41
    封克,王子波,王小治. 2004.土壤PH对硝酸根还原过程中N_2O产生的影响.土壤学报, 1(41): 81~86.
    高会议,郭胜利,刘文兆,车升国. 2009.黄土旱塬区冬小麦不同施肥处理的土壤呼吸及土壤碳动态.生态学报, 29(5): 2551~2559
    高会议,郭胜利,刘文兆,车升国. 2009.施肥措施对黄土旱塬区小麦产量和土壤有机碳积累的影响.植物营养与肥料学报, 15(6): 1333~1338.
    高会议,郭胜利,刘文兆,车升国. 2009.黄土旱塬区冬小麦不同施肥处理的土壤呼吸及土壤碳动态.生态学报, 29(5): 2551~2559
    郭栋. 2005.施肥对黄土高原冬小麦产量形成、干物质累积及养分吸收利用的影响. [硕士学位论文].杨凌:中国科学院研究生院
    郭李萍,林而达,李少杰. 1999.大气氮化物的源汇及气候与环境效应.农业环境保护, 18(5):193-199
    郭天财,彭羽,闫耀礼,李翔,沈东风,王书子. 2002.水分调控对小麦开花水分利用特性及产量的影响.华北农学报, 17(1):16~20.
    韩广轩,周广胜,许振柱,杨扬,刘景利,史奎桥. 2007.玉米农田土壤呼吸作用的空间异质性及其根系呼吸作用的贡献.生态学报, 27(12): 5254~5261.
    郝明德,来璐,王改玲,党廷辉. 2003.黄土高原塬区长期施肥对小麦产量的影响.应用生态学报, 14(11): 1893~1896.
    郝明德,姚振镐,韩贵杰. 1991.渭北旱塬地区粮食作物优化施肥模式的研究见:李玉山,苏陕民(主编).长武王东沟高效生态经济系统综合研究.西安:科学技术文献出版社: 9
    黄国宏,陈冠雄,韩冰, Oswald V C. 1999.土壤含水量与N_2O产生途径研究.应用生态学报, 10(l): 53~56
    黄国宏,陈冠熊,张志明,吴杰,黄斌, Oswald V C. 1998.玉米田N_2O排放及减排措施研究. .环境科学学报, 18(4): 344~349
    黄晶,刘宏斌,王伯仁. 2009.长期施肥下红壤旱地CO_2、N_2O排放特征.中国农学通报, 25(24): 428~433
    贾丙瑞,周广胜,王风玉,王玉辉. 2005.土壤微生物与根系呼吸作用影响因子分析.应用生态学报, 16(8): 1547~1552.
    贾振华. 1992.施钾对提高小麦籽粒产量和蛋白质含量的初出研究.北京农学院学报, 7(1): 5~15.
    金琳,李玉娥,高清竹. 2008.中国农田管理土壤碳汇估算.中国农业科学, 41(3): 734~743.
    冷延慧,汪景宽,李双异. 2008.长期施肥对黑土团聚体分布和碳储量变化的影响.生态学杂志, 27(12): 2171~2177
    李长生. 2000.土壤碳储量减少:中国农业之隐患一中美农业系统碳循环对比研究.第四纪研究, 20(4)
    李冬花,郭瑞林,张毅,王西来,常春荣,王阔. 1997.钾肥对小麦产量及营养品质的影响研究.河南农业大学学报, 31(4): 357~361
    李芳林. 2009.长期施肥对黄土高原旱地小麦产量及其生态环境影响研究[硕士学位论文].杨凌:西北农林科技大学
    李海防,夏汉平,熊燕梅,张杏锋. 2007.土壤温室气体产生与排放影响因素研究进展.生态环境, 16(6): 1781~1788
    李琳,张海林,陈阜,李素娟. 2007.不同耕作措施下冬小麦生长季农田二氧化碳排放通量及其与土壤温度的关系.应用生态学报, 18(12) : 2765~2770.
    李生秀,李世清. 1995.不同水肥处理对旱地土壤速效氮磷养分的影响.干旱地区农业研究, (1): 6~13.
    李向民,许春霞,李开元. 1999.黄土高原沟壑区水肥因子对冬小麦经济性状的影响.应用生态学报, 10(3): 309~311.
    梁东丽,同延安,OveEmteryd,方日尧,张树兰. 2002.干湿交替对旱地土壤N_2O气态损失的影响.干早地区农业研究, 20(2): 28-~31,48
    梁东丽,同延安, OveEmteryd,李生秀,方日尧,张树兰. 2002.灌溉和降水对旱地土壤N_2O气态损失的影响.植物营养与肥料学报, 8(3): 298~302
    梁东丽,吴庆强,李生秀, Emteryd Ove. 2007.旱地反硝化作用和N_2O排放影响因子的研究.西北农林科技大学(自然科学版), 35(12): 93~98
    梁银丽,康绍忠. 1998.节水灌溉对冬小麦光合速率和产量的影响.西北农业大学学报, 26(4): 16~19.
    林葆,林继雄,李家康. 1996.长期施肥的作物产量和土壤肥力变化.北京:中国农业科技出版社, 1~179
    刘杏兰,高宗,刘存寿,司立征. 1996.有机-无机肥配施下的增产效应及对土壤肥力影响的定位研究.土壤学报, 33(2): 138~147.
    刘晔,牟玉静,钟晋贤. 1997.氧化亚氮在森林和草原中的地-气交换.环境科学, 18(5):15~18
    卢燕宇,黄耀,郑循华. 2005.农田氧化亚氮排放系数的研究.应用生态学报, 16(7):1299~1302
    吕家珑,张一平,王旭东,汤代良,化党领. 2001.农田生态对土壤肥力的保护效应.生态学报, 21(4): 613~616
    吕家珑,张一平,王旭东,赵高霞,张春惠. 2001.长期单施化肥对土壤性状及作物产量的影响.应用生态学报, 12(4): 569~572.
    马成泽,周勤,何方. 1994.不同肥料配合施用土壤有机碳盈亏分布.土壤学报, 31(1): 34~41.
    马强,宇万太,沈善敏,张璐. 2007.旱地农田水肥效应研究进展.应用生态学报, 18(3): 675~683
    孟磊,蔡祖聪,丁维新. 2005.长期施肥对土壤碳储量和作物固定碳的影响.土壤学报, 42(5): 769~776.
    孟磊. 2005.长期肥料定位试验农田土壤温室气体排放研究[博士毕业论文].南京:中国科学院研究生院
    牛灵安,郝晋珉,张宝忠,牛新胜,吕振宇. 2009.长期施肥对华北平原农田土壤呼吸及碳平衡的影响.生态环境学报, 18(3): 1054~1060
    潘根兴,周萍,李恋卿,张旭辉. 2007.固碳土壤学的核心科学问题与研究进展.土壤学报, 44(2): 327~33.
    彭永欣,郭文善,封超年,严六零,周振兴. 1992.小麦籽粒生长特性分析.扬州大学学报(农业与生命科学版), 13(3): 9~15
    乔云发,韩晓增,苗淑杰. 2007.长期定量施肥对黑土呼吸的影响.土壤通报, 38(5): 887~890.
    宋文质,王少彬,苏维瀚,曾江海,王智平,张玉铭. 1996.我国农田土壤的主要温室气体CO_2、CH4和N_2O排放研究.环境科学, 17(1): 85~88
    孙志强,郝庆菊,江长胜,王定勇. 2010.农田土壤N_2O的产生机制及其影响因素研究进展.土壤通报, 41(6): 1524~1530
    同延安,赵营,赵护兵,樊红柱. 2007.施氮量对冬小麦氮素吸收、转运及产量的影响.植物营养与肥料学报, 13(1): 64~49.
    王兵,刘文兆,党廷辉,高长青,陈杰,甘卓亭. 2008.黄土塬区旱作农田长期定位施肥对冬小麦水分利用的影响.植物营养与肥料学报, 14(5): 829~834
    王彩绒,田霄鸿,李生秀. 2001.土壤中氧化亚氮的产生及减少排放量的措施.土壤环境, 10(2): 143~148
    王改玲,郝明德,陈德立. 2006.硝化抑制剂和通气调节对土壤N_2O排放的影响.植物营养与肥料学报, 12(1): 32~36
    王少彬,宋文质,苏维瀚,曾汇海,张玉铭,王智平. 1994.冬小麦田氧化亚氮的排放.农业环境保护, 13(5): 210~212
    王旭东,于振文. 2003.施磷对小麦产量和品质的影响.山东农业科学, (6): 35~36
    王旭刚,郝明德,李建民,张春霞. 2007.氮磷配施对旱地小麦产量和吸肥特性的影响.西北农林科技大学(自然科学版), 35(2): 138~142
    王芸,李增嘉,韩宾,史忠强,宁堂原,江晓东,郑延海,白美,赵建波. 2007.保护性耕作对土壤微生物量及活性的影响.生态学报, 27(8):3384~3390
    王智平,曾江海,张玉铭.农田土壤N_2O排放的影响因素.农业环境保护, 1994, 13(1):40~42, 29
    魏孝荣,郝明德,张春霞. 2003.旱地长期施肥对土壤水分的影响.水土保持研究, 10(1): 95~97
    魏孝荣,郝明德,张春霞. 2003.黄土区长期定位培肥试验对土壤肥力的影响.水土保持研究, 10(1): 37~39
    吴乐知,蔡祖聪. 2007.基于长期试验资料对中国农田表土有机碳含量变化的估算.生态环境, 16(6): 1768~1774.
    徐华,邢光熹,蔡祖聪,鹤田治雄. 2000.土壤质地对小麦和棉花田N_2O排放的影响.农业环境保护, 19(1):1~3
    徐文彬,刘维屏,刘广深. 2001.应用DNDC模型分析施肥和翻耕方式变化对旱田土壤N_2O释放的潜在影响.应用生态学报, 6(12): 917~922.
    许晶晶,郝明德,赵云英. 2009.黄土高原旱地小麦氮磷钾与有机肥优化配施试验.干旱地区农业研究27(3): 143~147, 153
    杨兰芳,蔡祖聪,祁士华. 2007.大豆和玉米生长对土壤N_2O排放的影响.作物学报, 33(5):861~865.\
    杨学明,张晓平,方华军. 2003.农业土壤固碳对缓解全球变暖的意义.地理科学, 23(1): 101~106
    杨云,黄耀,姜纪峰. 2005.土壤理化特性对冬季菜地N_2O排放的影响.农村生态环境, 21(2):7~12
    姚槐应,何振立,陈国潮,黄昌勇. 1999.红壤微生物量在土壤一黑麦草系统中的肥力意义.应用生态学报, 10(6): 725~728.
    易志刚,蚁伟民,周国逸, 2003.鼎湖山三种主要植被类型土壤碳释放研究.生态学报, 23(8): 1673~1678.
    于振文,张炜,余松烈. 1996.钾营养对冬小麦养分吸收分配、产量形成和品质的影响.作物学报, 22(4): 442~447
    余松烈. 1990.山东小麦.北京:农业出版社, 216~ 226
    詹其厚陈杰. 2007.淮北变性土区夏玉米对氮磷钾肥的相应特点研究.土壤通报, 38(3): 491~494.
    张春霞,郝明德,谢佰承. 2006.不同化肥用量对土壤碳库的影响.土壤通报, 37(5): 861~864
    张东秋,石培礼,张宪洲. 2005.土壤呼吸主要影响因素的研究进展.地球科学进展, 20(7): 778~785
    张夫道. 1996.长期施肥条件下土壤养分的动态与平衡Ⅱ.对土壤氮的有效性和腐殖质氮组成的影响.植物营养与肥料学报, 2(1): 39~48.
    张负申. 1996.不同施肥处理对娄土和黄绵土有机质氧化稳定性的影响.河南农业大学学报, 30(1): 80~84.
    张立新,吕殿青,张文孝. 1995.渭北旱塬不同降水年型冬小麦氮磷增产效应评析.干旱地区农业研究,(2): 39~48.
    张少民,郝明德,柳燕兰. 2007.黄土区长期施用磷肥对冬小麦产量、吸氮特性及土壤肥力的影响.西北农林科技大学学报(自然科学版), 35(7):159~163.
    张仲新,李玉娥,华珞. 2010.不同施肥量对设施菜地N_2O排放通量的影响.农业工程学报, 26(5):269~275.
    章永松,林咸永,罗安成. 1998.有机肥对土壤中磷的活化作用及机理研究Ⅰ.有机肥(物)对土壤不同形态无机磷活化作用.植物营养与肥料学报, 4(2): 145~150.
    赵晓齐,鲁如坤. 1991.有机肥对土壤磷素吸附的影响.土壤学报, 28 (1): 7~13.
    赵云英,谢永生,郝明德. 2007.黄土旱塬小麦长期施肥的产量效应及土壤肥力变化.西北农业学报, 16(5): 75~79,88
    郑循华,王明星,王跃思. 1997.华东稻麦轮作生态系统的N_2O排放研究.应用生态学报, 8(5): 495~499
    郑循华,王明星,王跃思. 1997.华东稻田CH4和N_2O排放.大气科学, 21(2): 231~237.
    郑循华,王明星,王跃思,沈壬兴,张文龚,艳邦. 1997.温度对农田N_2O产生与排放的影响.环境科学, 18(5): l~5
    诸葛玉平,张旭东,刘启. 2005.长期施肥对黑土呼吸过程的影响.土壤通报, 36(3): 391~394.
    祝华明,王美勤,吴樟梅. 1995.施肥对红砂田有机质及土壤养分演变与作物产量的影响研究.土壤通报, 26(2): 76~77.
    邹国元,张福锁,陈新平,巨晓棠,刘学军,潘家荣. 2001.秸秆还田对旱地土壤反硝化的影响.中国农业科技导报, 3(6): 47~50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700